]> git.mxchange.org Git - simgear.git/blob - simgear/scene/sky/oursun.cxx
Merge branch 'maint' into next
[simgear.git] / simgear / scene / sky / oursun.cxx
1 // oursun.hxx -- model earth's sun
2 //
3 // Written by Durk Talsma. Originally started October 1997, for distribution  
4 // with the FlightGear project. Version 2 was written in August and 
5 // September 1998. This code is based upon algorithms and data kindly 
6 // provided by Mr. Paul Schlyter. (pausch@saaf.se). 
7 //
8 // Separated out rendering pieces and converted to ssg by Curt Olson,
9 // March 2000
10 // This library is free software; you can redistribute it and/or
11 // modify it under the terms of the GNU Library General Public
12 // License as published by the Free Software Foundation; either
13 // version 2 of the License, or (at your option) any later version.
14 //
15 // This library is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 // Library General Public License for more details.
19 //
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
23 //
24 // $Id$
25
26
27 #ifdef HAVE_CONFIG_H
28 #  include <simgear_config.h>
29 #endif
30
31 #include <simgear/compiler.h>
32
33 #include <osg/AlphaFunc>
34 #include <osg/BlendFunc>
35 #include <osg/Fog>
36 #include <osg/Geode>
37 #include <osg/Geometry>
38 #include <osg/Material>
39 #include <osg/ShadeModel>
40 #include <osg/TexEnv>
41 #include <osg/Texture2D>
42 #include <osgDB/ReadFile>
43
44 #include <simgear/misc/PathOptions.hxx>
45 #include <simgear/screen/colors.hxx>
46 #include <simgear/scene/model/model.hxx>
47 #include "oursun.hxx"
48
49 using namespace simgear;
50
51 // Constructor
52 SGSun::SGSun( void ) :
53     visibility(-9999.0), prev_sun_angle(-9999.0), path_distance(60000.0),
54     sun_exp2_punch_through(7.0e-06)
55 {
56
57 }
58
59
60 // Destructor
61 SGSun::~SGSun( void ) {
62 }
63
64
65 // initialize the sun object and connect it into our scene graph root
66 osg::Node*
67 SGSun::build( SGPath path, double sun_size, SGPropertyNode *property_tree_Node ) {
68
69     env_node = property_tree_Node;
70
71     osg::ref_ptr<osgDB::ReaderWriter::Options> options
72         = makeOptionsFromPath(path);
73     // build the ssg scene graph sub tree for the sky and connected
74     // into the provide scene graph branch
75     sun_transform = new osg::MatrixTransform;
76     osg::StateSet* stateSet = sun_transform->getOrCreateStateSet();
77
78     osg::TexEnv* texEnv = new osg::TexEnv;
79     texEnv->setMode(osg::TexEnv::MODULATE);
80     stateSet->setTextureAttribute(0, texEnv, osg::StateAttribute::ON);
81  
82     osg::Material* material = new osg::Material;
83     material->setColorMode(osg::Material::AMBIENT_AND_DIFFUSE);
84     material->setEmission(osg::Material::FRONT_AND_BACK,
85                           osg::Vec4(0, 0, 0, 1));
86     material->setSpecular(osg::Material::FRONT_AND_BACK,
87                           osg::Vec4(0, 0, 0, 1));
88     stateSet->setAttribute(material);
89
90     osg::ShadeModel* shadeModel = new osg::ShadeModel;
91     shadeModel->setMode(osg::ShadeModel::SMOOTH);
92     stateSet->setAttributeAndModes(shadeModel);
93
94     osg::AlphaFunc* alphaFunc = new osg::AlphaFunc;
95     alphaFunc->setFunction(osg::AlphaFunc::ALWAYS);
96     stateSet->setAttributeAndModes(alphaFunc);
97
98     osg::BlendFunc* blendFunc = new osg::BlendFunc;
99     blendFunc->setSource(osg::BlendFunc::SRC_ALPHA);
100     blendFunc->setDestination(osg::BlendFunc::ONE_MINUS_SRC_ALPHA);
101     stateSet->setAttributeAndModes(blendFunc);
