]> git.mxchange.org Git - simgear.git/blob - simgear/scene/tgdb/obj.cxx
1c9257099b4ad82dde89674162a12a0517d20913
[simgear.git] / simgear / scene / tgdb / obj.cxx
1 // obj.cxx -- routines to handle loading scenery and building the plib
2 //            scene graph.
3 //
4 // Written by Curtis Olson, started October 1997.
5 //
6 // Copyright (C) 1997  Curtis L. Olson  - http://www.flightgear.org/~curt
7 //
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU General Public License as
10 // published by the Free Software Foundation; either version 2 of the
11 // License, or (at your option) any later version.
12 //
13 // This program is distributed in the hope that it will be useful, but
14 // WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 // General Public License for more details.
17 //
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
21 //
22 // $Id$
23
24
25 #ifdef HAVE_CONFIG_H
26 #  include <simgear_config.h>
27 #endif
28
29 #include "obj.hxx"
30
31 #include <simgear/compiler.h>
32
33 #include <osg/Fog>
34 #include <osg/Geode>
35 #include <osg/Geometry>
36 #include <osg/Group>
37 #include <osg/LOD>
38 #include <osg/MatrixTransform>
39 #include <osg/Point>
40 #include <osg/StateSet>
41 #include <osg/Switch>
42
43 #include <boost/foreach.hpp>
44
45 #include <algorithm>
46
47 #include <simgear/debug/logstream.hxx>
48 #include <simgear/io/sg_binobj.hxx>
49 #include <simgear/math/sg_geodesy.hxx>
50 #include <simgear/math/sg_random.h>
51 #include <simgear/math/SGMisc.hxx>
52 #include <simgear/scene/material/Effect.hxx>
53 #include <simgear/scene/material/EffectGeode.hxx>
54 #include <simgear/scene/material/mat.hxx>
55 #include <simgear/scene/material/matlib.hxx>
56 #include <simgear/scene/model/SGOffsetTransform.hxx>
57 #include <simgear/scene/util/SGUpdateVisitor.hxx>
58 #include <simgear/scene/util/SGNodeMasks.hxx>
59 #include <simgear/scene/util/QuadTreeBuilder.hxx>
60
61 #include "SGTexturedTriangleBin.hxx"
62 #include "SGLightBin.hxx"
63 #include "SGModelBin.hxx"
64 #include "SGBuildingBin.hxx"
65 #include "TreeBin.hxx"
66 #include "SGDirectionalLightBin.hxx"
67 #include "GroundLightManager.hxx"
68
69
70 #include "pt_lights.hxx"
71
72 using namespace simgear;
73
74 typedef std::map<std::string,SGTexturedTriangleBin> SGMaterialTriangleMap;
75 typedef std::list<SGLightBin> SGLightListBin;
76 typedef std::list<SGDirectionalLightBin> SGDirectionalLightListBin;
77
78 struct SGTileGeometryBin {
79   SGMaterialTriangleMap materialTriangleMap;
80   SGLightBin tileLights;
81   SGLightBin randomTileLights;
82   SGTreeBinList randomForest;
83   SGDirectionalLightBin runwayLights;
84   SGDirectionalLightBin taxiLights;
85   SGDirectionalLightListBin vasiLights;
86   SGDirectionalLightListBin rabitLights;
87   SGLightListBin odalLights;
88   SGDirectionalLightListBin holdshortLights;
89   SGDirectionalLightListBin reilLights;
90   SGMatModelBin randomModels;
91   SGBuildingBinList randomBuildings;
92
93   static SGVec4f
94   getMaterialLightColor(const SGMaterial* material)
95   {
96     if (!material)
97       return SGVec4f(1, 1, 1, 0.8);
98     return material->get_light_color();
99   }
100
101   static void
102   addPointGeometry(SGLightBin& lights,
103                    const std::vector<SGVec3d>& vertices,
104                    const SGVec4f& color,
105                    const int_list& pts_v)
106   {
107     for (unsigned i = 0; i < pts_v.size(); ++i)
108       lights.insert(toVec3f(vertices[pts_v[i]]), color);
109   }
110
111   static void
112   addPointGeometry(SGDirectionalLightBin& lights,
113                    const std::vector<SGVec3d>& vertices,
114                    const std::vector<SGVec3f>& normals,
115                    const SGVec4f& color,
116                    const int_list& pts_v,
117                    const int_list& pts_n)
118   {
119     // If the normal indices match the vertex indices, use seperate
120     // normal indices. Else reuse the vertex indices for the normals.
121     if (pts_v.size() == pts_n.size()) {
122       for (unsigned i = 0; i < pts_v.size(); ++i)
123         lights.insert(toVec3f(vertices[pts_v[i]]), normals[pts_n[i]], color);
124     } else {
125       for (unsigned i = 0; i < pts_v.size(); ++i)
126         lights.insert(toVec3f(vertices[pts_v[i]]), normals[pts_v[i]], color);
127     }
128   }
129
130   bool
131   insertPtGeometry(const SGBinObject& obj, SGMaterialLib* matlib)
132   {
133     if (obj.get_pts_v().size() != obj.get_pts_n().size()) {
134       SG_LOG(SG_TERRAIN, SG_ALERT,
135              "Group list sizes for points do not match!");
136       return false;
137     }
138
139     for (unsigned grp = 0; grp < obj.get_pts_v().size(); ++grp) {
140       std::string materialName = obj.get_pt_materials()[grp];
141       SGMaterial* material = 0;
142       if (matlib)
143           material = matlib->find(materialName);
144       SGVec4f color = getMaterialLightColor(material);
145
146       if (3 <= materialName.size() && materialName.substr(0, 3) != "RWY") {
147         // Just plain lights. Not something for the runway.
