]> git.mxchange.org Git - flightgear.git/blob - LaRCsim/navion_gear.c
Tons of little changes to clean up the code and to remove fatal errors
[flightgear.git] / LaRCsim / navion_gear.c
1 /***************************************************************************
2
3         TITLE:  gear
4         
5 ----------------------------------------------------------------------------
6
7         FUNCTION:       Landing gear model for example simulation
8
9 ----------------------------------------------------------------------------
10
11         MODULE STATUS:  developmental
12
13 ----------------------------------------------------------------------------
14
15         GENEALOGY:      Created 931012 by E. B. Jackson
16
17 ----------------------------------------------------------------------------
18
19         DESIGNED BY:    E. B. Jackson
20         
21         CODED BY:       E. B. Jackson
22         
23         MAINTAINED BY:  E. B. Jackson
24
25 ----------------------------------------------------------------------------
26
27         MODIFICATION HISTORY:
28         
29         DATE    PURPOSE                                         BY
30
31         931218  Added navion.h header to allow connection with
32                 aileron displacement for nosewheel steering.    EBJ
33         940511  Connected nosewheel to rudder pedal; adjusted gain.
34         
35         CURRENT RCS HEADER:
36
37 $Header$
38 $Log$
39 Revision 1.2  1998/01/19 18:40:29  curt
40 Tons of little changes to clean up the code and to remove fatal errors
41 when building with the c++ compiler.
42
43 Revision 1.1  1997/05/29 00:10:02  curt
44 Initial Flight Gear revision.
45
46
47 ----------------------------------------------------------------------------
48
49         REFERENCES:
50
51 ----------------------------------------------------------------------------
52
53         CALLED BY:
54
55 ----------------------------------------------------------------------------
56
57         CALLS TO:
58
59 ----------------------------------------------------------------------------
60
61         INPUTS:
62
63 ----------------------------------------------------------------------------
64
65         OUTPUTS:
66
67 --------------------------------------------------------------------------*/
68 #include <math.h>
69 #include "ls_types.h"
70 #include "ls_constants.h"
71 #include "ls_generic.h"
72 #include "ls_cockpit.h"
73
74
75 sub3( DATA v1[],  DATA v2[], DATA result[] )
76 {
77     result[0] = v1[0] - v2[0];
78     result[1] = v1[1] - v2[1];
79     result[2] = v1[2] - v2[2];
80 }
81
82 add3( DATA v1[],  DATA v2[], DATA result[] )
83 {
84     result[0] = v1[0] + v2[0];
85     result[1] = v1[1] + v2[1];
86     result[2] = v1[2] + v2[2];
87 }
88
89 cross3( DATA v1[],  DATA v2[], DATA result[] )
90 {
91     result[0] = v1[1]*v2[2] - v1[2]*v2[1];
92     result[1] = v1[2]*v2[0] - v1[0]*v2[2];
93     result[2] = v1[0]*v2[1] - v1[1]*v2[0];
94 }
95
96 multtrans3x3by3( DATA m[][3], DATA v[], DATA result[] )
97 {
98     result[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
99     result[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
100     result[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
101 }
102
103 mult3x3by3( DATA m[][3], DATA v[], DATA result[] )
104 {
105     result[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
106     result[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
107     result[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
108 }
109
110 clear3( DATA v[] )
111 {
112     v[0] = 0.; v[1] = 0.; v[2] = 0.;
113 }
114
115 void gear( SCALAR dt, int Initialize ) {
116 char rcsid[] = "$Id$";
117
118   /*
119    * Aircraft specific initializations and data goes here
120    */
121    
122 #define NUM_WHEELS 3
123
124     static int num_wheels = NUM_WHEELS;             /* number of wheels  */
125     static DATA d_wheel_rp_body_v[NUM_WHEELS][3] =  /* X, Y, Z locations */
126     {
127         { 10.,  0., 4. },                               /* in feet */
128         { -1.,  3., 4. }, 
129         { -1., -3., 4. }
130     };
