]> git.mxchange.org Git - simgear.git/blob - simgear/scene/tgdb/obj.cxx
Add logging for the total number of random buildings generated.
[simgear.git] / simgear / scene / tgdb / obj.cxx
1 // obj.cxx -- routines to handle loading scenery and building the plib
2 //            scene graph.
3 //
4 // Written by Curtis Olson, started October 1997.
5 //
6 // Copyright (C) 1997  Curtis L. Olson  - http://www.flightgear.org/~curt
7 //
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU General Public License as
10 // published by the Free Software Foundation; either version 2 of the
11 // License, or (at your option) any later version.
12 //
13 // This program is distributed in the hope that it will be useful, but
14 // WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 // General Public License for more details.
17 //
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
21 //
22 // $Id$
23
24
25 #ifdef HAVE_CONFIG_H
26 #  include <simgear_config.h>
27 #endif
28
29 #include "obj.hxx"
30
31 #include <simgear/compiler.h>
32
33 #include <osg/Fog>
34 #include <osg/Geode>
35 #include <osg/Geometry>
36 #include <osg/Group>
37 #include <osg/LOD>
38 #include <osg/MatrixTransform>
39 #include <osg/Point>
40 #include <osg/StateSet>
41 #include <osg/Switch>
42
43 #include <boost/foreach.hpp>
44
45 #include <algorithm>
46
47 #include <simgear/debug/logstream.hxx>
48 #include <simgear/io/sg_binobj.hxx>
49 #include <simgear/math/sg_geodesy.hxx>
50 #include <simgear/math/sg_random.h>
51 #include <simgear/math/SGMisc.hxx>
52 #include <simgear/scene/material/Effect.hxx>
53 #include <simgear/scene/material/EffectGeode.hxx>
54 #include <simgear/scene/material/mat.hxx>
55 #include <simgear/scene/material/matlib.hxx>
56 #include <simgear/scene/model/SGOffsetTransform.hxx>
57 #include <simgear/scene/util/SGUpdateVisitor.hxx>
58 #include <simgear/scene/util/SGNodeMasks.hxx>
59 #include <simgear/scene/util/QuadTreeBuilder.hxx>
60
61 #include "SGTexturedTriangleBin.hxx"
62 #include "SGLightBin.hxx"
63 #include "SGModelBin.hxx"
64 #include "SGBuildingBin.hxx"
65 #include "TreeBin.hxx"
66 #include "SGDirectionalLightBin.hxx"
67 #include "GroundLightManager.hxx"
68
69
70 #include "pt_lights.hxx"
71
72 using namespace simgear;
73
74 typedef std::map<std::string,SGTexturedTriangleBin> SGMaterialTriangleMap;
75 typedef std::list<SGLightBin> SGLightListBin;
76 typedef std::list<SGDirectionalLightBin> SGDirectionalLightListBin;
77
78 struct SGTileGeometryBin {
79   SGMaterialTriangleMap materialTriangleMap;
80   SGLightBin tileLights;
81   SGLightBin randomTileLights;
82   SGTreeBinList randomForest;
83   SGDirectionalLightBin runwayLights;
84   SGDirectionalLightBin taxiLights;
85   SGDirectionalLightListBin vasiLights;
86   SGDirectionalLightListBin rabitLights;
87   SGLightListBin odalLights;
88   SGDirectionalLightListBin holdshortLights;
89   SGDirectionalLightListBin reilLights;
90   SGMatModelBin randomModels;
91   SGBuildingBinList randomBuildings;
92
93   static SGVec4f
94   getMaterialLightColor(const SGMaterial* material)
95   {
96     if (!material)
97       return SGVec4f(1, 1, 1, 0.8);
98     return material->get_light_color();
99   }
100
101   static void
102   addPointGeometry(SGLightBin& lights,
103                    const std::vector<SGVec3d>& vertices,
104                    const SGVec4f& color,
105                    const int_list& pts_v)
106   {
107     for (unsigned i = 0; i < pts_v.size(); ++i)
108       lights.insert(toVec3f(vertices[pts_v[i]]), color);
109   }
110
111   static void
112   addPointGeometry(SGDirectionalLightBin& lights,
113                    const std::vector<SGVec3d>& vertices,
114                    const std::vector<SGVec3f>& normals,
115                    const SGVec4f& color,
116                    const int_list& pts_v,
117                    const int_list& pts_n)
118   {
119     // If the normal indices match the vertex indices, use seperate
120     // normal indices. Else reuse the vertex indices for the normals.
121     if (pts_v.size() == pts_n.size()) {
122       for (unsigned i = 0; i < pts_v.size(); ++i)
123         lights.insert(toVec3f(vertices[pts_v[i]]), normals[pts_n[i]], color);
124     } else {
125       for (unsigned i = 0; i < pts_v.size(); ++i)
126         lights.insert(toVec3f(vertices[pts_v[i]]), normals[pts_v[i]], color);
127     }
128   }
129
130   bool
131   insertPtGeometry(const SGBinObject& obj, SGMaterialLib* matlib)
132   {
133     if (obj.get_pts_v().size() != obj.get_pts_n().size()) {
134       SG_LOG(SG_TERRAIN, SG_ALERT,
135              "Group list sizes for points do not match!");
136       return false;
137     }
138
139     for (unsigned grp = 0; grp < obj.get_pts_v().size(); ++grp) {
140       std::string materialName = obj.get_pt_materials()[grp];
141       SGMaterial* material = 0;
142       if (matlib)
143           material = matlib->find(materialName);
144       SGVec4f color = getMaterialLightColor(material);
145
146       if (3 <= materialName.size() && materialName.substr(0, 3) != "RWY") {
147         // Just plain lights. Not something for the runway.