148         addPointGeometry(tileLights, obj.get_wgs84_nodes(), color,
149                          obj.get_pts_v()[grp]);
150       } else if (materialName == "RWY_BLUE_TAXIWAY_LIGHTS"
151                  || materialName == "RWY_GREEN_TAXIWAY_LIGHTS") {
152         addPointGeometry(taxiLights, obj.get_wgs84_nodes(), obj.get_normals(),
153                          color, obj.get_pts_v()[grp], obj.get_pts_n()[grp]);
154       } else if (materialName == "RWY_VASI_LIGHTS") {
155         vasiLights.push_back(SGDirectionalLightBin());
156         addPointGeometry(vasiLights.back(), obj.get_wgs84_nodes(),
157                          obj.get_normals(), color, obj.get_pts_v()[grp],
158                          obj.get_pts_n()[grp]);
159       } else if (materialName == "RWY_SEQUENCED_LIGHTS") {
160         rabitLights.push_back(SGDirectionalLightBin());
161         addPointGeometry(rabitLights.back(), obj.get_wgs84_nodes(),
162                          obj.get_normals(), color, obj.get_pts_v()[grp],
163                          obj.get_pts_n()[grp]);
164       } else if (materialName == "RWY_ODALS_LIGHTS") {
165         odalLights.push_back(SGLightBin());
166         addPointGeometry(odalLights.back(), obj.get_wgs84_nodes(),
167                          color, obj.get_pts_v()[grp]);
168       } else if (materialName == "RWY_YELLOW_PULSE_LIGHTS") {
169         holdshortLights.push_back(SGDirectionalLightBin());
170         addPointGeometry(holdshortLights.back(), obj.get_wgs84_nodes(),
171                          obj.get_normals(), color, obj.get_pts_v()[grp],
172                          obj.get_pts_n()[grp]);
173       } else if (materialName == "RWY_REIL_LIGHTS") {
174         reilLights.push_back(SGDirectionalLightBin());
175         addPointGeometry(reilLights.back(), obj.get_wgs84_nodes(),
176                          obj.get_normals(), color, obj.get_pts_v()[grp],
177                          obj.get_pts_n()[grp]);
178       } else {
179         // what is left must be runway lights
180         addPointGeometry(runwayLights, obj.get_wgs84_nodes(),
181                          obj.get_normals(), color, obj.get_pts_v()[grp],
182                          obj.get_pts_n()[grp]);
183       }
184     }
185
186     return true;
187   }
188
189
190   static SGVec2f
191   getTexCoord(const std::vector<SGVec2f>& texCoords, const int_list& tc,
192               const SGVec2f& tcScale, unsigned i)
193   {
194     if (tc.empty())
195       return tcScale;
196     else if (tc.size() == 1)
197       return mult(texCoords[tc[0]], tcScale);
198     else
199       return mult(texCoords[tc[i]], tcScale);
200   }
201
202   static void
203   addTriangleGeometry(SGTexturedTriangleBin& triangles,
204                       const std::vector<SGVec3d>& vertices,
205                       const std::vector<SGVec3f>& normals,
206                       const std::vector<SGVec2f>& texCoords,
207                       const int_list& tris_v,
208                       const int_list& tris_n,
209                       const int_list& tris_tc,
210                       const SGVec2f& tcScale)
211   {
212     if (tris_v.size() != tris_n.size()) {
213       // If the normal indices do not match, they should be inmplicitly
214       // the same than the vertex indices. So just call ourselves again
215       // with the matching index vector.
216       addTriangleGeometry(triangles, vertices, normals, texCoords,
217                           tris_v, tris_v, tris_tc, tcScale);
218       return;
219     }
220
221     for (unsigned i = 2; i < tris_v.size(); i += 3) {
222       SGVertNormTex v0;
223       v0.vertex = toVec3f(vertices[tris_v[i-2]]);
224       v0.normal = normals[tris_n[i-2]];
225       v0.texCoord = getTexCoord(texCoords, tris_tc, tcScale, i-2);
226       SGVertNormTex v1;
227       v1.vertex = toVec3f(vertices[tris_v[i-1]]);
228       v1.normal = normals[tris_n[i-1]];
229       v1.texCoord = getTexCoord(texCoords, tris_tc, tcScale, i-1);
230       SGVertNormTex v2;
231       v2.vertex = toVec3f(vertices[tris_v[i]]);
232       v2.normal = normals[tris_n[i]];
233       v2.texCoord = getTexCoord(texCoords, tris_tc, tcScale, i);
234       triangles.insert(v0, v1, v2);
235     }
236   }
237
238   static void
239   addStripGeometry(SGTexturedTriangleBin& triangles,
240                    const std::vector<SGVec3d>& vertices,
241                    const std::vector<SGVec3f>& normals,
242                    const std::vector<SGVec2f>& texCoords,
243                    const int_list& strips_v,
244                    const int_list& strips_n,
245                    const int_list& strips_tc,
246                    const SGVec2f& tcScale)
247   {
248     if (strips_v.size() != strips_n.size()) {
249       // If the normal indices do not match, they should be inmplicitly
250       // the same than the vertex indices. So just call ourselves again
251       // with the matching index vector.
