]> git.mxchange.org Git - flightgear.git/blob - LaRCsim/ls_aux.c
Initial Flight Gear revision.
[flightgear.git] / LaRCsim / ls_aux.c
1 /***************************************************************************
2
3     TITLE:              ls_aux
4                 
5 ----------------------------------------------------------------------------
6
7     FUNCTION:   Atmospheric and auxilary relationships for LaRCSim EOM
8
9 ----------------------------------------------------------------------------
10
11     MODULE STATUS:      developmental
12
13 ----------------------------------------------------------------------------
14
15     GENEALOGY:  Created 9208026 as part of C-castle simulation project.
16
17 ----------------------------------------------------------------------------
18
19     DESIGNED BY:        B. Jackson
20     
21     CODED BY:           B. Jackson
22     
23     MAINTAINED BY:      B. Jackson
24
25 ----------------------------------------------------------------------------
26
27     MODIFICATION HISTORY:
28     
29     DATE    PURPOSE     
30     
31     931006  Moved calculations of auxiliary accelerations from here
32             to ls_accel.c and corrected minus sign in front of A_Y_Pilot
33             contribution from Q_body*P_body*D_X_pilot term.         EBJ
34     931014  Changed calculation of Alpha from atan to atan2 so sign is correct.
35                                                                     EBJ
36     931220  Added calculations for static and total temperatures & pressures,
37             as well as dynamic and impact pressures and calibrated airspeed.
38                                                                     EBJ
39     940111  Changed #included header files from old "ls_eom.h" to newer
40             "ls_types.h", "ls_constants.h" and "ls_generic.h".      EBJ
41
42     950207  Changed use of "abs" to "fabs" in calculation of signU. EBJ
43     
44     950228  Fixed bug in calculation of beta_dot.                   EBJ
45
46     CURRENT RCS HEADER INFO:
47
48 $Header$
49 $Log$
50 Revision 1.1  1997/05/29 00:09:54  curt
51 Initial Flight Gear revision.
52
53  * Revision 1.12  1995/02/28  17:57:16  bjax
54  * Corrected calculation of beta_dot. EBJ
55  *
56  * Revision 1.11  1995/02/07  21:09:47  bjax
57  * Corrected calculation of "signU"; was using divide by
58  * abs(), which returns an integer; now using fabs(), which
59  * returns a double.  EBJ
60  *
61  * Revision 1.10  1994/05/10  20:09:42  bjax
62  * Fixed a major problem with dx_pilot_from_cg, etc. not being calculated locally.
63  *
64  * Revision 1.9  1994/01/11  18:44:33  bjax
65  * Changed header files to use ls_types, ls_constants, and ls_generic.
66  *
67  * Revision 1.8  1993/12/21  14:36:33  bjax
68  * Added calcs of pressures, temps and calibrated airspeeds.
69  *
70  * Revision 1.7  1993/10/14  11:25:38  bjax
71  * Changed calculation of Alpha to use 'atan2' instead of 'atan' so alphas
72  * larger than +/- 90 degrees are calculated correctly.                 EBJ
73  *
74  * Revision 1.6  1993/10/07  18:45:56  bjax
75  * A little cleanup; no significant changes. EBJ
76  *
77  * Revision 1.5  1993/10/07  18:42:22  bjax
78  * Moved calculations of auxiliary accelerations here from ls_aux, and
79  * corrected sign on Q_body*P_body*d_x_pilot term of A_Y_pilot calc.  EBJ
80  *
81  * Revision 1.4  1993/07/16  18:28:58  bjax
82  * Changed call from atmos_62 to ls_atmos. EBJ
83  *
84  * Revision 1.3  1993/06/02  15:02:42  bjax
85  * Changed call to geodesy calcs from ls_geodesy to ls_geoc_to_geod.