148         addPointGeometry(tileLights, obj.get_wgs84_nodes(), color,
149                          obj.get_pts_v()[grp]);
150       } else if (materialName == "RWY_BLUE_TAXIWAY_LIGHTS"
151                  || materialName == "RWY_GREEN_TAXIWAY_LIGHTS") {
152         addPointGeometry(taxiLights, obj.get_wgs84_nodes(), obj.get_normals(),
153                          color, obj.get_pts_v()[grp], obj.get_pts_n()[grp]);
154       } else if (materialName == "RWY_VASI_LIGHTS") {
155         vasiLights.push_back(SGDirectionalLightBin());
156         addPointGeometry(vasiLights.back(), obj.get_wgs84_nodes(),
157                          obj.get_normals(), color, obj.get_pts_v()[grp],
158                          obj.get_pts_n()[grp]);
159       } else if (materialName == "RWY_SEQUENCED_LIGHTS") {
160         rabitLights.push_back(SGDirectionalLightBin());
161         addPointGeometry(rabitLights.back(), obj.get_wgs84_nodes(),
162                          obj.get_normals(), color, obj.get_pts_v()[grp],
163                          obj.get_pts_n()[grp]);
164       } else if (materialName == "RWY_ODALS_LIGHTS") {
165         odalLights.push_back(SGLightBin());
166         addPointGeometry(odalLights.back(), obj.get_wgs84_nodes(),
167                          color, obj.get_pts_v()[grp]);
168       } else if (materialName == "RWY_YELLOW_PULSE_LIGHTS") {
169         holdshortLights.push_back(SGDirectionalLightBin());
170         addPointGeometry(holdshortLights.back(), obj.get_wgs84_nodes(),
171                          obj.get_normals(), color, obj.get_pts_v()[grp],
172                          obj.get_pts_n()[grp]);
173       } else if (materialName == "RWY_REIL_LIGHTS") {
174         reilLights.push_back(SGDirectionalLightBin());
175         addPointGeometry(reilLights.back(), obj.get_wgs84_nodes(),
176                          obj.get_normals(), color, obj.get_pts_v()[grp],
177                          obj.get_pts_n()[grp]);
178       } else {
179         // what is left must be runway lights
180         addPointGeometry(runwayLights, obj.get_wgs84_nodes(),
181                          obj.get_normals(), color, obj.get_pts_v()[grp],
182                          obj.get_pts_n()[grp]);
183       }
184     }
185
186     return true;
187   }
188
189
190   static SGVec2f
191   getTexCoord(const std::vector<SGVec2f>& texCoords, const int_list& tc,
192               const SGVec2f& tcScale, unsigned i)
193   {
194     if (tc.empty())
195       return tcScale;
196     else if (tc.size() == 1)
197       return mult(texCoords[tc[0]], tcScale);
198     else
199       return mult(texCoords[tc[i]], tcScale);
200   }
201
202   static void
203   addTriangleGeometry(SGTexturedTriangleBin& triangles,
204                       const std::vector<SGVec3d>& vertices,
205                       const std::vector<SGVec3f>& normals,
206                       const std::vector<SGVec2f>& texCoords,
207                       const int_list& tris_v,
208                       const int_list& tris_n,
209                       const int_list& tris_tc,
210                       const SGVec2f& tcScale)
211   {
212     if (tris_v.size() != tris_n.size()) {
213       // If the normal indices do not match, they should be inmplicitly
214       // the same than the vertex indices. So just call ourselves again
215       // with the matching index vector.
216       addTriangleGeometry(triangles, vertices, normals, texCoords,
217                           tris_v, tris_v, tris_tc, tcScale);
218       return;
219     }
220
221     for (unsigned i = 2; i < tris_v.size(); i += 3) {
222       SGVertNormTex v0;
223       v0.vertex = toVec3f(vertices[tris_v[i-2]]);
224       v0.normal = normals[tris_n[i-2]];
225       v0.texCoord = getTexCoord(texCoords, tris_tc, tcScale, i-2);
226       SGVertNormTex v1;
227       v1.vertex = toVec3f(vertices[tris_v[i-1]]);
228       v1.normal = normals[tris_n[i-1]];
229       v1.texCoord = getTexCoord(texCoords, tris_tc, tcScale, i-1);
230       SGVertNormTex v2;
231       v2.vertex = toVec3f(vertices[tris_v[i]]);
232       v2.normal = normals[tris_n[i]];
233       v2.texCoord = getTexCoord(texCoords, tris_tc, tcScale, i);
234       triangles.insert(v0, v1, v2);
235     }
236   }
237
238   static void
239   addStripGeometry(SGTexturedTriangleBin& triangles,
240                    const std::vector<SGVec3d>& vertices,
241                    const std::vector<SGVec3f>& normals,
242                    const std::vector<SGVec2f>& texCoords,
243                    const int_list& strips_v,
244                    const int_list& strips_n,
245                    const int_list& strips_tc,
246                    const SGVec2f& tcScale)
247   {
248     if (strips_v.size() != strips_n.size()) {
249       // If the normal indices do not match, they should be inmplicitly
250       // the same than the vertex indices. So just call ourselves again
251       // with the matching index vector.
252       addStripGeometry(triangles, vertices, normals, texCoords,
253                        strips_v, strips_v, strips_tc, tcScale);
254       return;
255     }
256
257     for (unsigned i = 2; i < strips_v.size(); ++i) {
258       SGVertNormTex v0;
259       v0.vertex = toVec3f(vertices[strips_v[i-2]]);
260       v0.normal = normals[strips_n[i-2]];
261       v0.texCoord = getTexCoord(texCoords, strips_tc, tcScale, i-2);
262       SGVertNormTex v1;
263       v1.vertex = toVec3f(vertices[strips_v[i-1]]);
264       v1.normal = normals[strips_n[i-1]];
265       v1.texCoord = getTexCoord(texCoords, strips_tc, tcScale, i-1);
266       SGVertNormTex v2;
267       v2.vertex = toVec3f(vertices[strips_v[i]]);
268       v2.normal = normals[strips_n[i]];
269       v2.texCoord = getTexCoord(texCoords, strips_tc, tcScale, i);
270       if (i%2)
271         triangles.insert(v1, v0, v2);
272       else
273         triangles.insert(v0, v1, v2);
274     }
275   }
276   
277   static void
278   addFanGeometry(SGTexturedTriangleBin& triangles,
279                  const std::vector<SGVec3d>& vertices,
280                  const std::vector<SGVec3f>& normals,
281                  const std::vector<SGVec2f>& texCoords,
282                  const int_list& fans_v,
283                  const int_list& fans_n,
284                  const int_list& fans_tc,
285                  const SGVec2f& tcScale)
286   {
287     if (fans_v.size() != fans_n.size()) {
288       // If the normal indices do not match, they should be implicitly
289       // the same than the vertex indices. So just call ourselves again
290       // with the matching index vector.
