]> git.mxchange.org Git - flightgear.git/blob - LaRCsim/navion_gear.c
0fd31803d5db838eb2f022a69f2e1769556ace5a
[flightgear.git] / LaRCsim / navion_gear.c
1 /***************************************************************************
2
3         TITLE:  gear
4         
5 ----------------------------------------------------------------------------
6
7         FUNCTION:       Landing gear model for example simulation
8
9 ----------------------------------------------------------------------------
10
11         MODULE STATUS:  developmental
12
13 ----------------------------------------------------------------------------
14
15         GENEALOGY:      Created 931012 by E. B. Jackson
16
17 ----------------------------------------------------------------------------
18
19         DESIGNED BY:    E. B. Jackson
20         
21         CODED BY:       E. B. Jackson
22         
23         MAINTAINED BY:  E. B. Jackson
24
25 ----------------------------------------------------------------------------
26
27         MODIFICATION HISTORY:
28         
29         DATE    PURPOSE                                         BY
30
31         931218  Added navion.h header to allow connection with
32                 aileron displacement for nosewheel steering.    EBJ
33         940511  Connected nosewheel to rudder pedal; adjusted gain.
34         
35         CURRENT RCS HEADER:
36
37 $Header$
38 $Log$
39 Revision 1.5  1998/09/29 02:03:00  curt
40 Added a brake + autopilot mods.
41
42 Revision 1.4  1998/08/06 12:46:40  curt
43 Header change.
44
45 Revision 1.3  1998/02/03 23:20:18  curt
46 Lots of little tweaks to fix various consistency problems discovered by
47 Solaris' CC.  Fixed a bug in fg_debug.c with how the fgPrintf() wrapper
48 passed arguments along to the real printf().  Also incorporated HUD changes
49 by Michele America.
50
51 Revision 1.2  1998/01/19 18:40:29  curt
52 Tons of little changes to clean up the code and to remove fatal errors
53 when building with the c++ compiler.
54
55 Revision 1.1  1997/05/29 00:10:02  curt
56 Initial Flight Gear revision.
57
58
59 ----------------------------------------------------------------------------
60
61         REFERENCES:
62
63 ----------------------------------------------------------------------------
64
65         CALLED BY:
66
67 ----------------------------------------------------------------------------
68
69         CALLS TO:
70
71 ----------------------------------------------------------------------------
72
73         INPUTS:
74
75 ----------------------------------------------------------------------------
76
77         OUTPUTS:
78
79 --------------------------------------------------------------------------*/
80 #include <math.h>
81 #include "ls_types.h"
82 #include "ls_constants.h"
83 #include "ls_generic.h"
84 #include "ls_cockpit.h"
85
86 #include <Controls/controls.h>
87
88 void sub3( DATA v1[],  DATA v2[], DATA result[] )
89 {
90     result[0] = v1[0] - v2[0];
91     result[1] = v1[1] - v2[1];
92     result[2] = v1[2] - v2[2];
93 }
94
95 void add3( DATA v1[],  DATA v2[], DATA result[] )
96 {
97     result[0] = v1[0] + v2[0];
98     result[1] = v1[1] + v2[1];
99     result[2] = v1[2] + v2[2];
100 }
101
102 void cross3( DATA v1[],  DATA v2[], DATA result[] )
103 {
104     result[0] = v1[1]*v2[2] - v1[2]*v2[1];
105     result[1] = v1[2]*v2[0] - v1[0]*v2[2];
106     result[2] = v1[0]*v2[1] - v1[1]*v2[0];
107 }
108
109 void multtrans3x3by3( DATA m[][3], DATA v[], DATA result[] )
110 {
111     result[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
112     result[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
113     result[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
114 }
115
116 void mult3x3by3( DATA m[][3], DATA v[], DATA result[] )
117 {
118     result[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
119     result[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
120     result[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
121 }
122
123 void clear3( DATA v[] )
124 {
125     v[0] = 0.; v[1] = 0.; v[2] = 0.;
126 }
127
128 void gear( SCALAR dt, int Initialize ) {
129 char rcsid[] = "$Id$";
130
131   /*
132    * Aircraft specific initializations and data goes here
133    */
134    
135 #define NUM_WHEELS 3
136