131     static DATA spring_constant[NUM_WHEELS] =       /* springiness, lbs/ft */
132         { 1500., 5000., 5000. };
133     static DATA spring_damping[NUM_WHEELS] =        /* damping, lbs/ft/sec */
134         { 100.,  150.,  150. };         
135     static DATA percent_brake[NUM_WHEELS] =         /* percent applied braking */
136         { 0.,  0.,  0. };                           /* 0 = none, 1 = full */
137     static DATA caster_angle_rad[NUM_WHEELS] =      /* steerable tires - in */
138         { 0., 0., 0.};                              /* radians, +CW */  
139   /*
140    * End of aircraft specific code
141    */
142     
143   /*
144    * Constants & coefficients for tyres on tarmac - ref [1]
145    */
146    
147     /* skid function looks like:
148      * 
149      *           mu  ^
150      *               |
151      *       max_mu  |       +          
152      *               |      /|          
153      *   sliding_mu  |     / +------    
154      *               |    /             
155      *               |   /              
156      *               +--+------------------------> 
157      *               |  |    |      sideward V
158      *               0 bkout skid
159      *                 V     V
160      */
161   
162   
163     static DATA sliding_mu   = 0.5;     
164     static DATA rolling_mu   = 0.01;    
165     static DATA max_brake_mu = 0.6;     
166     static DATA max_mu       = 0.8;     
167     static DATA bkout_v      = 0.1;
168     static DATA skid_v       = 1.0;
169   /*
170    * Local data variables
171    */
172    
173     DATA d_wheel_cg_body_v[3];          /* wheel offset from cg,  X-Y-Z */
174     DATA d_wheel_cg_local_v[3];         /* wheel offset from cg,  N-E-D */
175     DATA d_wheel_rwy_local_v[3];        /* wheel offset from rwy, N-E-U */
176     DATA v_wheel_body_v[3];             /* wheel velocity,        X-Y-Z */
177     DATA v_wheel_local_v[3];            /* wheel velocity,        N-E-D */
178     DATA f_wheel_local_v[3];            /* wheel reaction force,  N-E-D */
179     DATA temp3a[3], temp3b[3], tempF[3], tempM[3];      
180     DATA reaction_normal_force;         /* wheel normal (to rwy) force  */
181     DATA cos_wheel_hdg_angle, sin_wheel_hdg_angle;      /* temp storage */
182     DATA v_wheel_forward, v_wheel_sideward,  abs_v_wheel_sideward;
183     DATA forward_mu, sideward_mu;       /* friction coefficients        */
184     DATA beta_mu;                       /* breakout friction slope      */
185     DATA forward_wheel_force, sideward_wheel_force;
186
187     int i;                              /* per wheel loop counter */
188   
189   /*
190    * Execution starts here
191    */
192    
193     beta_mu = max_mu/(skid_v-bkout_v);
194     clear3( F_gear_v );         /* Initialize sum of forces...  */
195     clear3( M_gear_v );         /* ...and moments               */
196     
197   /*
198    * Put aircraft specific executable code here
199    */
200    
201     percent_brake[1] = 0.; /* replace with cockpit brake handle connection code */
202     percent_brake[2] = percent_brake[1];
203     
204     caster_angle_rad[0] = 0.03*Rudder_pedal;
205     
206     for (i=0;i<num_wheels;i++)      /* Loop for each wheel */
207     {
208         /*========================================*/
209         /* Calculate wheel position w.r.t. runway */
210         /*========================================*/
211         
212             /* First calculate wheel location w.r.t. cg in body (X-Y-Z) axes... */
213         
214         sub3( d_wheel_rp_body_v[i], D_cg_rp_body_v, d_wheel_cg_body_v );
215         
216             /* then converting to local (North-East-Down) axes... */
217         
218         multtrans3x3by3( T_local_to_body_m,  d_wheel_cg_body_v, d_wheel_cg_local_v );
219         
220             /* Runway axes correction - third element is Altitude, not (-)Z... */
221         
222         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* since altitude = -Z */
223         
224             /* Add wheel offset to cg location in local axes */
225         
226         add3( d_wheel_cg_local_v, D_cg_rwy_local_v, d_wheel_rwy_local_v );
