]> git.mxchange.org Git - flightgear.git/blob - LaRCsim/navion_gear.c
C++ ifying ...
[flightgear.git] / LaRCsim / navion_gear.c
1 /***************************************************************************
2
3         TITLE:  gear
4         
5 ----------------------------------------------------------------------------
6
7         FUNCTION:       Landing gear model for example simulation
8
9 ----------------------------------------------------------------------------
10
11         MODULE STATUS:  developmental
12
13 ----------------------------------------------------------------------------
14
15         GENEALOGY:      Created 931012 by E. B. Jackson
16
17 ----------------------------------------------------------------------------
18
19         DESIGNED BY:    E. B. Jackson
20         
21         CODED BY:       E. B. Jackson
22         
23         MAINTAINED BY:  E. B. Jackson
24
25 ----------------------------------------------------------------------------
26
27         MODIFICATION HISTORY:
28         
29         DATE    PURPOSE                                         BY
30
31         931218  Added navion.h header to allow connection with
32                 aileron displacement for nosewheel steering.    EBJ
33         940511  Connected nosewheel to rudder pedal; adjusted gain.
34         
35         CURRENT RCS HEADER:
36
37 $Header$
38 $Log$
39 Revision 1.6  1998/10/17 01:34:16  curt
40 C++ ifying ...
41
42 Revision 1.5  1998/09/29 02:03:00  curt
43 Added a brake + autopilot mods.
44
45 Revision 1.4  1998/08/06 12:46:40  curt
46 Header change.
47
48 Revision 1.3  1998/02/03 23:20:18  curt
49 Lots of little tweaks to fix various consistency problems discovered by
50 Solaris' CC.  Fixed a bug in fg_debug.c with how the fgPrintf() wrapper
51 passed arguments along to the real printf().  Also incorporated HUD changes
52 by Michele America.
53
54 Revision 1.2  1998/01/19 18:40:29  curt
55 Tons of little changes to clean up the code and to remove fatal errors
56 when building with the c++ compiler.
57
58 Revision 1.1  1997/05/29 00:10:02  curt
59 Initial Flight Gear revision.
60
61
62 ----------------------------------------------------------------------------
63
64         REFERENCES:
65
66 ----------------------------------------------------------------------------
67
68         CALLED BY:
69
70 ----------------------------------------------------------------------------
71
72         CALLS TO:
73
74 ----------------------------------------------------------------------------
75
76         INPUTS:
77
78 ----------------------------------------------------------------------------
79
80         OUTPUTS:
81
82 --------------------------------------------------------------------------*/
83 #include <math.h>
84 #include "ls_types.h"
85 #include "ls_constants.h"
86 #include "ls_generic.h"
87 #include "ls_cockpit.h"
88
89
90 void sub3( DATA v1[],  DATA v2[], DATA result[] )
91 {
92     result[0] = v1[0] - v2[0];
93     result[1] = v1[1] - v2[1];
94     result[2] = v1[2] - v2[2];
95 }
96
97 void add3( DATA v1[],  DATA v2[], DATA result[] )
98 {
99     result[0] = v1[0] + v2[0];
100     result[1] = v1[1] + v2[1];
101     result[2] = v1[2] + v2[2];
102 }
103
104 void cross3( DATA v1[],  DATA v2[], DATA result[] )
105 {
106     result[0] = v1[1]*v2[2] - v1[2]*v2[1];
107     result[1] = v1[2]*v2[0] - v1[0]*v2[2];
108     result[2] = v1[0]*v2[1] - v1[1]*v2[0];
109 }
110
111 void multtrans3x3by3( DATA m[][3], DATA v[], DATA result[] )
112 {
113     result[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
114     result[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
115     result[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
116 }
117
118 void mult3x3by3( DATA m[][3], DATA v[], DATA result[] )
119 {
120     result[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
121     result[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
122     result[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
123 }
124
125 void clear3( DATA v[] )
126 {
127     v[0] = 0.; v[1] = 0.; v[2] = 0.;
128 }
129
130 void gear( SCALAR dt, int Initialize ) {
131 char rcsid[] = "$Id$";
132
133   /*
134    * Aircraft specific initializations and data goes here
135    */
136    
137 #define NUM_WHEELS 3
138