291       addFanGeometry(triangles, vertices, normals, texCoords,
292                      fans_v, fans_v, fans_tc, tcScale);
293       return;
294     }
295
296     SGVertNormTex v0;
297     v0.vertex = toVec3f(vertices[fans_v[0]]);
298     v0.normal = normals[fans_n[0]];
299     v0.texCoord = getTexCoord(texCoords, fans_tc, tcScale, 0);
300     SGVertNormTex v1;
301     v1.vertex = toVec3f(vertices[fans_v[1]]);
302     v1.normal = normals[fans_n[1]];
303     v1.texCoord = getTexCoord(texCoords, fans_tc, tcScale, 1);
304     for (unsigned i = 2; i < fans_v.size(); ++i) {
305       SGVertNormTex v2;
306       v2.vertex = toVec3f(vertices[fans_v[i]]);
307       v2.normal = normals[fans_n[i]];
308       v2.texCoord = getTexCoord(texCoords, fans_tc, tcScale, i);
309       triangles.insert(v0, v1, v2);
310       v1 = v2;
311     }
312   }
313
314   SGVec2f getTexCoordScale(const std::string& name, SGMaterialLib* matlib)
315   {
316     if (!matlib)
317       return SGVec2f(1, 1);
318     SGMaterial* material = matlib->find(name);
319     if (!material)
320       return SGVec2f(1, 1);
321
322     return material->get_tex_coord_scale();
323   }
324
325   bool
326   insertSurfaceGeometry(const SGBinObject& obj, SGMaterialLib* matlib)
327   {
328     if (obj.get_tris_n().size() < obj.get_tris_v().size() ||
329         obj.get_tris_tc().size() < obj.get_tris_v().size()) {
330       SG_LOG(SG_TERRAIN, SG_ALERT,
331              "Group list sizes for triangles do not match!");
332       return false;
333     }
334
335     for (unsigned grp = 0; grp < obj.get_tris_v().size(); ++grp) {
336       std::string materialName = obj.get_tri_materials()[grp];
337       SGVec2f tcScale = getTexCoordScale(materialName, matlib);
338       addTriangleGeometry(materialTriangleMap[materialName],
339                           obj.get_wgs84_nodes(), obj.get_normals(),
340                           obj.get_texcoords(), obj.get_tris_v()[grp],
341                           obj.get_tris_n()[grp], obj.get_tris_tc()[grp],
342                           tcScale);
343     }
344
345     if (obj.get_strips_n().size() < obj.get_strips_v().size() ||
346         obj.get_strips_tc().size() < obj.get_strips_v().size()) {
347       SG_LOG(SG_TERRAIN, SG_ALERT,
348              "Group list sizes for strips do not match!");
349       return false;
350     }
351     for (unsigned grp = 0; grp < obj.get_strips_v().size(); ++grp) {
352       std::string materialName = obj.get_strip_materials()[grp];
353       SGVec2f tcScale = getTexCoordScale(materialName, matlib);
354       addStripGeometry(materialTriangleMap[materialName],
355                        obj.get_wgs84_nodes(), obj.get_normals(),
356                        obj.get_texcoords(), obj.get_strips_v()[grp],
357                        obj.get_strips_n()[grp], obj.get_strips_tc()[grp],
358                        tcScale);
359     }
360
361     if (obj.get_fans_n().size() < obj.get_fans_v().size() ||
362         obj.get_fans_tc().size() < obj.get_fans_v().size()) {
363       SG_LOG(SG_TERRAIN, SG_ALERT,
364              "Group list sizes for fans do not match!");
365       return false;
366     }
367     for (unsigned grp = 0; grp < obj.get_fans_v().size(); ++grp) {
368       std::string materialName = obj.get_fan_materials()[grp];
369       SGVec2f tcScale = getTexCoordScale(materialName, matlib);
370       addFanGeometry(materialTriangleMap[materialName],
371                      obj.get_wgs84_nodes(), obj.get_normals(),
372                      obj.get_texcoords(), obj.get_fans_v()[grp],
373                      obj.get_fans_n()[grp], obj.get_fans_tc()[grp],
374                      tcScale);
375     }
376     return true;
377   }
378
379   osg::Node* getSurfaceGeometry(SGMaterialLib* matlib) const
380   {
381     if (materialTriangleMap.empty())
382       return 0;
383
384     EffectGeode* eg = 0;
385     osg::Group* group = (materialTriangleMap.size() > 1 ? new osg::Group : 0);
386     //osg::Geode* geode = new osg::Geode;
387     SGMaterialTriangleMap::const_iterator i;
388     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
389       osg::Geometry* geometry = i->second.buildGeometry();
390       SGMaterial *mat = 0;
391       if (matlib)
392         mat = matlib->find(i->first);
393       eg = new EffectGeode;
394       if (mat)
395         eg->setEffect(mat->get_effect(i->second));
396       eg->addDrawable(geometry);
397       eg->runGenerators(geometry);  // Generate extra data needed by effect
398       if (group)
399         group->addChild(eg);
400     }
401     if (group)
402         return group;
403     else
404         return eg;
405   }
406
407   void computeRandomSurfaceLights(SGMaterialLib* matlib)
408   {
409     SGMaterialTriangleMap::iterator i;
410         
411     // generate a repeatable random seed
412     mt seed;
413     mt_init(&seed, unsigned(123));
414     
415     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
416       SGMaterial *mat = matlib->find(i->first);
417       if (!mat)
418         continue;
419
420       float coverage = mat->get_light_coverage();
421       if (coverage <= 0)
422         continue;
423       if (coverage < 10000.0) {
424         SG_LOG(SG_INPUT, SG_ALERT, "Light coverage is "
425                << coverage << ", pushing up to 10000");
426         coverage = 10000;
427       }
428       
429       std::vector<SGVec3f> randomPoints;
430       i->second.addRandomSurfacePoints(coverage, 3, mat->get_object_mask(i->second), randomPoints);
431       std::vector<SGVec3f>::iterator j;
432       for (j = randomPoints.begin(); j != randomPoints.end(); ++j) {
433         float zombie = mt_rand(&seed);
434         // factor = sg_random() ^ 2, range = 0 .. 1 concentrated towards 0
435         float factor = mt_rand(&seed);
436         factor *= factor;
437
438         float bright = 1;
439         SGVec4f color;
440         if ( zombie > 0.5 ) {
441           // 50% chance of yellowish
442           color = SGVec4f(0.9f, 0.9f, 0.3f, bright - factor * 0.2f);
443         } else if (zombie > 0.15f) {
444           // 35% chance of whitish
445           color = SGVec4f(0.9, 0.9f, 0.8f, bright - factor * 0.2f);
446         } else if (zombie > 0.05f) {
447           // 10% chance of orangish
448           color = SGVec4f(0.9f, 0.6f, 0.2f, bright - factor * 0.2f);
449         } else {
450           // 5% chance of redish
451           color = SGVec4f(0.9f, 0.2f, 0.2f, bright - factor * 0.2f);
452         }
453         randomTileLights.insert(*j, color);
454       }
455     }
456   }
457   
458   void computeRandomBuildings(SGMaterialLib* matlib, float building_density)
459   {
460     SGMaterialTriangleMap::iterator i;
461         
462     // generate a repeatable random seed
463     mt seed;
464     mt_init(&seed, unsigned(123));
465     
466     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
467       SGMaterial *mat = matlib->find(i->first);
468       SGTexturedTriangleBin triangleBin = i->second;
469       
470       if (!mat)
471         continue;
472
473       osg::Texture2D* object_mask = mat->get_object_mask(triangleBin);
474
475       float coverage = mat->get_building_coverage();
476       
477       // Minimum spacing needs to include the maximum footprint of a building.