252       addStripGeometry(triangles, vertices, normals, texCoords,
253                        strips_v, strips_v, strips_tc, tcScale);
254       return;
255     }
256
257     for (unsigned i = 2; i < strips_v.size(); ++i) {
258       SGVertNormTex v0;
259       v0.vertex = toVec3f(vertices[strips_v[i-2]]);
260       v0.normal = normals[strips_n[i-2]];
261       v0.texCoord = getTexCoord(texCoords, strips_tc, tcScale, i-2);
262       SGVertNormTex v1;
263       v1.vertex = toVec3f(vertices[strips_v[i-1]]);
264       v1.normal = normals[strips_n[i-1]];
265       v1.texCoord = getTexCoord(texCoords, strips_tc, tcScale, i-1);
266       SGVertNormTex v2;
267       v2.vertex = toVec3f(vertices[strips_v[i]]);
268       v2.normal = normals[strips_n[i]];
269       v2.texCoord = getTexCoord(texCoords, strips_tc, tcScale, i);
270       if (i%2)
271         triangles.insert(v1, v0, v2);
272       else
273         triangles.insert(v0, v1, v2);
274     }
275   }
276   
277   static void
278   addFanGeometry(SGTexturedTriangleBin& triangles,
279                  const std::vector<SGVec3d>& vertices,
280                  const std::vector<SGVec3f>& normals,
281                  const std::vector<SGVec2f>& texCoords,
282                  const int_list& fans_v,
283                  const int_list& fans_n,
284                  const int_list& fans_tc,
285                  const SGVec2f& tcScale)
286   {
287     if (fans_v.size() != fans_n.size()) {
288       // If the normal indices do not match, they should be implicitly
289       // the same than the vertex indices. So just call ourselves again
290       // with the matching index vector.
291       addFanGeometry(triangles, vertices, normals, texCoords,
292                      fans_v, fans_v, fans_tc, tcScale);
293       return;
294     }
295
296     SGVertNormTex v0;
297     v0.vertex = toVec3f(vertices[fans_v[0]]);
298     v0.normal = normals[fans_n[0]];
299     v0.texCoord = getTexCoord(texCoords, fans_tc, tcScale, 0);
300     SGVertNormTex v1;
301     v1.vertex = toVec3f(vertices[fans_v[1]]);
302     v1.normal = normals[fans_n[1]];
303     v1.texCoord = getTexCoord(texCoords, fans_tc, tcScale, 1);
304     for (unsigned i = 2; i < fans_v.size(); ++i) {
305       SGVertNormTex v2;
306       v2.vertex = toVec3f(vertices[fans_v[i]]);
307       v2.normal = normals[fans_n[i]];
308       v2.texCoord = getTexCoord(texCoords, fans_tc, tcScale, i);
309       triangles.insert(v0, v1, v2);
310       v1 = v2;
311     }
312   }
313
314   SGVec2f getTexCoordScale(const std::string& name, SGMaterialLib* matlib)
315   {
316     if (!matlib)
317       return SGVec2f(1, 1);
318     SGMaterial* material = matlib->find(name);
319     if (!material)
320       return SGVec2f(1, 1);
321
322     return material->get_tex_coord_scale();
323   }
324
325   bool
326   insertSurfaceGeometry(const SGBinObject& obj, SGMaterialLib* matlib)
327   {
328     if (obj.get_tris_n().size() < obj.get_tris_v().size() ||
329         obj.get_tris_tc().size() < obj.get_tris_v().size()) {
330       SG_LOG(SG_TERRAIN, SG_ALERT,
331              "Group list sizes for triangles do not match!");
332       return false;
333     }
334
335     for (unsigned grp = 0; grp < obj.get_tris_v().size(); ++grp) {
336       std::string materialName = obj.get_tri_materials()[grp];
337       SGVec2f tcScale = getTexCoordScale(materialName, matlib);
338       addTriangleGeometry(materialTriangleMap[materialName],
339                           obj.get_wgs84_nodes(), obj.get_normals(),
340                           obj.get_texcoords(), obj.get_tris_v()[grp],
341                           obj.get_tris_n()[grp], obj.get_tris_tc()[grp],
342                           tcScale);
343     }
344
345     if (obj.get_strips_n().size() < obj.get_strips_v().size() ||
346         obj.get_strips_tc().size() < obj.get_strips_v().size()) {
347       SG_LOG(SG_TERRAIN, SG_ALERT,
348              "Group list sizes for strips do not match!");
349       return false;
350     }
351     for (unsigned grp = 0; grp < obj.get_strips_v().size(); ++grp) {
352       std::string materialName = obj.get_strip_materials()[grp];
353       SGVec2f tcScale = getTexCoordScale(materialName, matlib);
354       addStripGeometry(materialTriangleMap[materialName],
355                        obj.get_wgs84_nodes(), obj.get_normals(),
356                        obj.get_texcoords(), obj.get_strips_v()[grp],
357                        obj.get_strips_n()[grp], obj.get_strips_tc()[grp],
358                        tcScale);
359     }
360
361     if (obj.get_fans_n().size() < obj.get_fans_v().size() ||
362         obj.get_fans_tc().size() < obj.get_fans_v().size()) {
363       SG_LOG(SG_TERRAIN, SG_ALERT,
364              "Group list sizes for fans do not match!");
365       return false;
366     }
367     for (unsigned grp = 0; grp < obj.get_fans_v().size(); ++grp) {
368       std::string materialName = obj.get_fan_materials()[grp];
369       SGVec2f tcScale = getTexCoordScale(materialName, matlib);
370       addFanGeometry(materialTriangleMap[materialName],
371                      obj.get_wgs84_nodes(), obj.get_normals(),
372                      obj.get_texcoords(), obj.get_fans_v()[grp],
373                      obj.get_fans_n()[grp], obj.get_fans_tc()[grp],
374                      tcScale);
375     }
376     return true;
377   }
378
379   osg::Node* getSurfaceGeometry(SGMaterialLib* matlib) const
380   {
381     if (materialTriangleMap.empty())
382       return 0;
383
384     EffectGeode* eg = 0;
385     osg::Group* group = (materialTriangleMap.size() > 1 ? new osg::Group : 0);