137     static int num_wheels = NUM_WHEELS;             /* number of wheels  */
138     static DATA d_wheel_rp_body_v[NUM_WHEELS][3] =  /* X, Y, Z locations */
139     {
140         { 10.,  0., 4. },                               /* in feet */
141         { -1.,  3., 4. }, 
142         { -1., -3., 4. }
143     };
144     static DATA spring_constant[NUM_WHEELS] =       /* springiness, lbs/ft */
145         { 1500., 5000., 5000. };
146     static DATA spring_damping[NUM_WHEELS] =        /* damping, lbs/ft/sec */
147         { 100.,  150.,  150. };         
148     static DATA percent_brake[NUM_WHEELS] =         /* percent applied braking */
149         { 0.,  0.,  0. };                           /* 0 = none, 1 = full */
150     static DATA caster_angle_rad[NUM_WHEELS] =      /* steerable tires - in */
151         { 0., 0., 0.};                              /* radians, +CW */  
152   /*
153    * End of aircraft specific code
154    */
155     
156   /*
157    * Constants & coefficients for tyres on tarmac - ref [1]
158    */
159    
160     /* skid function looks like:
161      * 
162      *           mu  ^
163      *               |
164      *       max_mu  |       +          
165      *               |      /|          
166      *   sliding_mu  |     / +------    
167      *               |    /             
168      *               |   /              
169      *               +--+------------------------> 
170      *               |  |    |      sideward V
171      *               0 bkout skid
172      *                 V     V
173      */
174   
175   
176     static DATA sliding_mu   = 0.5;     
177     static DATA rolling_mu   = 0.01;    
178     static DATA max_brake_mu = 0.6;     
179     static DATA max_mu       = 0.8;     
180     static DATA bkout_v      = 0.1;
181     static DATA skid_v       = 1.0;
182   /*
183    * Local data variables
184    */
185    
186     DATA d_wheel_cg_body_v[3];          /* wheel offset from cg,  X-Y-Z */
187     DATA d_wheel_cg_local_v[3];         /* wheel offset from cg,  N-E-D */
188     DATA d_wheel_rwy_local_v[3];        /* wheel offset from rwy, N-E-U */
189     DATA v_wheel_body_v[3];             /* wheel velocity,        X-Y-Z */
190     DATA v_wheel_local_v[3];            /* wheel velocity,        N-E-D */
191     DATA f_wheel_local_v[3];            /* wheel reaction force,  N-E-D */
192     DATA temp3a[3], temp3b[3], tempF[3], tempM[3];      
193     DATA reaction_normal_force;         /* wheel normal (to rwy) force  */
194     DATA cos_wheel_hdg_angle, sin_wheel_hdg_angle;      /* temp storage */
195     DATA v_wheel_forward, v_wheel_sideward,  abs_v_wheel_sideward;
196     DATA forward_mu, sideward_mu;       /* friction coefficients        */
197     DATA beta_mu;                       /* breakout friction slope      */
198     DATA forward_wheel_force, sideward_wheel_force;
199
200     int i;                              /* per wheel loop counter */
201   
202   /*
203    * Execution starts here
204    */
205    
206     beta_mu = max_mu/(skid_v-bkout_v);
207     clear3( F_gear_v );         /* Initialize sum of forces...  */
208     clear3( M_gear_v );         /* ...and moments               */
209     
210   /*
211    * Put aircraft specific executable code here
212    */
213    
214     percent_brake[1] = fgBrakeGet(); /* replace with cockpit brake handle connection code */
215     percent_brake[2] = percent_brake[1];
216     
217     caster_angle_rad[0] = 0.03*Rudder_pedal;
218     
219     for (i=0;i<num_wheels;i++)      /* Loop for each wheel */
220     {
221         /*========================================*/
222         /* Calculate wheel position w.r.t. runway */
223         /*========================================*/
224         
225             /* First calculate wheel location w.r.t. cg in body (X-Y-Z) axes... */
226         
227         sub3( d_wheel_rp_body_v[i], D_cg_rp_body_v, d_wheel_cg_body_v );
228         
229             /* then converting to local (North-East-Down) axes... */
230         
231         multtrans3x3by3( T_local_to_body_m,  d_wheel_cg_body_v, d_wheel_cg_local_v );
232         
233             /* Runway axes correction - third element is Altitude, not (-)Z... */
234         
235         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* since altitude = -Z */