102
103     stateSet->setMode(GL_FOG, osg::StateAttribute::OFF);
104     stateSet->setMode(GL_LIGHTING, osg::StateAttribute::OFF);
105     stateSet->setMode(GL_CULL_FACE, osg::StateAttribute::OFF);
106     stateSet->setMode(GL_DEPTH_TEST, osg::StateAttribute::OFF);
107
108     osg::Geode* geode = new osg::Geode;
109     stateSet = geode->getOrCreateStateSet();
110
111     stateSet->setRenderBinDetails(-6, "RenderBin");
112
113     // set up the sun-state
114     osg::Texture2D* texture = SGLoadTexture2D("sun.png", options.get());
115     stateSet->setTextureAttributeAndModes(0, texture);
116
117     // Build scenegraph
118     sun_cl = new osg::Vec4Array;
119     sun_cl->push_back(osg::Vec4(1, 1, 1, 1));
120
121     osg::Vec3Array* sun_vl = new osg::Vec3Array;
122     sun_vl->push_back(osg::Vec3(-sun_size, 0, -sun_size));
123     sun_vl->push_back(osg::Vec3(sun_size, 0, -sun_size));
124     sun_vl->push_back(osg::Vec3(-sun_size, 0, sun_size));
125     sun_vl->push_back(osg::Vec3(sun_size, 0, sun_size));
126
127     osg::Vec2Array* sun_tl = new osg::Vec2Array;
128     sun_tl->push_back(osg::Vec2(0, 0));
129     sun_tl->push_back(osg::Vec2(1, 0));
130     sun_tl->push_back(osg::Vec2(0, 1));
131     sun_tl->push_back(osg::Vec2(1, 1));
132
133     osg::Geometry* geometry = new osg::Geometry;
134     geometry->setUseDisplayList(false);
135     geometry->setVertexArray(sun_vl);
136     geometry->setColorArray(sun_cl.get());
137     geometry->setColorBinding(osg::Geometry::BIND_OVERALL);
138     geometry->setNormalBinding(osg::Geometry::BIND_OFF);
139     geometry->setTexCoordArray(0, sun_tl);
140     geometry->addPrimitiveSet(new osg::DrawArrays(GL_TRIANGLE_STRIP, 0, 4));
141     geode->addDrawable(geometry);
142
143     sun_transform->addChild( geode );
144
145     // set up the inner-halo state
146     geode = new osg::Geode;
147     stateSet = geode->getOrCreateStateSet();
148     stateSet->setRenderBinDetails(-7, "RenderBin");
149     
150     texture = SGLoadTexture2D("inner_halo.png", options.get());
151     stateSet->setTextureAttributeAndModes(0, texture);
152
153     // Build ssg structure
154     ihalo_cl = new osg::Vec4Array;
155     ihalo_cl->push_back(osg::Vec4(1, 1, 1, 1));
156
157     float ihalo_size = sun_size * 2.0;
158     osg::Vec3Array* ihalo_vl = new osg::Vec3Array;
159     ihalo_vl->push_back(osg::Vec3(-ihalo_size, 0, -ihalo_size));
160     ihalo_vl->push_back(osg::Vec3(ihalo_size, 0, -ihalo_size));
161     ihalo_vl->push_back(osg::Vec3(-ihalo_size, 0, ihalo_size));
162     ihalo_vl->push_back(osg::Vec3(ihalo_size, 0, ihalo_size));
163
164     osg::Vec2Array* ihalo_tl = new osg::Vec2Array;
165     ihalo_tl->push_back(osg::Vec2(0, 0));
166     ihalo_tl->push_back(osg::Vec2(1, 0));
167     ihalo_tl->push_back(osg::Vec2(0, 1));
168     ihalo_tl->push_back(osg::Vec2(1, 1));
169
170     geometry = new osg::Geometry;
171     geometry->setUseDisplayList(false);
172     geometry->setVertexArray(ihalo_vl);
173     geometry->setColorArray(ihalo_cl.get());
174     geometry->setColorBinding(osg::Geometry::BIND_OVERALL);
175     geometry->setNormalBinding(osg::Geometry::BIND_OFF);
176     geometry->setTexCoordArray(0, ihalo_tl);
177     geometry->addPrimitiveSet(new osg::DrawArrays(GL_TRIANGLE_STRIP, 0, 4));
178     geode->addDrawable(geometry);
179
180     sun_transform->addChild( geode );
181     
182     // set up the outer halo state
183     
184     geode = new osg::Geode;
185     stateSet = geode->getOrCreateStateSet();
