1 // Copyright (C) 2006 Mathias Froehlich - Mathias.Froehlich@web.de
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Library General Public
5 // License as published by the Free Software Foundation; either
6 // version 2 of the License, or (at your option) any later version.
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 // Library General Public License for more details.
13 // You should have received a copy of the GNU General Public License
14 // along with this program; if not, write to the Free Software
15 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
21 /// Expression templates for poor programmers ... :)
29 enum { nCols = 4, nRows = 4, nEnts = 16 };
32 /// Default constructor. Does not initialize at all.
33 /// If you need them zero initialized, use SGMatrix::zeros()
36 /// Initialize with nans in the debug build, that will guarantee to have
37 /// a fast uninitialized default constructor in the release but shows up
38 /// uninitialized values in the debug build very fast ...
40 for (unsigned i = 0; i < nEnts; ++i)
41 _data.flat[i] = SGLimits<T>::quiet_NaN();
44 /// Constructor. Initialize by the content of a plain array,
45 /// make sure it has at least 16 elements
46 explicit SGMatrix(const T* data)
47 { for (unsigned i = 0; i < nEnts; ++i) _data.flat[i] = data[i]; }
49 /// Constructor, build up a SGMatrix from given elements
50 SGMatrix(T m00, T m01, T m02, T m03,
51 T m10, T m11, T m12, T m13,
52 T m20, T m21, T m22, T m23,
53 T m30, T m31, T m32, T m33)
55 _data.flat[0] = m00; _data.flat[1] = m10;
56 _data.flat[2] = m20; _data.flat[3] = m30;
57 _data.flat[4] = m01; _data.flat[5] = m11;
58 _data.flat[6] = m21; _data.flat[7] = m31;
59 _data.flat[8] = m02; _data.flat[9] = m12;
60 _data.flat[10] = m22; _data.flat[11] = m32;
61 _data.flat[12] = m03; _data.flat[13] = m13;
62 _data.flat[14] = m23; _data.flat[15] = m33;
65 /// Constructor, build up a SGMatrix from a translation
67 SGMatrix(const SGVec3<S>& trans)
70 /// Constructor, build up a SGMatrix from a rotation and a translation
72 SGMatrix(const SGQuat<S>& quat)
75 /// Copy constructor for a transposed negated matrix
76 SGMatrix(const TransNegRef<T>& tm)
79 /// Set from a tranlation
81 void set(const SGVec3<S>& trans)
83 _data.flat[0] = 1; _data.flat[4] = 0;
84 _data.flat[8] = 0; _data.flat[12] = T(trans(0));
85 _data.flat[1] = 0; _data.flat[5] = 1;
86 _data.flat[9] = 0; _data.flat[13] = T(trans(1));
87 _data.flat[2] = 0; _data.flat[6] = 0;
88 _data.flat[10] = 1; _data.flat[14] = T(trans(2));
89 _data.flat[3] = 0; _data.flat[7] = 0;
90 _data.flat[11] = 0; _data.flat[15] = 1;
93 /// Set from a scale/rotation and tranlation
95 void set(const SGQuat<S>& quat)
97 T w = quat.w(); T x = quat.x(); T y = quat.y(); T z = quat.z();
98 T xx = x*x; T yy = y*y; T zz = z*z;
99 T wx = w*x; T wy = w*y; T wz = w*z;
100 T xy = x*y; T xz = x*z; T yz = y*z;
101 _data.flat[0] = 1-2*(yy+zz); _data.flat[1] = 2*(xy-wz);
102 _data.flat[2] = 2*(xz+wy); _data.flat[3] = 0;
103 _data.flat[4] = 2*(xy+wz); _data.flat[5] = 1-2*(xx+zz);
104 _data.flat[6] = 2*(yz-wx); _data.flat[7] = 0;
105 _data.flat[8] = 2*(xz-wy); _data.flat[9] = 2*(yz+wx);
106 _data.flat[10] = 1-2*(xx+yy); _data.flat[11] = 0;
107 _data.flat[12] = 0; _data.flat[13] = 0;
108 _data.flat[14] = 0; _data.flat[15] = 1;
111 /// set from a transposed negated matrix
112 void set(const TransNegRef<T>& tm)
114 const SGMatrix& m = tm.m;
115 _data.flat[0] = m(0,0);
116 _data.flat[1] = m(0,1);
117 _data.flat[2] = m(0,2);
118 _data.flat[3] = m(3,0);
120 _data.flat[4] = m(1,0);
121 _data.flat[5] = m(1,1);
122 _data.flat[6] = m(1,2);
123 _data.flat[7] = m(3,1);
125 _data.flat[8] = m(2,0);
126 _data.flat[9] = m(2,1);
127 _data.flat[10] = m(2,2);
128 _data.flat[11] = m(3,2);
130 // Well, this one is ugly here, as that xform method on the current
131 // object needs the above data to be already set ...