386     //osg::Geode* geode = new osg::Geode;
387     SGMaterialTriangleMap::const_iterator i;
388     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
389       osg::Geometry* geometry = i->second.buildGeometry();
390       SGMaterial *mat = 0;
391       if (matlib)
392         mat = matlib->find(i->first);
393       eg = new EffectGeode;
394       if (mat)
395         eg->setEffect(mat->get_effect(i->second));
396       eg->addDrawable(geometry);
397       eg->runGenerators(geometry);  // Generate extra data needed by effect
398       if (group)
399         group->addChild(eg);
400     }
401     if (group)
402         return group;
403     else
404         return eg;
405   }
406
407   void computeRandomSurfaceLights(SGMaterialLib* matlib)
408   {
409     SGMaterialTriangleMap::iterator i;
410         
411     // generate a repeatable random seed
412     mt seed;
413     mt_init(&seed, unsigned(123));
414     
415     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
416       SGMaterial *mat = matlib->find(i->first);
417       if (!mat)
418         continue;
419
420       float coverage = mat->get_light_coverage();
421       if (coverage <= 0)
422         continue;
423       if (coverage < 10000.0) {
424         SG_LOG(SG_INPUT, SG_ALERT, "Light coverage is "
425                << coverage << ", pushing up to 10000");
426         coverage = 10000;
427       }
428       
429       std::vector<SGVec3f> randomPoints;
430       i->second.addRandomSurfacePoints(coverage, 3, mat->get_object_mask(i->second), randomPoints);
431       std::vector<SGVec3f>::iterator j;
432       for (j = randomPoints.begin(); j != randomPoints.end(); ++j) {
433         float zombie = mt_rand(&seed);
434         // factor = sg_random() ^ 2, range = 0 .. 1 concentrated towards 0
435         float factor = mt_rand(&seed);
436         factor *= factor;
437
438         float bright = 1;
439         SGVec4f color;
440         if ( zombie > 0.5 ) {
441           // 50% chance of yellowish
442           color = SGVec4f(0.9f, 0.9f, 0.3f, bright - factor * 0.2f);
443         } else if (zombie > 0.15f) {
444           // 35% chance of whitish
445           color = SGVec4f(0.9, 0.9f, 0.8f, bright - factor * 0.2f);
446         } else if (zombie > 0.05f) {
447           // 10% chance of orangish
448           color = SGVec4f(0.9f, 0.6f, 0.2f, bright - factor * 0.2f);
449         } else {
450           // 5% chance of redish
451           color = SGVec4f(0.9f, 0.2f, 0.2f, bright - factor * 0.2f);
452         }
453         randomTileLights.insert(*j, color);
454       }
455     }
456   }
457   
458   void computeRandomBuildings(SGMaterialLib* matlib, float building_density)
459   {
460     SGMaterialTriangleMap::iterator i;
461         
462     // generate a repeatable random seed
463     mt seed;
464     mt_init(&seed, unsigned(123));
465     
466     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
467       SGMaterial *mat = matlib->find(i->first);
468       SGTexturedTriangleBin triangleBin = i->second;
469       
470       if (!mat)
471         continue;
472
473       osg::Texture2D* object_mask = mat->get_object_mask(triangleBin);
474
475       float coverage = mat->get_building_coverage();
476       
477       // Minimum spacing needs to include the maximum footprint of a building.
478       // As the 0,0,0 point is the center of the front of the building, we need
479       // to consider the full depth, but only half the possible width.          
480       float min_spacing = mat->get_building_spacing();
481
482       if (coverage <= 0)
483         continue;        
484         
485       bool found = false;
486       SGBuildingBin* bin = NULL;
487       
488       BOOST_FOREACH(bin, randomBuildings)
489       {
490         if (bin->texture == mat->get_building_texture()) {
491             found = true;
492             break;
493         }
494       }
495       
496       if (!found) {
497         bin = new SGBuildingBin();
498         bin->texture = mat->get_building_texture();
499         bin->lightMap = mat->get_building_lightmap();
500         SG_LOG(SG_INPUT, SG_DEBUG, "Building texture " << bin->texture);
501         randomBuildings.push_back(bin);
502       }       
503       
504       std::vector<std::pair<SGVec3f, float> > randomPoints;
505       
506       unsigned num = i->second.getNumTriangles();
507       int triangle_dropped = 0;
508       int building_dropped = 0;
509       int random_dropped = 0;
510       int mask_dropped = 0;
511
512       for (unsigned i = 0; i < num; ++i) {
513         SGBuildingBin::BuildingList triangle_buildings;
514         SGTexturedTriangleBin::triangle_ref triangleRef = triangleBin.getTriangleRef(i);
515         
516         SGVec3f vorigin = triangleBin.getVertex(triangleRef[0]).vertex;
517         SGVec3f v0 = triangleBin.getVertex(triangleRef[1]).vertex - vorigin;
518         SGVec3f v1 = triangleBin.getVertex(triangleRef[2]).vertex - vorigin;
519         SGVec2f torigin = triangleBin.getVertex(triangleRef[0]).texCoord;
520         SGVec2f t0 = triangleBin.getVertex(triangleRef[1]).texCoord - torigin;
521         SGVec2f t1 = triangleBin.getVertex(triangleRef[2]).texCoord - torigin;
522         SGVec3f normal = cross(v0, v1);
523         
524         // Compute the area
525         float area = 0.5f*length(normal);
526         if (area <= SGLimitsf::min())
527           continue;
528
529         // for partial units of area, use a zombie door method to
530         // create the proper random chance of an object being created
531         // for this triangle.