186     stateSet->setRenderBinDetails(-8, "RenderBin");
187
188     texture = SGLoadTexture2D("outer_halo.png", options.get());
189     stateSet->setTextureAttributeAndModes(0, texture);
190
191     // Build ssg structure
192     ohalo_cl = new osg::Vec4Array;
193     ohalo_cl->push_back(osg::Vec4(1, 1, 1, 1));
194
195     double ohalo_size = sun_size * 8.0;
196     osg::Vec3Array* ohalo_vl = new osg::Vec3Array;
197     ohalo_vl->push_back(osg::Vec3(-ohalo_size, 0, -ohalo_size));
198     ohalo_vl->push_back(osg::Vec3(ohalo_size, 0, -ohalo_size));
199     ohalo_vl->push_back(osg::Vec3(-ohalo_size, 0, ohalo_size));
200     ohalo_vl->push_back(osg::Vec3(ohalo_size, 0, ohalo_size));
201
202     osg::Vec2Array* ohalo_tl = new osg::Vec2Array;
203     ohalo_tl->push_back(osg::Vec2(0, 0));
204     ohalo_tl->push_back(osg::Vec2(1, 0));
205     ohalo_tl->push_back(osg::Vec2(0, 1));
206     ohalo_tl->push_back(osg::Vec2(1, 1));
207
208     geometry = new osg::Geometry;
209     geometry->setUseDisplayList(false);
210     geometry->setVertexArray(ohalo_vl);
211     geometry->setColorArray(ohalo_cl.get());
212     geometry->setColorBinding(osg::Geometry::BIND_OVERALL);
213     geometry->setNormalBinding(osg::Geometry::BIND_OFF);
214     geometry->setTexCoordArray(0, ohalo_tl);
215     geometry->addPrimitiveSet(new osg::DrawArrays(GL_TRIANGLE_STRIP, 0, 4));
216     geode->addDrawable(geometry);
217
218     sun_transform->addChild( geode );
219
220
221     // force a repaint of the sun colors with arbitrary defaults
222     repaint( 0.0, 1.0 );
223
224     return sun_transform.get();
225 }
226
227
228 // repaint the sun colors based on current value of sun_angle in
229 // degrees relative to verticle
230 // 0 degrees = high noon
231 // 90 degrees = sun rise/set
232 // 180 degrees = darkest midnight
233 bool SGSun::repaint( double sun_angle, double new_visibility ) {
234     
235         if ( visibility != new_visibility ) {
236                 visibility = new_visibility;
237
238                 static const double sqrt_m_log01 = sqrt( -log( 0.01 ) );
239                 sun_exp2_punch_through = sqrt_m_log01 / ( visibility * 15 );
240         }
241
242         if ( prev_sun_angle != sun_angle ) {
243                 prev_sun_angle = sun_angle;
244
245                 // determine how much aerosols are in the air (rough guess)
246                 double aerosol_factor;
247                 if ( visibility < 100 ){
248                         aerosol_factor = 8000;
249                 }
250                 else {
251                         aerosol_factor = 80.5 / log( visibility / 100 );
252                 }
253
254                 // get environmental data from property tree or use defaults
255                 double rel_humidity, density_avg;
256
257                 if ( !env_node )
258                 {
259                         rel_humidity = 0.5;
260                         density_avg = 0.7;
261                 }
262                 else
263                 {
264                         rel_humidity = env_node->getFloatValue( "relative-humidity" ); 
265                         density_avg =  env_node->getFloatValue( "atmosphere/density-tropo-avg" );
266                 }
267
268                 // ok, now let's go and generate the sun color
269                 osg::Vec4 i_halo_color, o_halo_color, sun_color;
270
271                 // Some comments: 
272                 // When the sunangle changes, light has to travel a longer distance through the atmosphere.