478       // As the 0,0,0 point is the center of the front of the building, we need
479       // to consider the full depth, but only half the possible width.          
480       float min_spacing = mat->get_building_spacing();
481
482       if (coverage <= 0)
483         continue;        
484         
485       bool found = false;
486       SGBuildingBin* bin = NULL;
487       
488       BOOST_FOREACH(bin, randomBuildings)
489       {
490         if (bin->texture == mat->get_building_texture()) {
491             found = true;
492             break;
493         }
494       }
495       
496       if (!found) {
497         bin = new SGBuildingBin();
498         bin->texture = mat->get_building_texture();
499         bin->lightMap = mat->get_building_lightmap();
500         SG_LOG(SG_INPUT, SG_DEBUG, "Building texture " << bin->texture);
501         randomBuildings.push_back(bin);
502       }       
503       
504       std::vector<std::pair<SGVec3f, float> > randomPoints;
505       
506       unsigned num = i->second.getNumTriangles();
507       int triangle_dropped = 0;
508       int building_dropped = 0;
509       int random_dropped = 0;
510       int mask_dropped = 0;
511
512       for (unsigned i = 0; i < num; ++i) {
513         SGBuildingBin::BuildingList triangle_buildings;
514         SGTexturedTriangleBin::triangle_ref triangleRef = triangleBin.getTriangleRef(i);
515         
516         SGVec3f vorigin = triangleBin.getVertex(triangleRef[0]).vertex;
517         SGVec3f v0 = triangleBin.getVertex(triangleRef[1]).vertex - vorigin;
518         SGVec3f v1 = triangleBin.getVertex(triangleRef[2]).vertex - vorigin;
519         SGVec2f torigin = triangleBin.getVertex(triangleRef[0]).texCoord;
520         SGVec2f t0 = triangleBin.getVertex(triangleRef[1]).texCoord - torigin;
521         SGVec2f t1 = triangleBin.getVertex(triangleRef[2]).texCoord - torigin;
522         SGVec3f normal = cross(v0, v1);
523         
524         // Compute the area
525         float area = 0.5f*length(normal);
526         if (area <= SGLimitsf::min())
527           continue;
528
529         // for partial units of area, use a zombie door method to
530         // create the proper random chance of an object being created
531         // for this triangle.
532         double num = area / coverage + mt_rand(&seed);
533         if (num < 1.0f) {
534           continue;          
535         }
536                 
537         // Apply density, which is linear, while we're dealing in areas
538         num = num * building_density * building_density;
539         
540         // Cosine of the angle between the two vectors.
541         float cosine = (dot(v0, v1) / (length(v0) * length(v1)));
542
543         // Determine a grid spacing in each vector such that the correct
544         // coverage will result.
545         float stepv0 = (sqrtf(coverage) / building_density) / length(v0) / sqrtf(1 - cosine * cosine);
546         float stepv1 = (sqrtf(coverage) / building_density) / length(v1);
547         
548         stepv0 = std::min(stepv0, 1.0f);
549         stepv1 = std::min(stepv1, 1.0f);
550         
551         // Start at a random point. a will be immediately incremented below.
552         float a = -mt_rand(&seed) * stepv0;  
553         float b = mt_rand(&seed) * stepv1;
554
555         // Place an object each unit of area
556         while ( num > 1.0 ) {
557
558           // Set the next location to place a building          
559           a += stepv0;
560           
561           if ( a + b > 1.0f ) {
562             // Reached the end of the scan-line on v0. Reset and increment
563             // scan-line on v1
564             a = mt_rand(&seed) * stepv0;
565             b += stepv1;
566           }
567           
568           if (b > 1.0f) {
569             // In a degenerate case of a single point, we might be outside the 
570             // scanline.
571             b = mt_rand(&seed) * stepv1;
572           }
573           
574           SGVec3f randomPoint = vorigin + a*v0 + b*v1;
575           float rotation = mt_rand(&seed);
576           
577           if (object_mask != NULL) {
578             SGVec2f texCoord = torigin + a*t0 + b*t1;
579             osg::Image* img = object_mask->getImage();            
580             int x = (int) (img->s() * texCoord.x()) % img->s();
581             int y = (int) (img->t() * texCoord.y()) % img->t();
582             
583             // In some degenerate cases x or y can be < 1, in which case the mod operand fails
584             while (x < 0) x += img->s();
585             while (y < 0) y += img->t();
586
587             if (mt_rand(&seed) < img->getColor(x, y).b()) {  
588               // Object passes mask. Rotation is taken from the red channel
589               rotation = img->getColor(x,y).r();
590             } else {
591               // Fails mask test - try again.
592               mask_dropped++;
593               num -= 1.0;
594               continue;
595             }  
596           }
597           
598           // Now create the building, so we have an idea of its footprint
599           // and therefore appropriate spacing.
600           SGBuildingBin::BuildingType buildingtype;
601           float width;
602           float depth;
603           int floors;
604           float height;
605           bool pitched;
606                                   
607           // Determine the building type, and hence dimensions.