532         double num = area / coverage + mt_rand(&seed);
533         if (num < 1.0f) {
534           continue;          
535         }
536                 
537         // Apply density, which is linear, while we're dealing in areas
538         num = num * building_density * building_density;
539         
540         // Cosine of the angle between the two vectors.
541         float cosine = (dot(v0, v1) / (length(v0) * length(v1)));
542
543         // Determine a grid spacing in each vector such that the correct
544         // coverage will result.
545         float stepv0 = (sqrtf(coverage) / building_density) / length(v0) / sqrtf(1 - cosine * cosine);
546         float stepv1 = (sqrtf(coverage) / building_density) / length(v1);
547         
548         stepv0 = std::min(stepv0, 1.0f);
549         stepv1 = std::min(stepv1, 1.0f);
550         
551         // Start at a random point. a will be immediately incremented below.
552         float a = -mt_rand(&seed) * stepv0;  
553         float b = mt_rand(&seed) * stepv1;
554
555         // Place an object each unit of area
556         while ( num > 1.0 ) {
557
558           // Set the next location to place a building          
559           a += stepv0;
560           
561           if ( a + b > 1.0f ) {
562             // Reached the end of the scan-line on v0. Reset and increment
563             // scan-line on v1
564             a = mt_rand(&seed) * stepv0;
565             b += stepv1;
566           }
567           
568           if (b > 1.0f) {
569             // In a degenerate case of a single point, we might be outside the 
570             // scanline.
571             b = mt_rand(&seed) * stepv1;
572           }
573           
574           SGVec3f randomPoint = vorigin + a*v0 + b*v1;
575           float rotation = mt_rand(&seed);
576           
577           if (object_mask != NULL) {
578             SGVec2f texCoord = torigin + a*t0 + b*t1;
579             osg::Image* img = object_mask->getImage();            
580             int x = (int) (img->s() * texCoord.x()) % img->s();
581             int y = (int) (img->t() * texCoord.y()) % img->t();
582             
583             // In some degenerate cases x or y can be < 1, in which case the mod operand fails
584             while (x < 0) x += img->s();
585             while (y < 0) y += img->t();
586
587             if (mt_rand(&seed) < img->getColor(x, y).b()) {  
588               // Object passes mask. Rotation is taken from the red channel
589               rotation = img->getColor(x,y).r();
590             } else {
591               // Fails mask test - try again.
592               mask_dropped++;
593               num -= 1.0;
594               continue;
595             }  
596           }
597           
598           // Now create the building, so we have an idea of its footprint
599           // and therefore appropriate spacing.
600           SGBuildingBin::BuildingType buildingtype;
601           float width;
602           float depth;
603           int floors;
604           float height;
605           bool pitched;
606                                   
607           // Determine the building type, and hence dimensions.
608           float type = mt_rand(&seed);
609           
610           if (type < mat->get_building_small_fraction()) {
611             // Small building
612             buildingtype = SGBuildingBin::SMALL;
613             width = mat->get_building_small_min_width() + mt_rand(&seed) * mt_rand(&seed) * (mat->get_building_small_max_width() - mat->get_building_small_min_width());
614             depth = mat->get_building_small_min_depth() + mt_rand(&seed) * mt_rand(&seed) * (mat->get_building_small_max_depth() - mat->get_building_small_min_depth());
615             floors = SGMisc<double>::round(mat->get_building_small_min_floors() + mt_rand(&seed) * (mat->get_building_small_max_floors() - mat->get_building_small_min_floors()));
616             height = floors * (2.8 + mt_rand(&seed));
617             
618             if (depth > width) { depth = width; }
619             
620             pitched = (mt_rand(&seed) < mat->get_building_small_pitch());
621           } else if (type < (mat->get_building_small_fraction() + mat->get_building_medium_fraction())) {
622             buildingtype = SGBuildingBin::MEDIUM;
623             width = mat->get_building_medium_min_width() + mt_rand(&seed) * mt_rand(&seed) * (mat->get_building_medium_max_width() - mat->get_building_medium_min_width());
624             depth = mat->get_building_medium_min_depth() + mt_rand(&seed) * mt_rand(&seed) * (mat->get_building_medium_max_depth() - mat->get_building_medium_min_depth());
625             floors = SGMisc<double>::round(mat->get_building_medium_min_floors() + mt_rand(&seed) * (mat->get_building_medium_max_floors() - mat->get_building_medium_min_floors()));
626             height = floors * (2.8 + mt_rand(&seed));
627             pitched = (mt_rand(&seed) < mat->get_building_medium_pitch());         
628           } else {
629             buildingtype = SGBuildingBin::LARGE;
630             width = mat->get_building_large_min_width() + mt_rand(&seed) * (mat->get_building_large_max_width() - mat->get_building_large_min_width());
631             depth = mat->get_building_large_min_depth() + mt_rand(&seed) * (mat->get_building_large_max_depth() - mat->get_building_large_min_depth());
632             floors = SGMisc<double>::round(mat->get_building_large_min_floors() + mt_rand(&seed) * (mat->get_building_large_max_floors() - mat->get_building_large_min_floors())); 
633             height = floors * (2.8 + mt_rand(&seed));
634             pitched = (mt_rand(&seed) < mat->get_building_large_pitch());                   
635           }
636           
637           // Determine an appropriate minimum spacing for the object.  Note that the
638           // origin of the building model is the center of the front face, hence we
639           // consider the full depth.  We choose _not_ to use the diagonal distance
640           // to one of the rear corners, as we assume that terrain masking will
641           // make the buildings place in some sort of grid.