273                 // So it's scattered more due to raleigh scattering, which affects blue more than green light.
274                 // Red is almost not scattered and effectively only get's touched when the sun is near the horizon.
275                 // Visability also affects suncolor inasmuch as more particles are in the air that cause more scattering.
276                 // We base our calculation on the halo's color, which is most scattered. 
277  
278                 // Red - is almost not scattered        
279                 // Lambda is 700 nm
280                 
281                 double red_scat_f = ( aerosol_factor * path_distance * density_avg ) / 5E+07;
282                 sun_color[0] = 1 - red_scat_f;
283                 i_halo_color[0] = 1 - ( 1.1 * red_scat_f );
284                 o_halo_color[0] = 1 - ( 1.4 * red_scat_f );
285
286                 // Green - 546.1 nm
287                 double green_scat_f = ( aerosol_factor * path_distance * density_avg ) / 8.8938E+06;
288                 sun_color[1] = 1 - green_scat_f;
289                 i_halo_color[1] = 1 - ( 1.1 * green_scat_f );
290                 o_halo_color[1] = 1 - ( 1.4 * green_scat_f );
291  
292                 // Blue - 435.8 nm
293                 double blue_scat_f = ( aerosol_factor * path_distance * density_avg ) / 3.607E+06;
294                 sun_color[2] = 1 - blue_scat_f;
295                 i_halo_color[2] = 1 - ( 1.1 * blue_scat_f );
296                 o_halo_color[2] = 1 - ( 1.4 * blue_scat_f );
297
298                 // Alpha
299                 sun_color[3] = 1;
300                 i_halo_color[3] = 1;
301
302                 o_halo_color[3] = blue_scat_f; 
303                 if ( ( new_visibility < 10000 ) &&  ( blue_scat_f > 1 )){
304                         o_halo_color[3] = 2 - blue_scat_f; 
305                 }
306
307
308                 // Now that we have the color calculated 
309                 // let's consider the saturation which is produced by mie scattering
310                 double saturation = 1 - ( rel_humidity / 200 );
311                 sun_color[1] += (( 1 - saturation ) * ( 1 - sun_color[1] ));
312                 sun_color[2] += (( 1 - saturation ) * ( 1 - sun_color[2] ));
313
314                 i_halo_color[1] += (( 1 - saturation ) * ( 1 - i_halo_color[1] ));
315                 i_halo_color[2] += (( 1 - saturation ) * ( 1 - i_halo_color[2] )); 
316
317                 o_halo_color[1] += (( 1 - saturation ) * ( 1 - o_halo_color[1] )); 
318                 o_halo_color[2] += (( 1 - saturation ) * ( 1 - o_halo_color[2] )); 
319
320                 // just to make sure we're in the limits
321                 if ( sun_color[0] < 0 ) sun_color[0] = 0;
322                 else if ( sun_color[0] > 1) sun_color[0] = 1;
323                 if ( i_halo_color[0] < 0 ) i_halo_color[0] = 0;
324                 else if ( i_halo_color[0] > 1) i_halo_color[0] = 1;
325                 if ( o_halo_color[0] < 0 ) o_halo_color[0] = 0;
326                 else if ( o_halo_color[0] > 1) o_halo_color[0] = 1;
327
328                 if ( sun_color[1] < 0 ) sun_color[1] = 0;
329                 else if ( sun_color[1] > 1) sun_color[1] = 1;
330                 if ( i_halo_color[1] < 0 ) i_halo_color[1] = 0;
331                 else if ( i_halo_color[1] > 1) i_halo_color[1] = 1;
332                 if ( o_halo_color[1] < 0 ) o_halo_color[1] = 0;
333                 else if ( o_halo_color[1] > 1) o_halo_color[1] = 1;
334
335                 if ( sun_color[2] < 0 ) sun_color[2] = 0;
336                 else if ( sun_color[2] > 1) sun_color[2] = 1;
337                 if ( i_halo_color[2] < 0 ) i_halo_color[2] = 0;
338                 else if ( i_halo_color[2] > 1) i_halo_color[2] = 1;
339                 if ( o_halo_color[2] < 0 ) o_halo_color[2] = 0;
340                 else if ( o_halo_color[2] > 1) o_halo_color[2] = 1;
341                 if ( o_halo_color[3] < 0 ) o_halo_color[3] = 0;
342                 else if ( o_halo_color[3] > 1) o_halo_color[3] = 1;
343
344         
345                 gamma_correct_rgb( i_halo_color._v );
346                 gamma_correct_rgb( o_halo_color._v );
347                 gamma_correct_rgb( sun_color._v );      
348
349                 (*sun_cl)[0] = sun_color;
350                 sun_cl->dirty();
351                 (*ihalo_cl)[0] = i_halo_color;
352                 ihalo_cl->dirty();
353                 (*ohalo_cl)[0] = o_halo_color;
354                 ohalo_cl->dirty();
355     }
356
357     return true;
358 }
359
360
361 // reposition the sun at the specified right ascension and
362 // declination, offset by our current position (p) so that it appears
363 // fixed at a great distance from the viewer.  Also add in an optional
364 // rotation (i.e. for the current time of day.)