236         
237             /* Add wheel offset to cg location in local axes */
238         
239         add3( d_wheel_cg_local_v, D_cg_rwy_local_v, d_wheel_rwy_local_v );
240         
241             /* remove Runway axes correction so right hand rule applies */
242         
243         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* now Z positive down */
244         
245         /*============================*/
246         /* Calculate wheel velocities */
247         /*============================*/
248         
249             /* contribution due to angular rates */
250             
251         cross3( Omega_body_v, d_wheel_cg_body_v, temp3a );
252         
253             /* transform into local axes */
254           
255         multtrans3x3by3( T_local_to_body_m, temp3a, temp3b );
256
257             /* plus contribution due to cg velocities */
258
259         add3( temp3b, V_local_rel_ground_v, v_wheel_local_v );
260         
261         
262         /*===========================================*/
263         /* Calculate forces & moments for this wheel */
264         /*===========================================*/
265         
266             /* Add any anticipation, or frame lead/prediction, here... */
267             
268                     /* no lead used at present */
269                 
270             /* Calculate sideward and forward velocities of the wheel 
271                     in the runway plane                                 */
272             
273         cos_wheel_hdg_angle = cos(caster_angle_rad[i] + Psi);
274         sin_wheel_hdg_angle = sin(caster_angle_rad[i] + Psi);
275         
276         v_wheel_forward  = v_wheel_local_v[0]*cos_wheel_hdg_angle
277                          + v_wheel_local_v[1]*sin_wheel_hdg_angle;
278         v_wheel_sideward = v_wheel_local_v[1]*cos_wheel_hdg_angle
279                          - v_wheel_local_v[0]*sin_wheel_hdg_angle;
280
281             /* Calculate normal load force (simple spring constant) */
282         
283         reaction_normal_force = 0.;
284         if( d_wheel_rwy_local_v[2] < 0. ) 
285         {
286             reaction_normal_force = spring_constant[i]*d_wheel_rwy_local_v[2]
287                                   - v_wheel_local_v[2]*spring_damping[i];
288             if (reaction_normal_force > 0.) reaction_normal_force = 0.;
289                 /* to prevent damping component from swamping spring component */
290         }
291         
292             /* Calculate friction coefficients */
293             
294         forward_mu = (max_brake_mu - rolling_mu)*percent_brake[i] + rolling_mu;
295         abs_v_wheel_sideward = sqrt(v_wheel_sideward*v_wheel_sideward);
296         sideward_mu = sliding_mu;
297         if (abs_v_wheel_sideward < skid_v) 
298             sideward_mu = (abs_v_wheel_sideward - bkout_v)*beta_mu;
299         if (abs_v_wheel_sideward < bkout_v) sideward_mu = 0.;
300
301             /* Calculate foreward and sideward reaction forces */
302             
303         forward_wheel_force  =   forward_mu*reaction_normal_force;
304         sideward_wheel_force =  sideward_mu*reaction_normal_force;
305         if(v_wheel_forward < 0.) forward_wheel_force = -forward_wheel_force;
306         if(v_wheel_sideward < 0.) sideward_wheel_force = -sideward_wheel_force;
307         
308             /* Rotate into local (N-E-D) axes */
309         
310         f_wheel_local_v[0] = forward_wheel_force*cos_wheel_hdg_angle
311                           - sideward_wheel_force*sin_wheel_hdg_angle;
312         f_wheel_local_v[1] = forward_wheel_force*sin_wheel_hdg_angle
313                           + sideward_wheel_force*cos_wheel_hdg_angle;
314         f_wheel_local_v[2] = reaction_normal_force;       
315            
316             /* Convert reaction force from local (N-E-D) axes to body (X-Y-Z) */
317         
318         mult3x3by3( T_local_to_body_m, f_wheel_local_v, tempF );
319         
320             /* Calculate moments from force and offsets in body axes */
321
322         cross3( d_wheel_cg_body_v, tempF, tempM );
323         
324         /* Sum forces and moments across all wheels */
325         
326         add3( tempF, F_gear_v, F_gear_v );
327         add3( tempM, M_gear_v, M_gear_v );
328         
329     }
330 }