642           float radius = std::max(depth, 0.5f*width);
643
644           // Check that the point is sufficiently far from
645           // the edge of the triangle by measuring the distance
646           // from the three lines that make up the triangle.        
647           SGVec3f p = randomPoint - vorigin;
648           
649           if (((length(cross(p     , p - v0)) / length(v0))      < radius) ||
650               ((length(cross(p - v0, p - v1)) / length(v1 - v0)) < radius) ||
651               ((length(cross(p - v1, p     )) / length(v1))      < radius)   )
652           {
653             triangle_dropped++;
654             num -= 1.0;
655             continue;
656           }
657
658           // Check against the generic random objects.  TODO - make this more efficient by
659           // masking ahead of time objects outside of the triangle.
660           bool too_close = false;
661           for (unsigned int i = 0; i < randomModels.getNumModels(); ++i) {
662             float min_dist = randomModels.getMatModel(i).model->get_spacing_m() + radius + min_spacing;
663             min_dist = min_dist * min_dist;
664             
665             if (distSqr(randomModels.getMatModel(i).position, randomPoint) < min_dist) {
666               too_close = true;
667               random_dropped++;
668               continue;
669             }          
670           }
671           
672           if (too_close) {
673             // Too close to a random model - drop and try again
674             num -= 1.0;
675             continue;            
676           }
677           
678           SGBuildingBin::BuildingList::iterator l;       
679           
680           // Check that the building is sufficiently far from any other building within the triangle.
681           for (l = triangle_buildings.begin(); l != triangle_buildings.end(); ++l) {
682             
683             float min_dist = l->radius + radius + min_spacing;
684             min_dist = min_dist * min_dist;
685             
686             if (distSqr(randomPoint, l->position) < min_dist) {
687               building_dropped++;
688               too_close = true;
689               continue;
690             }
691           }
692           
693           if (too_close) {
694             // Too close to another building - drop and try again
695             num -= 1.0;
696             continue;            
697           }
698           
699           // If we've passed all of the above tests we have a valid
700           // building, so create it!          
701           SGBuildingBin::Building building = 
702                     SGBuildingBin::Building(buildingtype, 
703                                             randomPoint, 
704                                             width, 
705                                             depth, 
706                                             height, 
707                                             floors,
708                                             rotation,
709                                             pitched);                                                            
710           triangle_buildings.push_back(building);
711
712           num -= 1.0;
713         }        
714         
715         // Add the buildings from this triangle to the overall list.
716         SGBuildingBin::BuildingList::iterator l;  
717
718         for (l = triangle_buildings.begin(); l != triangle_buildings.end(); ++l) {
719           bin->insert(*l);
720         }
721       }
722       
723       SG_LOG(SG_INPUT, SG_DEBUG, "Random Buildings: " << bin->getNumBuildings());
724       SG_LOG(SG_INPUT, SG_DEBUG, "  Dropped due to mask: " << mask_dropped);
725       SG_LOG(SG_INPUT, SG_DEBUG, "  Dropped due to triangle edge: " << triangle_dropped);
726       SG_LOG(SG_INPUT, SG_DEBUG, "  Dropped due to random object: " << random_dropped);
727       SG_LOG(SG_INPUT, SG_DEBUG, "  Dropped due to other building: " << building_dropped);
728     }
729   }
730   
731   void computeRandomForest(SGMaterialLib* matlib, float vegetation_density)
732   {
733     SGMaterialTriangleMap::iterator i;
734
735     // generate a repeatable random seed
736     mt seed;
737
738     mt_init(&seed, unsigned(586));
739
740     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
741       SGMaterial *mat = matlib->find(i->first);
742       if (!mat)
743         continue;
744
745       float wood_coverage = mat->get_wood_coverage();
746       if (wood_coverage <= 0)
747         continue;
748               
749       // Attributes that don't vary by tree but do vary by material
750       bool found = false;
751       TreeBin* bin = NULL;
752       
753       BOOST_FOREACH(bin, randomForest)
754       {
755         if ((bin->texture           == mat->get_tree_texture()  ) &&
756             (bin->texture_varieties == mat->get_tree_varieties()) &&
757             (bin->range             == mat->get_tree_range()    ) &&
758             (bin->width             == mat->get_tree_width()    ) &&
759             (bin->height            == mat->get_tree_height()   )   ) {
760             found = true;
761             break;
762         }
763       }
764       
765       if (!found) {
766         bin = new TreeBin();
767         bin->texture = mat->get_tree_texture();
768           SG_LOG(SG_INPUT, SG_DEBUG, "Tree texture " << bin->texture);
769         bin->range   = mat->get_tree_range();
770         bin->width   = mat->get_tree_width();
771         bin->height  = mat->get_tree_height();
772         bin->texture_varieties = mat->get_tree_varieties();
773         randomForest.push_back(bin);
774       }
775
776       std::vector<SGVec3f> randomPoints;
777       i->second.addRandomTreePoints(wood_coverage,
778                                     mat->get_object_mask(i->second),
779                                     vegetation_density,
780                                     randomPoints);
781       
782       std::vector<SGVec3f>::iterator k;
783       for (k = randomPoints.begin(); k != randomPoints.end(); ++k) {
784         bin->insert(*k);
785       }
786     }
787   }
788
789   void computeRandomObjects(SGMaterialLib* matlib)
790   {
791     SGMaterialTriangleMap::iterator i;
792
793     // generate a repeatable random seed
794     mt seed;
795     mt_init(&seed, unsigned(123));
796
797     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
798       SGMaterial *mat = matlib->find(i->first);
799       if (!mat)
800         continue;
801
802       int group_count = mat->get_object_group_count();
803
804       if (group_count > 0)
805       {
806         for (int j = 0; j < group_count; j++)
807         {
808           SGMatModelGroup *object_group =  mat->get_object_group(j);
809           int nObjects = object_group->get_object_count();
810
811           if (nObjects > 0)
812           {
813             // For each of the random models in the group, determine an appropriate
814             // number of random placements and insert them.