132 SGVec3<T> t = xformVec(SGVec3<T>(m(0,3), m(1,3), m(2,3)));
133 _data.flat[12] = -t(0);
134 _data.flat[13] = -t(1);
135 _data.flat[14] = -t(2);
136 _data.flat[15] = m(3,3);
139 /// Access by index, the index is unchecked
140 const T& operator()(unsigned i, unsigned j) const
141 { return _data.flat[i + 4*j]; }
142 /// Access by index, the index is unchecked
143 T& operator()(unsigned i, unsigned j)
144 { return _data.flat[i + 4*j]; }
146 /// Access raw data by index, the index is unchecked
147 const T& operator[](unsigned i) const
148 { return _data.flat[i]; }
149 /// Access by index, the index is unchecked
150 T& operator[](unsigned i)
151 { return _data.flat[i]; }
153 /// Get the data pointer
154 const T* data(void) const
155 { return _data.flat; }
156 /// Get the data pointer
158 { return _data.flat; }
160 /// Readonly interface function to ssg's sgMat4/sgdMat4
161 const T (&sg(void) const)[4][4]
162 { return _data.carray; }
163 /// Interface function to ssg's sgMat4/sgdMat4
165 { return _data.carray; }
168 SGMatrix& operator+=(const SGMatrix& m)
169 { for (unsigned i = 0; i < nEnts; ++i) _data.flat[i] += m._data.flat[i]; return *this; }
170 /// Inplace subtraction
171 SGMatrix& operator-=(const SGMatrix& m)
172 { for (unsigned i = 0; i < nEnts; ++i) _data.flat[i] -= m._data.flat[i]; return *this; }
173 /// Inplace scalar multiplication
175 SGMatrix& operator*=(S s)
176 { for (unsigned i = 0; i < nEnts; ++i) _data.flat[i] *= s; return *this; }
177 /// Inplace scalar multiplication by 1/s
179 SGMatrix& operator/=(S s)
180 { return operator*=(1/T(s)); }
181 /// Inplace matrix multiplication, post multiply
182 SGMatrix& operator*=(const SGMatrix<T>& m2);
185 SGMatrix& preMultTranslate(const SGVec3<S>& t)
187 for (unsigned i = 0; i < 3; ++i) {
191 (*this)(i,0) += tmp*(*this)(3,0);
192 (*this)(i,1) += tmp*(*this)(3,1);
193 (*this)(i,2) += tmp*(*this)(3,2);
194 (*this)(i,3) += tmp*(*this)(3,3);
199 SGMatrix& postMultTranslate(const SGVec3<S>& t)
201 SGVec4<T> col3((*this)(0,3), (*this)(1,3), (*this)(2,3), (*this)(3,3));
202 for (unsigned i = 0; i < SGMatrix<T>::nCols-1; ++i) {
203 SGVec4<T> tmp((*this)(0,i), (*this)(1,i), (*this)(2,i), (*this)(3,i));
206 (*this)(0,3) = col3(0); (*this)(1,3) = col3(1);
207 (*this)(2,3) = col3(2); (*this)(3,3) = col3(3);
211 SGMatrix& preMultRotate(const SGQuat<T>& r)
213 for (unsigned i = 0; i < SGMatrix<T>::nCols; ++i) {
214 SGVec3<T> col((*this)(0,i), (*this)(1,i), (*this)(2,i));
215 col = r.transform(col);
216 (*this)(0,i) = col(0); (*this)(1,i) = col(1); (*this)(2,i) = col(2);
220 SGMatrix& postMultRotate(const SGQuat<T>& r)
222 for (unsigned i = 0; i < SGMatrix<T>::nCols; ++i) {
223 SGVec3<T> col((*this)(i,0), (*this)(i,1), (*this)(i,2));
224 col = r.backTransform(col);
225 (*this)(i,0) = col(0); (*this)(i,1) = col(1); (*this)(i,2) = col(2);
230 SGVec3<T> xformPt(const SGVec3<T>& pt) const
233 tpt(0) = (*this)(0,3);
234 tpt(1) = (*this)(1,3);
235 tpt(2) = (*this)(2,3);
236 for (unsigned i = 0; i < SGMatrix<T>::nCols-1; ++i) {
238 tpt(0) += tmp*(*this)(0,i);
239 tpt(1) += tmp*(*this)(1,i);
240 tpt(2) += tmp*(*this)(2,i);
244 SGVec3<T> xformVec(const SGVec3<T>& v) const
248 tv(0) = tmp*(*this)(0,0);
249 tv(1) = tmp*(*this)(1,0);
250 tv(2) = tmp*(*this)(2,0);
251 for (unsigned i = 1; i < SGMatrix<T>::nCols-1; ++i) {
253 tv(0) += tmp*(*this)(0,i);
254 tv(1) += tmp*(*this)(1,i);
255 tv(2) += tmp*(*this)(2,i);
260 /// Return an all zero matrix
261 static SGMatrix zeros(void)
262 { return SGMatrix(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); }
264 /// Return a unit matrix
265 static SGMatrix unit(void)
266 { return SGMatrix(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); }
269 /// Required to make that alias safe.