608           float type = mt_rand(&seed);
609           
610           if (type < mat->get_building_small_fraction()) {
611             // Small building
612             buildingtype = SGBuildingBin::SMALL;
613             width = mat->get_building_small_min_width() + mt_rand(&seed) * mt_rand(&seed) * (mat->get_building_small_max_width() - mat->get_building_small_min_width());
614             depth = mat->get_building_small_min_depth() + mt_rand(&seed) * mt_rand(&seed) * (mat->get_building_small_max_depth() - mat->get_building_small_min_depth());
615             floors = SGMisc<double>::round(mat->get_building_small_min_floors() + mt_rand(&seed) * (mat->get_building_small_max_floors() - mat->get_building_small_min_floors()));
616             height = floors * (2.8 + mt_rand(&seed));
617             
618             // Small buildings are never deeper than they are wide.
619             if (depth > width) { depth = width; }
620             
621             pitched = (mt_rand(&seed) < mat->get_building_small_pitch());
622           } else if (type < (mat->get_building_small_fraction() + mat->get_building_medium_fraction())) {
623             buildingtype = SGBuildingBin::MEDIUM;
624             width = mat->get_building_medium_min_width() + mt_rand(&seed) * mt_rand(&seed) * (mat->get_building_medium_max_width() - mat->get_building_medium_min_width());
625             depth = mat->get_building_medium_min_depth() + mt_rand(&seed) * mt_rand(&seed) * (mat->get_building_medium_max_depth() - mat->get_building_medium_min_depth());
626             floors = SGMisc<double>::round(mat->get_building_medium_min_floors() + mt_rand(&seed) * (mat->get_building_medium_max_floors() - mat->get_building_medium_min_floors()));
627             height = floors * (2.8 + mt_rand(&seed));
628             
629             while ((height > width) && (floors > mat->get_building_medium_min_floors())) {
630               // Ensure that medium buildings aren't taller than they are wide
631               floors--;
632               height = floors * (2.8 + mt_rand(&seed));                            
633             }
634             
635             pitched = (mt_rand(&seed) < mat->get_building_medium_pitch());         
636           } else {
637             buildingtype = SGBuildingBin::LARGE;
638             width = mat->get_building_large_min_width() + mt_rand(&seed) * (mat->get_building_large_max_width() - mat->get_building_large_min_width());
639             depth = mat->get_building_large_min_depth() + mt_rand(&seed) * (mat->get_building_large_max_depth() - mat->get_building_large_min_depth());
640             floors = SGMisc<double>::round(mat->get_building_large_min_floors() + mt_rand(&seed) * (mat->get_building_large_max_floors() - mat->get_building_large_min_floors())); 
641             height = floors * (2.8 + mt_rand(&seed));
642             pitched = (mt_rand(&seed) < mat->get_building_large_pitch());                   
643           }
644           
645           // Determine an appropriate minimum spacing for the object.  Note that the
646           // origin of the building model is the center of the front face, hence we
647           // consider the full depth.  We choose _not_ to use the diagonal distance
648           // to one of the rear corners, as we assume that terrain masking will
649           // make the buildings place in some sort of grid.
650           float radius = std::max(depth, 0.5f*width);
651
652           // Check that the point is sufficiently far from
653           // the edge of the triangle by measuring the distance
654           // from the three lines that make up the triangle.        
655           SGVec3f p = randomPoint - vorigin;
656           
657           if (((length(cross(p     , p - v0)) / length(v0))      < radius) ||
658               ((length(cross(p - v0, p - v1)) / length(v1 - v0)) < radius) ||
659               ((length(cross(p - v1, p     )) / length(v1))      < radius)   )
660           {
661             triangle_dropped++;
662             num -= 1.0;
663             continue;
664           }
665
666           // Check against the generic random objects.  TODO - make this more efficient by
667           // masking ahead of time objects outside of the triangle.
668           bool too_close = false;
669           for (unsigned int i = 0; i < randomModels.getNumModels(); ++i) {
670             float min_dist = randomModels.getMatModel(i).model->get_spacing_m() + radius + min_spacing;
671             min_dist = min_dist * min_dist;
672             
673             if (distSqr(randomModels.getMatModel(i).position, randomPoint) < min_dist) {
674               too_close = true;
675               random_dropped++;
676               continue;
677             }          
678           }
679           
680           if (too_close) {
681             // Too close to a random model - drop and try again
682             num -= 1.0;
683             continue;            
684           }
685           
686           SGBuildingBin::BuildingList::iterator l;       
687           
688           // Check that the building is sufficiently far from any other building within the triangle.
689           for (l = triangle_buildings.begin(); l != triangle_buildings.end(); ++l) {
690             
691             float min_dist = l->radius + radius + min_spacing;
692             min_dist = min_dist * min_dist;
693             
694             if (distSqr(randomPoint, l->position) < min_dist) {
695               building_dropped++;
696               too_close = true;
697               continue;
698             }
699           }
700           
701           if (too_close) {
702             // Too close to another building - drop and try again
703             num -= 1.0;
704             continue;            
705           }
706           
707           // If we've passed all of the above tests we have a valid
708           // building, so create it!          
709           SGBuildingBin::Building building = 
710                     SGBuildingBin::Building(buildingtype, 
711                                             randomPoint, 
712                                             width, 
713                                             depth, 
714                                             height, 
715                                             floors,
716                                             rotation,
717                                             pitched);                                                            
718           triangle_buildings.push_back(building);
719
720           num -= 1.0;
721         }        
722         
723         // Add the buildings from this triangle to the overall list.