815             for (int k = 0; k < nObjects; k++) {
816               SGMatModel * object = object_group->get_object(k);
817
818               std::vector<std::pair<SGVec3f, float> > randomPoints;
819
820               i->second.addRandomPoints(object->get_coverage_m2(), 
821                                         object->get_spacing_m(),
822                                         mat->get_object_mask(i->second), 
823                                         randomPoints);
824                                         
825               std::vector<std::pair<SGVec3f, float> >::iterator l;
826               for (l = randomPoints.begin(); l != randomPoints.end(); ++l) {
827                 // Only add the model if it is sufficiently far from the
828                 // other models
829                 bool close = false;                
830                 
831                 for (unsigned i = 0; i < randomModels.getNumModels(); i++) {
832                   float spacing = randomModels.getMatModel(i).model->get_spacing_m() + object->get_spacing_m();
833                   spacing = spacing * spacing;
834                   
835                   if (distSqr(randomModels.getMatModel(i).position, l->first) < spacing) {
836                     close = true;                
837                     continue;
838                   }              
839                 }            
840                 
841                 if (!close) { 
842                   randomModels.insert(l->first, object, (int)object->get_randomized_range_m(&seed), l->second);
843                 }
844               }
845             }
846           }
847         }
848       }
849     }
850   }
851
852   bool insertBinObj(const SGBinObject& obj, SGMaterialLib* matlib)
853   {
854     if (!insertPtGeometry(obj, matlib))
855       return false;
856     if (!insertSurfaceGeometry(obj, matlib))
857       return false;
858     return true;
859   }
860 };
861
862 typedef std::pair<osg::Node*, int> ModelLOD;
863 struct MakeQuadLeaf {
864     osg::LOD* operator() () const { return new osg::LOD; }
865 };
866 struct AddModelLOD {
867     void operator() (osg::LOD* leaf, ModelLOD& mlod) const
868     {
869         leaf->addChild(mlod.first, 0, mlod.second);
870     }
871 };
872 struct GetModelLODCoord {
873     GetModelLODCoord() {}
874     GetModelLODCoord(const GetModelLODCoord& rhs)
875     {}
876     osg::Vec3 operator() (const ModelLOD& mlod) const
877     {
878         return mlod.first->getBound().center();
879     }
880 };
881
882 typedef QuadTreeBuilder<osg::LOD*, ModelLOD, MakeQuadLeaf, AddModelLOD,
883                         GetModelLODCoord>  RandomObjectsQuadtree;
884
885 osg::Node*
886 SGLoadBTG(const std::string& path, const simgear::SGReaderWriterOptions* options)
887 {
888   SGBinObject tile;
889   if (!tile.read_bin(path))
890     return NULL;
891
892   SGMaterialLib* matlib = 0;
893   bool use_random_objects = false;
894   bool use_random_vegetation = false;
895   bool use_random_buildings = false;
896   float vegetation_density = 1.0f;  
897   float building_density = 1.0f;
898   if (options) {
899     matlib = options->getMaterialLib();
900     SGPropertyNode* propertyNode = options->getPropertyNode().get();
901     if (propertyNode) {
902         use_random_objects
903             = propertyNode->getBoolValue("/sim/rendering/random-objects",
904                                          use_random_objects);
905         use_random_vegetation
906             = propertyNode->getBoolValue("/sim/rendering/random-vegetation",
907                                          use_random_vegetation);        
908         vegetation_density
909             = propertyNode->getFloatValue("/sim/rendering/vegetation-density",
910                                           vegetation_density);
911         use_random_buildings
912             = propertyNode->getBoolValue("/sim/rendering/random-buildings",
913                                          use_random_buildings);        
914         building_density
915             = propertyNode->getFloatValue("/sim/rendering/building-density",
916                                           building_density);
917     }
918   }
919
920   SGVec3d center = tile.get_gbs_center();
921   SGGeod geodPos = SGGeod::fromCart(center);
922   SGQuatd hlOr = SGQuatd::fromLonLat(geodPos)*SGQuatd::fromEulerDeg(0, 0, 180);
923
924   // rotate the tiles so that the bounding boxes get nearly axis aligned.
925   // this will help the collision tree's bounding boxes a bit ...