275 /// The actual data, the matrix is stored in column major order,
276 /// that matches the storage format of OpenGL
280 /// Class to distinguish between a matrix and the matrix with a transposed
281 /// rotational part and a negated translational part
284 TransNegRef(const SGMatrix<T>& _m) : m(_m) {}
285 const SGMatrix<T>& m;
288 /// Unary +, do nothing ...
292 operator+(const SGMatrix<T>& m)
295 /// Unary -, do nearly nothing
299 operator-(const SGMatrix<T>& m)
302 for (unsigned i = 0; i < SGMatrix<T>::nEnts; ++i)
311 operator+(const SGMatrix<T>& m1, const SGMatrix<T>& m2)
314 for (unsigned i = 0; i < SGMatrix<T>::nEnts; ++i)
315 ret[i] = m1[i] + m2[i];
323 operator-(const SGMatrix<T>& m1, const SGMatrix<T>& m2)
326 for (unsigned i = 0; i < SGMatrix<T>::nEnts; ++i)
327 ret[i] = m1[i] - m2[i];
331 /// Scalar multiplication
332 template<typename S, typename T>
335 operator*(S s, const SGMatrix<T>& m)
338 for (unsigned i = 0; i < SGMatrix<T>::nEnts; ++i)
343 /// Scalar multiplication
344 template<typename S, typename T>
347 operator*(const SGMatrix<T>& m, S s)
350 for (unsigned i = 0; i < SGMatrix<T>::nEnts; ++i)
355 /// Vector multiplication
359 operator*(const SGMatrix<T>& m, const SGVec4<T>& v)
367 for (unsigned i = 1; i < SGMatrix<T>::nCols; ++i) {
377 /// Vector multiplication
381 operator*(const TransNegRef<T>& tm, const SGVec4<T>& v)
383 const SGMatrix<T>& m = tm.m;
387 mv(0) = v2(0) = -tmp*m(0,3);
388 mv(1) = v2(1) = -tmp*m(1,3);
389 mv(2) = v2(2) = -tmp*m(2,3);
391 for (unsigned i = 0; i < SGMatrix<T>::nCols - 1; ++i) {
392 T tmp = v(i) + v2(i);
401 /// Matrix multiplication
405 operator*(const SGMatrix<T>& m1, const SGMatrix<T>& m2)
408 for (unsigned j = 0; j < SGMatrix<T>::nCols; ++j) {
410 m(0,j) = tmp*m1(0,0);
411 m(1,j) = tmp*m1(1,0);
412 m(2,j) = tmp*m1(2,0);
413 m(3,j) = tmp*m1(3,0);
414 for (unsigned i = 1; i < SGMatrix<T>::nCols; ++i) {
416 m(0,j) += tmp*m1(0,i);
417 m(1,j) += tmp*m1(1,i);
418 m(2,j) += tmp*m1(2,i);
419 m(3,j) += tmp*m1(3,i);
425 /// Inplace matrix multiplication, post multiply
429 SGMatrix<T>::operator*=(const SGMatrix<T>& m2)
430 { (*this) = operator*(*this, m2); return *this; }
432 /// Return a reference to the matrix typed to make sure we use the transposed
437 transNeg(const SGMatrix<T>& m)
438 { return TransNegRef<T>(m); }
440 /// Compute the inverse if the matrix src. Store the result in dst.