365 // Then calculate stuff needed for the sun-coloring
366 bool SGSun::reposition( double rightAscension, double declination, 
367                         double sun_dist, double lat, double alt_asl, double sun_angle)
368 {
369     // GST - GMT sidereal time 
370     osg::Matrix T2, RA, DEC;
371
372     // xglRotatef( ((SGD_RADIANS_TO_DEGREES * rightAscension)- 90.0),
373     //             0.0, 0.0, 1.0);
374     RA.makeRotate(rightAscension - 90*SGD_DEGREES_TO_RADIANS, osg::Vec3(0, 0, 1));
375
376     // xglRotatef((SGD_RADIANS_TO_DEGREES * declination), 1.0, 0.0, 0.0);
377     DEC.makeRotate(declination, osg::Vec3(1, 0, 0));
378
379     // xglTranslatef(0,sun_dist);
380     T2.makeTranslate(osg::Vec3(0, sun_dist, 0));
381
382     sun_transform->setMatrix(T2*DEC*RA);
383
384     // Suncolor related things:
385     if ( prev_sun_angle != sun_angle ) {
386       if ( sun_angle == 0 ) sun_angle = 0.1;
387          const double r_earth_pole = 6356752.314;
388          const double r_tropo_pole = 6356752.314 + 8000;
389          const double epsilon_earth2 = 6.694380066E-3;
390          const double epsilon_tropo2 = 9.170014946E-3;
391
392          double r_tropo = r_tropo_pole / sqrt ( 1 - ( epsilon_tropo2 * pow ( cos( lat ), 2 )));
393          double r_earth = r_earth_pole / sqrt ( 1 - ( epsilon_earth2 * pow ( cos( lat ), 2 )));
394  
395          double position_radius = r_earth + alt_asl;
396
397          double gamma =  SG_PI - sun_angle;
398          double sin_beta =  ( position_radius * sin ( gamma )  ) / r_tropo;
399          double alpha =  SG_PI - gamma - asin( sin_beta );
400
401          // OK, now let's calculate the distance the light travels
402          path_distance = sqrt( pow( position_radius, 2 ) + pow( r_tropo, 2 )
403                         - ( 2 * position_radius * r_tropo * cos( alpha ) ));
404
405          double alt_half = sqrt( pow ( r_tropo, 2 ) + pow( path_distance / 2, 2 ) - r_tropo * path_distance * cos( asin( sin_beta )) ) - r_earth;
406
407          if ( alt_half < 0.0 ) alt_half = 0.0;
408
409          // Push the data to the property tree, so it can be used in the enviromental code
410          if ( env_node ){
411             env_node->setDoubleValue( "atmosphere/altitude-troposphere-top", r_tropo - r_earth );
412             env_node->setDoubleValue( "atmosphere/altitude-half-to-sun", alt_half );
413       }
414     }
415
416     return true;
417 }
418
419 SGVec4f
420 SGSun::get_color()
421 {
422     return SGVec4f((*sun_cl)[0][0], (*sun_cl)[0][1], (*sun_cl)[0][2], (*sun_cl)[0][3]);
423 }