86  *
87  * Revision 1.1  92/12/30  13:17:39  bjax
88  * Initial revision
89  * 
90
91
92 ----------------------------------------------------------------------------
93
94     REFERENCES: [ 1] Shapiro, Ascher H.: "The Dynamics and Thermodynamics
95                         of Compressible Fluid Flow", Volume I, The Ronald 
96                         Press, 1953.
97
98 ----------------------------------------------------------------------------
99
100                 CALLED BY:
101
102 ----------------------------------------------------------------------------
103
104                 CALLS TO:
105
106 ----------------------------------------------------------------------------
107
108                 INPUTS:
109
110 ----------------------------------------------------------------------------
111
112                 OUTPUTS:
113
114 --------------------------------------------------------------------------*/
115 #include "ls_types.h"
116 #include "ls_constants.h"
117 #include "ls_generic.h"
118 #include <math.h>
119
120 void    ls_aux()
121 {
122
123         SCALAR  dx_pilot_from_cg, dy_pilot_from_cg, dz_pilot_from_cg;
124         SCALAR  inv_Mass;
125         SCALAR  v_XZ_plane_2, signU, v_tangential;
126         SCALAR  inv_radius_ratio;
127         SCALAR  cos_rwy_hdg, sin_rwy_hdg;
128         SCALAR  mach2, temp_ratio, pres_ratio;
129         
130     /* update geodetic position */
131
132         ls_geoc_to_geod( Lat_geocentric, Radius_to_vehicle, 
133                                 &Latitude, &Altitude, &Sea_level_radius );
134         Longitude = Lon_geocentric - Earth_position_angle;
135
136     /* Calculate body axis velocities */
137
138         /* Form relative velocity vector */
139
140         V_north_rel_ground = V_north;
141         V_east_rel_ground  = V_east 
142           - OMEGA_EARTH*Sea_level_radius*cos( Lat_geocentric );
143         V_down_rel_ground  = V_down;
144         
145         V_north_rel_airmass = V_north_rel_ground - V_north_airmass;
146         V_east_rel_airmass  = V_east_rel_ground  - V_east_airmass;
147         V_down_rel_airmass  = V_down_rel_ground  - V_down_airmass;
148         
149         U_body = T_local_to_body_11*V_north_rel_airmass 
150           + T_local_to_body_12*V_east_rel_airmass
151             + T_local_to_body_13*V_down_rel_airmass + U_gust;
152         V_body = T_local_to_body_21*V_north_rel_airmass 
153           + T_local_to_body_22*V_east_rel_airmass
154             + T_local_to_body_23*V_down_rel_airmass + V_gust;
155         W_body = T_local_to_body_31*V_north_rel_airmass 
156           + T_local_to_body_32*V_east_rel_airmass
157             + T_local_to_body_33*V_down_rel_airmass + W_gust;
158                                 
159         V_rel_wind = sqrt(U_body*U_body + V_body*V_body + W_body*W_body);
160
161
162     /* Calculate alpha and beta rates   */
163
164         v_XZ_plane_2 = (U_body*U_body + W_body*W_body);
165         
166         if (U_body == 0)
167                 signU = 1;
168         else
169                 signU = U_body/fabs(U_body);
170                 
171         if( (v_XZ_plane_2 == 0) || (V_rel_wind == 0) )
172         {
173                 Alpha_dot = 0;
174                 Beta_dot = 0;
175         }
176         else
177         {
178                 Alpha_dot = (U_body*W_dot_body - W_body*U_dot_body)/
179                   v_XZ_plane_2;
180                 Beta_dot = (signU*v_XZ_plane_2*V_dot_body 
181                   - V_body*(U_body*U_dot_body + W_body*W_dot_body))
182                     /(V_rel_wind*V_rel_wind*sqrt(v_XZ_plane_2));
183         }
184
185     /* Calculate flight path and other flight condition values */
186
187         if (U_body == 0) 
188                 Alpha = 0;
189         else
190                 Alpha = atan2( W_body, U_body );
191                 
192         Cos_alpha = cos(Alpha);
193         Sin_alpha = sin(Alpha);
194         
195         if (V_rel_wind == 0)
196                 Beta = 0;
197         else
198                 Beta = asin( V_body/ V_rel_wind );
199                 
200         Cos_beta = cos(Beta);
201         Sin_beta = sin(Beta);
202         
203         V_true_kts = V_rel_wind * V_TO_KNOTS;
204         
205         V_ground_speed = sqrt(V_north_rel_ground*V_north_rel_ground
206                               + V_east_rel_ground*V_east_rel_ground );
207
208         V_rel_ground = sqrt(V_ground_speed*V_ground_speed
209                             + V_down_rel_ground*V_down_rel_ground );
210         
211         v_tangential = sqrt(V_north*V_north + V_east*V_east);
212         