139     static int num_wheels = NUM_WHEELS;             /* number of wheels  */
140     static DATA d_wheel_rp_body_v[NUM_WHEELS][3] =  /* X, Y, Z locations */
141     {
142         { 10.,  0., 4. },                               /* in feet */
143         { -1.,  3., 4. }, 
144         { -1., -3., 4. }
145     };
146     static DATA spring_constant[NUM_WHEELS] =       /* springiness, lbs/ft */
147         { 1500., 5000., 5000. };
148     static DATA spring_damping[NUM_WHEELS] =        /* damping, lbs/ft/sec */
149         { 100.,  150.,  150. };         
150     static DATA percent_brake[NUM_WHEELS] =         /* percent applied braking */
151         { 0.,  0.,  0. };                           /* 0 = none, 1 = full */
152     static DATA caster_angle_rad[NUM_WHEELS] =      /* steerable tires - in */
153         { 0., 0., 0.};                              /* radians, +CW */  
154   /*
155    * End of aircraft specific code
156    */
157     
158   /*
159    * Constants & coefficients for tyres on tarmac - ref [1]
160    */
161    
162     /* skid function looks like:
163      * 
164      *           mu  ^
165      *               |
166      *       max_mu  |       +          
167      *               |      /|          
168      *   sliding_mu  |     / +------    
169      *               |    /             
170      *               |   /              
171      *               +--+------------------------> 
172      *               |  |    |      sideward V
173      *               0 bkout skid
174      *                 V     V
175      */
176   
177   
178     static DATA sliding_mu   = 0.5;     
179     static DATA rolling_mu   = 0.01;    
180     static DATA max_brake_mu = 0.6;     
181     static DATA max_mu       = 0.8;     
182     static DATA bkout_v      = 0.1;
183     static DATA skid_v       = 1.0;
184   /*
185    * Local data variables
186    */
187    
188     DATA d_wheel_cg_body_v[3];          /* wheel offset from cg,  X-Y-Z */
189     DATA d_wheel_cg_local_v[3];         /* wheel offset from cg,  N-E-D */
190     DATA d_wheel_rwy_local_v[3];        /* wheel offset from rwy, N-E-U */
191     DATA v_wheel_body_v[3];             /* wheel velocity,        X-Y-Z */
192     DATA v_wheel_local_v[3];            /* wheel velocity,        N-E-D */
193     DATA f_wheel_local_v[3];            /* wheel reaction force,  N-E-D */
194     DATA temp3a[3], temp3b[3], tempF[3], tempM[3];      
195     DATA reaction_normal_force;         /* wheel normal (to rwy) force  */
196     DATA cos_wheel_hdg_angle, sin_wheel_hdg_angle;      /* temp storage */
197     DATA v_wheel_forward, v_wheel_sideward,  abs_v_wheel_sideward;
198     DATA forward_mu, sideward_mu;       /* friction coefficients        */
199     DATA beta_mu;                       /* breakout friction slope      */
200     DATA forward_wheel_force, sideward_wheel_force;
201
202     int i;                              /* per wheel loop counter */
203   
204   /*
205    * Execution starts here
206    */
207    
208     beta_mu = max_mu/(skid_v-bkout_v);
209     clear3( F_gear_v );         /* Initialize sum of forces...  */
210     clear3( M_gear_v );         /* ...and moments               */
211     
212   /*
213    * Put aircraft specific executable code here
214    */
215    
216     /* replace with cockpit brake handle connection code */
217     percent_brake[1] = Brake_pct;
218     percent_brake[2] = percent_brake[1];
219     
220     caster_angle_rad[0] = 0.03*Rudder_pedal;
221     
222     for (i=0;i<num_wheels;i++)      /* Loop for each wheel */
223     {
224         /*========================================*/
225         /* Calculate wheel position w.r.t. runway */
226         /*========================================*/
227         
228             /* First calculate wheel location w.r.t. cg in body (X-Y-Z) axes... */
229         
230         sub3( d_wheel_rp_body_v[i], D_cg_rp_body_v, d_wheel_cg_body_v );
231         
232             /* then converting to local (North-East-Down) axes... */
233         
234         multtrans3x3by3( T_local_to_body_m,  d_wheel_cg_body_v, d_wheel_cg_local_v );
235         
236             /* Runway axes correction - third element is Altitude, not (-)Z... */
237         
238         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* since altitude = -Z */