724         SGBuildingBin::BuildingList::iterator l;  
725
726         for (l = triangle_buildings.begin(); l != triangle_buildings.end(); ++l) {
727           bin->insert(*l);
728         }
729         
730         triangle_buildings.clear();
731       }
732       
733       SG_LOG(SG_TERRAIN, SG_DEBUG, "Random Buildings: " << bin->getNumBuildings());
734       SG_LOG(SG_TERRAIN, SG_DEBUG, "  Dropped due to mask: " << mask_dropped);
735       SG_LOG(SG_TERRAIN, SG_DEBUG, "  Dropped due to triangle edge: " << triangle_dropped);
736       SG_LOG(SG_TERRAIN, SG_DEBUG, "  Dropped due to random object: " << random_dropped);
737       SG_LOG(SG_TERRAIN, SG_DEBUG, "  Dropped due to other building: " << building_dropped);
738     }
739   }
740   
741   void computeRandomForest(SGMaterialLib* matlib, float vegetation_density)
742   {
743     SGMaterialTriangleMap::iterator i;
744
745     // generate a repeatable random seed
746     mt seed;
747
748     mt_init(&seed, unsigned(586));
749
750     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
751       SGMaterial *mat = matlib->find(i->first);
752       if (!mat)
753         continue;
754
755       float wood_coverage = mat->get_wood_coverage();
756       if (wood_coverage <= 0)
757         continue;
758               
759       // Attributes that don't vary by tree but do vary by material
760       bool found = false;
761       TreeBin* bin = NULL;
762       
763       BOOST_FOREACH(bin, randomForest)
764       {
765         if ((bin->texture           == mat->get_tree_texture()  ) &&
766             (bin->texture_varieties == mat->get_tree_varieties()) &&
767             (bin->range             == mat->get_tree_range()    ) &&
768             (bin->width             == mat->get_tree_width()    ) &&
769             (bin->height            == mat->get_tree_height()   )   ) {
770             found = true;
771             break;
772         }
773       }
774       
775       if (!found) {
776         bin = new TreeBin();
777         bin->texture = mat->get_tree_texture();
778           SG_LOG(SG_INPUT, SG_DEBUG, "Tree texture " << bin->texture);
779         bin->range   = mat->get_tree_range();
780         bin->width   = mat->get_tree_width();
781         bin->height  = mat->get_tree_height();
782         bin->texture_varieties = mat->get_tree_varieties();
783         randomForest.push_back(bin);
784       }
785
786       std::vector<SGVec3f> randomPoints;
787       i->second.addRandomTreePoints(wood_coverage,
788                                     mat->get_object_mask(i->second),
789                                     vegetation_density,
790                                     randomPoints);
791       
792       std::vector<SGVec3f>::iterator k;
793       for (k = randomPoints.begin(); k != randomPoints.end(); ++k) {
794         bin->insert(*k);
795       }
796     }
797   }
798
799   void computeRandomObjects(SGMaterialLib* matlib)
800   {
801     SGMaterialTriangleMap::iterator i;
802
803     // generate a repeatable random seed
804     mt seed;
805     mt_init(&seed, unsigned(123));
806
807     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
808       SGMaterial *mat = matlib->find(i->first);
809       if (!mat)
810         continue;
811
812       int group_count = mat->get_object_group_count();
813
814       if (group_count > 0)
815       {
816         for (int j = 0; j < group_count; j++)
817         {
818           SGMatModelGroup *object_group =  mat->get_object_group(j);
819           int nObjects = object_group->get_object_count();
820
821           if (nObjects > 0)
822           {
823             // For each of the random models in the group, determine an appropriate
824             // number of random placements and insert them.
825             for (int k = 0; k < nObjects; k++) {
826               SGMatModel * object = object_group->get_object(k);
827
828               std::vector<std::pair<SGVec3f, float> > randomPoints;
829
830               i->second.addRandomPoints(object->get_coverage_m2(), 
831                                         object->get_spacing_m(),
832                                         mat->get_object_mask(i->second), 
833                                         randomPoints);
834                                         
835               std::vector<std::pair<SGVec3f, float> >::iterator l;
836               for (l = randomPoints.begin(); l != randomPoints.end(); ++l) {
837                 // Only add the model if it is sufficiently far from the
838                 // other models
839                 bool close = false;                
840                 
841                 for (unsigned i = 0; i < randomModels.getNumModels(); i++) {
842                   float spacing = randomModels.getMatModel(i).model->get_spacing_m() + object->get_spacing_m();
843                   spacing = spacing * spacing;
844                   
845                   if (distSqr(randomModels.getMatModel(i).position, l->first) < spacing) {
846                     close = true;                
847                     continue;
848                   }              
849                 }            
850                 
851                 if (!close) { 
852                   randomModels.insert(l->first, object, (int)object->get_randomized_range_m(&seed), l->second);
853                 }
854               }
855             }
856           }
857         }
858       }
859     }
860   }
861
862   bool insertBinObj(const SGBinObject& obj, SGMaterialLib* matlib)
863   {
864     if (!insertPtGeometry(obj, matlib))
865       return false;
866     if (!insertSurfaceGeometry(obj, matlib))
867       return false;
868     return true;
869   }
870 };
871
872 typedef std::pair<osg::Node*, int> ModelLOD;
873 struct MakeQuadLeaf {
874     osg::LOD* operator() () const { return new osg::LOD; }
875 };
876 struct AddModelLOD {
877     void operator() (osg::LOD* leaf, ModelLOD& mlod) const
878     {
879         leaf->addChild(mlod.first, 0, mlod.second);
880     }
881 };
882 struct GetModelLODCoord {
883     GetModelLODCoord() {}
884     GetModelLODCoord(const GetModelLODCoord& rhs)
885     {}
886     osg::Vec3 operator() (const ModelLOD& mlod) const
887     {
888         return mlod.first->getBound().center();
889     }
890 };
891
892 typedef QuadTreeBuilder<osg::LOD*, ModelLOD, MakeQuadLeaf, AddModelLOD,
893                         GetModelLODCoord>  RandomObjectsQuadtree;
894
895 osg::Node*
896 SGLoadBTG(const std::string& path, const simgear::SGReaderWriterOptions* options)
897 {
898   SGBinObject tile;
899   if (!tile.read_bin(path))
900     return NULL;
901
902   SGMaterialLib* matlib = 0;
903   bool use_random_objects = false;
904   bool use_random_vegetation = false;
905   bool use_random_buildings = false;
906   float vegetation_density = 1.0f;  
907   float building_density = 1.0f;
908   if (options) {
909     matlib = options->getMaterialLib();
910     SGPropertyNode* propertyNode = options->getPropertyNode().get();
911     if (propertyNode) {
912         use_random_objects
913             = propertyNode->getBoolValue("/sim/rendering/random-objects",
914                                          use_random_objects);
915         use_random_vegetation
916             = propertyNode->getBoolValue("/sim/rendering/random-vegetation",
917                                          use_random_vegetation);        
918         vegetation_density
919             = propertyNode->getFloatValue("/sim/rendering/vegetation-density",
920                                           vegetation_density);
921         use_random_buildings
922             = propertyNode->getBoolValue("/sim/rendering/random-buildings",
923                                          use_random_buildings);        
924         building_density
925             = propertyNode->getFloatValue("/sim/rendering/building-density",
926                                           building_density);
927     }
928   }
929
930   SGVec3d center = tile.get_gbs_center();
931   SGGeod geodPos = SGGeod::fromCart(center);
932   SGQuatd hlOr = SGQuatd::fromLonLat(geodPos)*SGQuatd::fromEulerDeg(0, 0, 180);
933
934   // rotate the tiles so that the bounding boxes get nearly axis aligned.