441 /// Return if the matrix is nonsingular. If it is singular dst contains
446 invert(SGMatrix<T>& dst, const SGMatrix<T>& src)
448 // Do a LU decomposition with row pivoting and solve into dst
449 SGMatrix<T> tmp = src;
450 dst = SGMatrix<T>::unit();
452 for (unsigned i = 0; i < 4; ++i) {
456 // Find the row with the maximum value in the i-th colum
457 for (unsigned j = i + 1; j < 4; ++j) {
458 if (fabs(tmp(j, i)) > fabs(val)) {
466 for (unsigned j = 0; j < 4; ++j) {
468 t = dst(i,j); dst(i,j) = dst(ind,j); dst(ind,j) = t;
469 t = tmp(i,j); tmp(i,j) = tmp(ind,j); tmp(ind,j) = t;
473 // Check for singularity
474 if (fabs(val) <= SGLimits<T>::min())
478 for (unsigned j = 0; j < 4; ++j) {
483 for (unsigned j = 0; j < 4; ++j) {
488 for (unsigned k = 0; k < 4; ++k) {
489 tmp(j,k) -= tmp(i,k) * val;
490 dst(j,k) -= dst(i,k) * val;
497 /// The 1-norm of the matrix, this is the largest column sum of
498 /// the absolute values of A.
502 norm1(const SGMatrix<T>& m)
505 for (unsigned i = 0; i < SGMatrix<T>::nRows; ++i) {
506 T sum = fabs(m(i, 0)) + fabs(m(i, 1)) + fabs(m(i, 2)) + fabs(m(i, 3));
513 /// The inf-norm of the matrix, this is the largest row sum of
514 /// the absolute values of A.
518 normInf(const SGMatrix<T>& m)
521 for (unsigned i = 0; i < SGMatrix<T>::nCols; ++i) {
522 T sum = fabs(m(0, i)) + fabs(m(1, i)) + fabs(m(2, i)) + fabs(m(3, i));
529 /// Return true if exactly the same
533 operator==(const SGMatrix<T>& m1, const SGMatrix<T>& m2)
535 for (unsigned i = 0; i < SGMatrix<T>::nEnts; ++i)
541 /// Return true if not exactly the same
545 operator!=(const SGMatrix<T>& m1, const SGMatrix<T>& m2)
546 { return ! (m1 == m2); }
548 /// Return true if equal to the relative tolerance tol
552 equivalent(const SGMatrix<T>& m1, const SGMatrix<T>& m2, T rtol, T atol)
553 { return norm1(m1 - m2) < rtol*(norm1(m1) + norm1(m2)) + atol; }
555 /// Return true if equal to the relative tolerance tol
559 equivalent(const SGMatrix<T>& m1, const SGMatrix<T>& m2, T rtol)
560 { return norm1(m1 - m2) < rtol*(norm1(m1) + norm1(m2)); }
562 /// Return true if about equal to roundoff of the underlying type
566 equivalent(const SGMatrix<T>& m1, const SGMatrix<T>& m2)
568 T tol = 100*SGLimits<T>::epsilon();
569 return equivalent(m1, m2, tol, tol);
576 isNaN(const SGMatrix<T>& m)
578 for (unsigned i = 0; i < SGMatrix<T>::nEnts; ++i) {
579 if (SGMisc<T>::isNaN(m[i]))
586 /// Output to an ostream
587 template<typename char_type, typename traits_type, typename T>
589 std::basic_ostream<char_type, traits_type>&
590 operator<<(std::basic_ostream<char_type, traits_type>& s, const SGMatrix<T>& m)
592 s << "[ " << m(0,0) << ", " << m(0,1) << ", " << m(0,2) << ", " << m(0,3) << "\n";
593 s << " " << m(1,0) << ", " << m(1,1) << ", " << m(1,2) << ", " << m(1,3) << "\n";
594 s << " " << m(2,0) << ", " << m(2,1) << ", " << m(2,2) << ", " << m(2,3) << "\n";
595 s << " " << m(3,0) << ", " << m(3,1) << ", " << m(3,2) << ", " << m(3,3) << " ]";
601 toMatrixf(const SGMatrixd& m)
603 return SGMatrixf((float)m(0,0), (float)m(0,1), (float)m(0,2), (float)m(0,3),
604 (float)m(1,0), (float)m(1,1), (float)m(1,2), (float)m(1,3),
605 (float)m(2,0), (float)m(2,1), (float)m(2,2), (float)m(2,3),
606 (float)m(3,0), (float)m(3,1), (float)m(3,2), (float)m(3,3));
611 toMatrixd(const SGMatrixf& m)
613 return SGMatrixd(m(0,0), m(0,1), m(0,2), m(0,3),
614 m(1,0), m(1,1), m(1,2), m(1,3),
615 m(2,0), m(2,1), m(2,2), m(2,3),
616 m(3,0), m(3,1), m(3,2), m(3,3));