227         
228             /* remove Runway axes correction so right hand rule applies */
229         
230         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* now Z positive down */
231         
232         /*============================*/
233         /* Calculate wheel velocities */
234         /*============================*/
235         
236             /* contribution due to angular rates */
237             
238         cross3( Omega_body_v, d_wheel_cg_body_v, temp3a );
239         
240             /* transform into local axes */
241           
242         multtrans3x3by3( T_local_to_body_m, temp3a, temp3b );
243
244             /* plus contribution due to cg velocities */
245
246         add3( temp3b, V_local_rel_ground_v, v_wheel_local_v );
247         
248         
249         /*===========================================*/
250         /* Calculate forces & moments for this wheel */
251         /*===========================================*/
252         
253             /* Add any anticipation, or frame lead/prediction, here... */
254             
255                     /* no lead used at present */
256                 
257             /* Calculate sideward and forward velocities of the wheel 
258                     in the runway plane                                 */
259             
260         cos_wheel_hdg_angle = cos(caster_angle_rad[i] + Psi);
261         sin_wheel_hdg_angle = sin(caster_angle_rad[i] + Psi);
262         
263         v_wheel_forward  = v_wheel_local_v[0]*cos_wheel_hdg_angle
264                          + v_wheel_local_v[1]*sin_wheel_hdg_angle;
265         v_wheel_sideward = v_wheel_local_v[1]*cos_wheel_hdg_angle
266                          - v_wheel_local_v[0]*sin_wheel_hdg_angle;
267
268             /* Calculate normal load force (simple spring constant) */
269         
270         reaction_normal_force = 0.;
271         if( d_wheel_rwy_local_v[2] < 0. ) 
272         {
273             reaction_normal_force = spring_constant[i]*d_wheel_rwy_local_v[2]
274                                   - v_wheel_local_v[2]*spring_damping[i];
275             if (reaction_normal_force > 0.) reaction_normal_force = 0.;
276                 /* to prevent damping component from swamping spring component */
277         }
278         
279             /* Calculate friction coefficients */
280             
281         forward_mu = (max_brake_mu - rolling_mu)*percent_brake[i] + rolling_mu;
282         abs_v_wheel_sideward = sqrt(v_wheel_sideward*v_wheel_sideward);
283         sideward_mu = sliding_mu;
284         if (abs_v_wheel_sideward < skid_v) 
285             sideward_mu = (abs_v_wheel_sideward - bkout_v)*beta_mu;
286         if (abs_v_wheel_sideward < bkout_v) sideward_mu = 0.;
287
288             /* Calculate foreward and sideward reaction forces */
289             
290         forward_wheel_force  =   forward_mu*reaction_normal_force;
291         sideward_wheel_force =  sideward_mu*reaction_normal_force;
292         if(v_wheel_forward < 0.) forward_wheel_force = -forward_wheel_force;
293         if(v_wheel_sideward < 0.) sideward_wheel_force = -sideward_wheel_force;
294         
295             /* Rotate into local (N-E-D) axes */
296         
297         f_wheel_local_v[0] = forward_wheel_force*cos_wheel_hdg_angle
298                           - sideward_wheel_force*sin_wheel_hdg_angle;
299         f_wheel_local_v[1] = forward_wheel_force*sin_wheel_hdg_angle
300                           + sideward_wheel_force*cos_wheel_hdg_angle;
301         f_wheel_local_v[2] = reaction_normal_force;       
302            
303             /* Convert reaction force from local (N-E-D) axes to body (X-Y-Z) */
304         
305         mult3x3by3( T_local_to_body_m, f_wheel_local_v, tempF );
306         
307             /* Calculate moments from force and offsets in body axes */
308
309         cross3( d_wheel_cg_body_v, tempF, tempM );
310         
311         /* Sum forces and moments across all wheels */
312         
313         add3( tempF, F_gear_v, F_gear_v );
314         add3( tempM, M_gear_v, M_gear_v );
315         
316     }
317 }