213         V_inertial = sqrt(v_tangential*v_tangential + V_down*V_down);
214         
215         if( (V_ground_speed == 0) && (V_down == 0) )
216           Gamma_vert_rad = 0;
217         else
218           Gamma_vert_rad = atan2( -V_down, V_ground_speed );
219                 
220         if( (V_north_rel_ground == 0) && (V_east_rel_ground == 0) )
221           Gamma_horiz_rad = 0;
222         else
223           Gamma_horiz_rad = atan2( V_east_rel_ground, V_north_rel_ground );
224         
225         if (Gamma_horiz_rad < 0) 
226           Gamma_horiz_rad = Gamma_horiz_rad + 2*PI;
227         
228     /* Calculate local gravity  */
229         
230         ls_gravity( Radius_to_vehicle, Lat_geocentric, &Gravity );
231         
232     /* call function for (smoothed) density ratio, sonic velocity, and
233            ambient pressure */
234
235         ls_atmos(Altitude, &Sigma, &V_sound, 
236                  &Static_temperature, &Static_pressure);
237         
238         Density = Sigma*SEA_LEVEL_DENSITY;
239         
240         Mach_number = V_rel_wind / V_sound;
241         
242         V_equiv = V_rel_wind*sqrt(Sigma);
243         
244         V_equiv_kts = V_equiv*V_TO_KNOTS;
245
246     /* calculate temperature and pressure ratios (from [1]) */
247
248         mach2 = Mach_number*Mach_number;
249         temp_ratio = 1.0 + 0.2*mach2; 
250         pres_ratio = pow( temp_ratio, 3.5 );
251
252         Total_temperature = temp_ratio*Static_temperature;
253         Total_pressure    = pres_ratio*Static_pressure;
254
255     /* calculate impact and dynamic pressures */
256         
257         Impact_pressure = Total_pressure - Static_pressure; 
258
259         Dynamic_pressure = 0.5*Density*V_rel_wind*V_rel_wind;
260
261     /* calculate calibrated airspeed indication */
262
263         V_calibrated = sqrt( 2.0*Dynamic_pressure / SEA_LEVEL_DENSITY );
264         V_calibrated_kts = V_calibrated*V_TO_KNOTS;
265         
266         Centrifugal_relief = 1 - v_tangential/(Radius_to_vehicle*Gravity);
267         
268 /* Determine location in runway coordinates */
269
270         Radius_to_rwy = Sea_level_radius + Runway_altitude;
271         cos_rwy_hdg = cos(Runway_heading*DEG_TO_RAD);
272         sin_rwy_hdg = sin(Runway_heading*DEG_TO_RAD);
273         
274         D_cg_north_of_rwy = Radius_to_rwy*(Latitude - Runway_latitude);
275         D_cg_east_of_rwy = Radius_to_rwy*cos(Runway_latitude)
276                 *(Longitude - Runway_longitude);
277         D_cg_above_rwy  = Radius_to_vehicle - Radius_to_rwy;
278         
279         X_cg_rwy = D_cg_north_of_rwy*cos_rwy_hdg 
280           + D_cg_east_of_rwy*sin_rwy_hdg;
281         Y_cg_rwy =-D_cg_north_of_rwy*sin_rwy_hdg 
282           + D_cg_east_of_rwy*cos_rwy_hdg;
283         H_cg_rwy = D_cg_above_rwy;
284         
285         dx_pilot_from_cg = Dx_pilot - Dx_cg;
286         dy_pilot_from_cg = Dy_pilot - Dy_cg;
287         dz_pilot_from_cg = Dz_pilot - Dz_cg;
288
289         D_pilot_north_of_rwy = D_cg_north_of_rwy 
290           + T_local_to_body_11*dx_pilot_from_cg 
291             + T_local_to_body_21*dy_pilot_from_cg
292               + T_local_to_body_31*dz_pilot_from_cg;
293         D_pilot_east_of_rwy  = D_cg_east_of_rwy 
294           + T_local_to_body_12*dx_pilot_from_cg 
295             + T_local_to_body_22*dy_pilot_from_cg
296               + T_local_to_body_32*dz_pilot_from_cg;
297         D_pilot_above_rwy    = D_cg_above_rwy 
298           - T_local_to_body_13*dx_pilot_from_cg 
299             - T_local_to_body_23*dy_pilot_from_cg
300               - T_local_to_body_33*dz_pilot_from_cg;
301                                                         
302         X_pilot_rwy =  D_pilot_north_of_rwy*cos_rwy_hdg
303           + D_pilot_east_of_rwy*sin_rwy_hdg;
304         Y_pilot_rwy = -D_pilot_north_of_rwy*sin_rwy_hdg
305           + D_pilot_east_of_rwy*cos_rwy_hdg;
306         H_pilot_rwy =  D_pilot_above_rwy;
307                                                                 
308 /* Calculate Euler rates */
309         
310         Sin_phi = sin(Phi);
311         Cos_phi = cos(Phi);
312         Sin_theta = sin(Theta);
313         Cos_theta = cos(Theta);
314         Sin_psi = sin(Psi);
315         Cos_psi = cos(Psi);
316         
317         if( Cos_theta == 0 )
318           Psi_dot = 0;
319         else
320           Psi_dot = (Q_total*Sin_phi + R_total*Cos_phi)/Cos_theta;
321         
322         Theta_dot = Q_total*Cos_phi - R_total*Sin_phi;
323         Phi_dot = P_total + Psi_dot*Sin_theta;
324         
325 /* end of ls_aux */
326
327 }
328 /*************************************************************************/