935   // this will help the collision tree's bounding boxes a bit ...
936   std::vector<SGVec3d> nodes = tile.get_wgs84_nodes();
937   for (unsigned i = 0; i < nodes.size(); ++i)
938     nodes[i] = hlOr.transform(nodes[i]);
939   tile.set_wgs84_nodes(nodes);
940
941   SGQuatf hlOrf(hlOr[0], hlOr[1], hlOr[2], hlOr[3]);
942   std::vector<SGVec3f> normals = tile.get_normals();
943   for (unsigned i = 0; i < normals.size(); ++i)
944     normals[i] = hlOrf.transform(normals[i]);
945   tile.set_normals(normals);
946
947   SGTileGeometryBin tileGeometryBin;
948   if (!tileGeometryBin.insertBinObj(tile, matlib))
949     return NULL;
950
951   SGVec3f up(0, 0, 1);
952   GroundLightManager* lightManager = GroundLightManager::instance();
953
954   osg::ref_ptr<osg::Group> lightGroup = new SGOffsetTransform(0.94);
955   osg::ref_ptr<osg::Group> randomObjects;
956   osg::ref_ptr<osg::Group> forestNode;
957   osg::ref_ptr<osg::Group> buildingNode;  
958   osg::Group* terrainGroup = new osg::Group;
959
960   osg::Node* node = tileGeometryBin.getSurfaceGeometry(matlib);
961   if (node)
962     terrainGroup->addChild(node);
963
964   if (use_random_objects && matlib) {
965     tileGeometryBin.computeRandomObjects(matlib);
966
967     if (tileGeometryBin.randomModels.getNumModels() > 0) {
968       // Generate a repeatable random seed
969       mt seed;
970       mt_init(&seed, unsigned(123));
971
972       std::vector<ModelLOD> models;
973       for (unsigned int i = 0;
974            i < tileGeometryBin.randomModels.getNumModels(); i++) {
975         SGMatModelBin::MatModel obj
976           = tileGeometryBin.randomModels.getMatModel(i);          
977
978         SGPropertyNode* root = options->getPropertyNode()->getRootNode();
979         osg::Node* node = obj.model->get_random_model(root, &seed);
980       
981         // Create a matrix to place the object in the correct
982         // location, and then apply the rotation matrix created
983         // above, with an additional random (or taken from
984         // the object mask) heading rotation if appropriate.
985         osg::Matrix transformMat;
986         transformMat = osg::Matrix::translate(toOsg(obj.position));
987         if (obj.model->get_heading_type() == SGMatModel::HEADING_RANDOM) {
988           // Rotate the object around the z axis.
989           double hdg = mt_rand(&seed) * M_PI * 2;
990           transformMat.preMult(osg::Matrix::rotate(hdg,
991                                                    osg::Vec3d(0.0, 0.0, 1.0)));
992         }
993
994         if (obj.model->get_heading_type() == SGMatModel::HEADING_MASK) {
995           // Rotate the object around the z axis.
996           double hdg =  - obj.rotation * M_PI * 2;
997           transformMat.preMult(osg::Matrix::rotate(hdg,
998                                                    osg::Vec3d(0.0, 0.0, 1.0)));
999         }
1000         
1001         osg::MatrixTransform* position =
1002           new osg::MatrixTransform(transformMat);
1003         position->addChild(node);
1004         models.push_back(ModelLOD(position, obj.lod));
1005       }
1006       RandomObjectsQuadtree quadtree((GetModelLODCoord()), (AddModelLOD()));
1007       quadtree.buildQuadTree(models.begin(), models.end());
1008       randomObjects = quadtree.getRoot();
1009       randomObjects->setName("random objects");
1010     }
1011   }
1012
1013   if (use_random_vegetation && matlib) {
1014     // Now add some random forest.
1015     tileGeometryBin.computeRandomForest(matlib, vegetation_density);
1016     
1017     if (tileGeometryBin.randomForest.size() > 0) {
1018       forestNode = createForest(tileGeometryBin.randomForest, osg::Matrix::identity(),
1019                                 options);
1020       forestNode->setName("Random trees");
1021     }
1022   } 
1023
1024   if (use_random_buildings && matlib) {
1025     tileGeometryBin.computeRandomBuildings(matlib, building_density);
1026     if (tileGeometryBin.randomBuildings.size() > 0) {
1027       buildingNode = createRandomBuildings(tileGeometryBin.randomBuildings, osg::Matrix::identity(),
1028                                   options);                                
1029       buildingNode->setName("Random buildings");
1030     }
1031   }  
1032
1033   // FIXME: ugly, has a side effect
1034   if (matlib)
1035     tileGeometryBin.computeRandomSurfaceLights(matlib);
1036
1037   if (tileGeometryBin.tileLights.getNumLights() > 0
1038       || tileGeometryBin.randomTileLights.getNumLights() > 0) {
1039     osg::Group* groundLights0 = new osg::Group;
1040     groundLights0->setStateSet(lightManager->getGroundLightStateSet());
1041     groundLights0->setNodeMask(GROUNDLIGHTS0_BIT);
1042     osg::Geode* geode = new osg::Geode;
1043     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.tileLights));
1044     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.randomTileLights, 4, -0.3f));
1045     groundLights0->addChild(geode);
1046     lightGroup->addChild(groundLights0);
1047   }
1048   
1049   if (tileGeometryBin.randomTileLights.getNumLights() > 0) {
1050     osg::Group* groundLights1 = new osg::Group;
1051     groundLights1->setStateSet(lightManager->getGroundLightStateSet());
1052     groundLights1->setNodeMask(GROUNDLIGHTS1_BIT);
1053     osg::Group* groundLights2 = new osg::Group;
1054     groundLights2->setStateSet(lightManager->getGroundLightStateSet());
1055     groundLights2->setNodeMask(GROUNDLIGHTS2_BIT);