239         
240             /* Add wheel offset to cg location in local axes */
241         
242         add3( d_wheel_cg_local_v, D_cg_rwy_local_v, d_wheel_rwy_local_v );
243         
244             /* remove Runway axes correction so right hand rule applies */
245         
246         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* now Z positive down */
247         
248         /*============================*/
249         /* Calculate wheel velocities */
250         /*============================*/
251         
252             /* contribution due to angular rates */
253             
254         cross3( Omega_body_v, d_wheel_cg_body_v, temp3a );
255         
256             /* transform into local axes */
257           
258         multtrans3x3by3( T_local_to_body_m, temp3a, temp3b );
259
260             /* plus contribution due to cg velocities */
261
262         add3( temp3b, V_local_rel_ground_v, v_wheel_local_v );
263         
264         
265         /*===========================================*/
266         /* Calculate forces & moments for this wheel */
267         /*===========================================*/
268         
269             /* Add any anticipation, or frame lead/prediction, here... */
270             
271                     /* no lead used at present */
272                 
273             /* Calculate sideward and forward velocities of the wheel 
274                     in the runway plane                                 */
275             
276         cos_wheel_hdg_angle = cos(caster_angle_rad[i] + Psi);
277         sin_wheel_hdg_angle = sin(caster_angle_rad[i] + Psi);
278         
279         v_wheel_forward  = v_wheel_local_v[0]*cos_wheel_hdg_angle
280                          + v_wheel_local_v[1]*sin_wheel_hdg_angle;
281         v_wheel_sideward = v_wheel_local_v[1]*cos_wheel_hdg_angle
282                          - v_wheel_local_v[0]*sin_wheel_hdg_angle;
283
284             /* Calculate normal load force (simple spring constant) */
285         
286         reaction_normal_force = 0.;
287         if( d_wheel_rwy_local_v[2] < 0. ) 
288         {
289             reaction_normal_force = spring_constant[i]*d_wheel_rwy_local_v[2]
290                                   - v_wheel_local_v[2]*spring_damping[i];
291             if (reaction_normal_force > 0.) reaction_normal_force = 0.;
292                 /* to prevent damping component from swamping spring component */
293         }
294         
295             /* Calculate friction coefficients */
296             
297         forward_mu = (max_brake_mu - rolling_mu)*percent_brake[i] + rolling_mu;
298         abs_v_wheel_sideward = sqrt(v_wheel_sideward*v_wheel_sideward);
299         sideward_mu = sliding_mu;
300         if (abs_v_wheel_sideward < skid_v) 
301             sideward_mu = (abs_v_wheel_sideward - bkout_v)*beta_mu;
302         if (abs_v_wheel_sideward < bkout_v) sideward_mu = 0.;
303
304             /* Calculate foreward and sideward reaction forces */
305             
306         forward_wheel_force  =   forward_mu*reaction_normal_force;
307         sideward_wheel_force =  sideward_mu*reaction_normal_force;
308         if(v_wheel_forward < 0.) forward_wheel_force = -forward_wheel_force;
309         if(v_wheel_sideward < 0.) sideward_wheel_force = -sideward_wheel_force;
310         
311             /* Rotate into local (N-E-D) axes */
312         
313         f_wheel_local_v[0] = forward_wheel_force*cos_wheel_hdg_angle
314                           - sideward_wheel_force*sin_wheel_hdg_angle;
315         f_wheel_local_v[1] = forward_wheel_force*sin_wheel_hdg_angle
316                           + sideward_wheel_force*cos_wheel_hdg_angle;
317         f_wheel_local_v[2] = reaction_normal_force;       
318            
319             /* Convert reaction force from local (N-E-D) axes to body (X-Y-Z) */
320         
321         mult3x3by3( T_local_to_body_m, f_wheel_local_v, tempF );
322         
323             /* Calculate moments from force and offsets in body axes */
324
325         cross3( d_wheel_cg_body_v, tempF, tempM );
326         
327         /* Sum forces and moments across all wheels */
328         
329         add3( tempF, F_gear_v, F_gear_v );
330         add3( tempM, M_gear_v, M_gear_v );
331         
332     }
333 }