1056     osg::Geode* geode = new osg::Geode;
1057     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.randomTileLights, 2, -0.15f));
1058     groundLights1->addChild(geode);
1059     lightGroup->addChild(groundLights1);
1060     geode = new osg::Geode;
1061     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.randomTileLights));
1062     groundLights2->addChild(geode);
1063     lightGroup->addChild(groundLights2);
1064   }
1065
1066   if (!tileGeometryBin.vasiLights.empty()) {
1067     EffectGeode* vasiGeode = new EffectGeode;
1068     Effect* vasiEffect
1069         = getLightEffect(24, osg::Vec3(1, 0.0001, 0.000001), 1, 24, true);
1070     vasiGeode->setEffect(vasiEffect);
1071     SGVec4f red(1, 0, 0, 1);
1072     SGMaterial* mat = 0;
1073     if (matlib)
1074       mat = matlib->find("RWY_RED_LIGHTS");
1075     if (mat)
1076       red = mat->get_light_color();
1077     SGVec4f white(1, 1, 1, 1);
1078     mat = 0;
1079     if (matlib)
1080       mat = matlib->find("RWY_WHITE_LIGHTS");
1081     if (mat)
1082       white = mat->get_light_color();
1083     SGDirectionalLightListBin::const_iterator i;
1084     for (i = tileGeometryBin.vasiLights.begin();
1085          i != tileGeometryBin.vasiLights.end(); ++i) {
1086       vasiGeode->addDrawable(SGLightFactory::getVasi(up, *i, red, white));
1087     }
1088     vasiGeode->setStateSet(lightManager->getRunwayLightStateSet());
1089     lightGroup->addChild(vasiGeode);
1090   }
1091   
1092   Effect* runwayEffect = 0;
1093   if (tileGeometryBin.runwayLights.getNumLights() > 0
1094       || !tileGeometryBin.rabitLights.empty()
1095       || !tileGeometryBin.reilLights.empty()
1096       || !tileGeometryBin.odalLights.empty()
1097       || tileGeometryBin.taxiLights.getNumLights() > 0)
1098       runwayEffect = getLightEffect(16, osg::Vec3(1, 0.001, 0.0002), 1, 16, true);
1099   if (tileGeometryBin.runwayLights.getNumLights() > 0
1100       || !tileGeometryBin.rabitLights.empty()
1101       || !tileGeometryBin.reilLights.empty()
1102       || !tileGeometryBin.odalLights.empty()
1103       || !tileGeometryBin.holdshortLights.empty()) {
1104     osg::Group* rwyLights = new osg::Group;
1105     rwyLights->setStateSet(lightManager->getRunwayLightStateSet());
1106     rwyLights->setNodeMask(RUNWAYLIGHTS_BIT);
1107     if (tileGeometryBin.runwayLights.getNumLights() != 0) {
1108       EffectGeode* geode = new EffectGeode;
1109       geode->setEffect(runwayEffect);
1110       geode->addDrawable(SGLightFactory::getLights(tileGeometryBin
1111                                                    .runwayLights));
1112       rwyLights->addChild(geode);
1113     }
1114     SGDirectionalLightListBin::const_iterator i;
1115     for (i = tileGeometryBin.rabitLights.begin();
1116          i != tileGeometryBin.rabitLights.end(); ++i) {
1117       rwyLights->addChild(SGLightFactory::getSequenced(*i));
1118     }
1119     for (i = tileGeometryBin.reilLights.begin();
1120          i != tileGeometryBin.reilLights.end(); ++i) {
1121       rwyLights->addChild(SGLightFactory::getSequenced(*i));
1122     }
1123     for (i = tileGeometryBin.holdshortLights.begin();
1124          i != tileGeometryBin.holdshortLights.end(); ++i) {
1125       rwyLights->addChild(SGLightFactory::getHoldShort(*i));
1126     }
1127     SGLightListBin::const_iterator j;
1128     for (j = tileGeometryBin.odalLights.begin();
1129          j != tileGeometryBin.odalLights.end(); ++j) {
1130       rwyLights->addChild(SGLightFactory::getOdal(*j));
1131     }
1132     lightGroup->addChild(rwyLights);
1133   }
1134
1135   if (tileGeometryBin.taxiLights.getNumLights() > 0) {
1136     osg::Group* taxiLights = new osg::Group;
1137     taxiLights->setStateSet(lightManager->getTaxiLightStateSet());
1138     taxiLights->setNodeMask(RUNWAYLIGHTS_BIT);
1139     EffectGeode* geode = new EffectGeode;
1140     geode->setEffect(runwayEffect);
1141     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.taxiLights));
1142     taxiLights->addChild(geode);
1143     lightGroup->addChild(taxiLights);
1144   }
1145
1146   // The toplevel transform for that tile.
1147   osg::MatrixTransform* transform = new osg::MatrixTransform;
1148   transform->setName(path);
1149   transform->setMatrix(osg::Matrix::rotate(toOsg(hlOr))*
1150                        osg::Matrix::translate(toOsg(center)));
1151   transform->addChild(terrainGroup);
1152   if (lightGroup->getNumChildren() > 0) {
1153     osg::LOD* lightLOD = new osg::LOD;
1154     lightLOD->addChild(lightGroup.get(), 0, 30000);
1155     // VASI is always on, so doesn't use light bits.
1156     lightLOD->setNodeMask(LIGHTS_BITS | MODEL_BIT); 
1157     transform->addChild(lightLOD);
1158   }
1159   
1160   if (randomObjects.valid() || forestNode.valid() || buildingNode.valid()) {
1161   
1162     // Add a LoD node, so we don't try to display anything when the tile center
1163     // is more than 20km away.
1164     osg::LOD* objectLOD = new osg::LOD;
1165     
1166     if (randomObjects.valid()) objectLOD->addChild(randomObjects.get(), 0, 20000);
1167     if (forestNode.valid())  objectLOD->addChild(forestNode.get(), 0, 20000);
1168     if (buildingNode.valid()) objectLOD->addChild(buildingNode.get(), 0, 20000);
1169     
1170     unsigned nodeMask = SG_NODEMASK_CASTSHADOW_BIT | SG_NODEMASK_RECIEVESHADOW_BIT | SG_NODEMASK_TERRAIN_BIT;
1171     objectLOD->setNodeMask(nodeMask);
1172     transform->addChild(objectLOD);
1173   }
1174   
1175   return transform;
1176 }