926   std::vector<SGVec3d> nodes = tile.get_wgs84_nodes();
927   for (unsigned i = 0; i < nodes.size(); ++i)
928     nodes[i] = hlOr.transform(nodes[i]);
929   tile.set_wgs84_nodes(nodes);
930
931   SGQuatf hlOrf(hlOr[0], hlOr[1], hlOr[2], hlOr[3]);
932   std::vector<SGVec3f> normals = tile.get_normals();
933   for (unsigned i = 0; i < normals.size(); ++i)
934     normals[i] = hlOrf.transform(normals[i]);
935   tile.set_normals(normals);
936
937   SGTileGeometryBin tileGeometryBin;
938   if (!tileGeometryBin.insertBinObj(tile, matlib))
939     return NULL;
940
941   SGVec3f up(0, 0, 1);
942   GroundLightManager* lightManager = GroundLightManager::instance();
943
944   osg::ref_ptr<osg::Group> lightGroup = new SGOffsetTransform(0.94);
945   osg::ref_ptr<osg::Group> randomObjects;
946   osg::ref_ptr<osg::Group> forestNode;
947   osg::ref_ptr<osg::Group> buildingNode;  
948   osg::Group* terrainGroup = new osg::Group;
949
950   osg::Node* node = tileGeometryBin.getSurfaceGeometry(matlib);
951   if (node)
952     terrainGroup->addChild(node);
953
954   if (use_random_objects && matlib) {
955     tileGeometryBin.computeRandomObjects(matlib);
956
957     if (tileGeometryBin.randomModels.getNumModels() > 0) {
958       // Generate a repeatable random seed
959       mt seed;
960       mt_init(&seed, unsigned(123));
961
962       std::vector<ModelLOD> models;
963       for (unsigned int i = 0;
964            i < tileGeometryBin.randomModels.getNumModels(); i++) {
965         SGMatModelBin::MatModel obj
966           = tileGeometryBin.randomModels.getMatModel(i);          
967
968         SGPropertyNode* root = options->getPropertyNode()->getRootNode();
969         osg::Node* node = obj.model->get_random_model(root, &seed);
970       
971         // Create a matrix to place the object in the correct
972         // location, and then apply the rotation matrix created
973         // above, with an additional random (or taken from
974         // the object mask) heading rotation if appropriate.
975         osg::Matrix transformMat;
976         transformMat = osg::Matrix::translate(toOsg(obj.position));
977         if (obj.model->get_heading_type() == SGMatModel::HEADING_RANDOM) {
978           // Rotate the object around the z axis.
979           double hdg = mt_rand(&seed) * M_PI * 2;
980           transformMat.preMult(osg::Matrix::rotate(hdg,
981                                                    osg::Vec3d(0.0, 0.0, 1.0)));
982         }
983
984         if (obj.model->get_heading_type() == SGMatModel::HEADING_MASK) {
985           // Rotate the object around the z axis.
986           double hdg =  - obj.rotation * M_PI * 2;
987           transformMat.preMult(osg::Matrix::rotate(hdg,
988                                                    osg::Vec3d(0.0, 0.0, 1.0)));
989         }
990         
991         osg::MatrixTransform* position =
992           new osg::MatrixTransform(transformMat);
993         position->addChild(node);
994         models.push_back(ModelLOD(position, obj.lod));
995       }
996       RandomObjectsQuadtree quadtree((GetModelLODCoord()), (AddModelLOD()));
997       quadtree.buildQuadTree(models.begin(), models.end());
998       randomObjects = quadtree.getRoot();
999       randomObjects->setName("random objects");
1000     }
1001   }
1002
1003   if (use_random_vegetation && matlib) {
1004     // Now add some random forest.
1005     tileGeometryBin.computeRandomForest(matlib, vegetation_density);
1006     
1007     if (tileGeometryBin.randomForest.size() > 0) {
1008       forestNode = createForest(tileGeometryBin.randomForest, osg::Matrix::identity(),
1009                                 options);
1010       forestNode->setName("Random trees");
1011     }
1012   } 
1013
1014   if (use_random_buildings && matlib) {
1015     tileGeometryBin.computeRandomBuildings(matlib, building_density);
1016     if (tileGeometryBin.randomBuildings.size() > 0) {
1017       buildingNode = createRandomBuildings(tileGeometryBin.randomBuildings, osg::Matrix::identity(),
1018                                   options);                                
1019       buildingNode->setName("Random buildings");
1020     }
1021   }  
1022
1023   // FIXME: ugly, has a side effect
1024   if (matlib)
1025     tileGeometryBin.computeRandomSurfaceLights(matlib);
1026
1027   if (tileGeometryBin.tileLights.getNumLights() > 0
1028       || tileGeometryBin.randomTileLights.getNumLights() > 0) {
1029     osg::Group* groundLights0 = new osg::Group;
1030     groundLights0->setStateSet(lightManager->getGroundLightStateSet());
1031     groundLights0->setNodeMask(GROUNDLIGHTS0_BIT);
1032     osg::Geode* geode = new osg::Geode;
1033     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.tileLights));
1034     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.randomTileLights, 4, -0.3f));
1035     groundLights0->addChild(geode);
1036     lightGroup->addChild(groundLights0);
1037   }
1038   
1039   if (tileGeometryBin.randomTileLights.getNumLights() > 0) {
1040     osg::Group* groundLights1 = new osg::Group;
1041     groundLights1->setStateSet(lightManager->getGroundLightStateSet());
1042     groundLights1->setNodeMask(GROUNDLIGHTS1_BIT);
1043     osg::Group* groundLights2 = new osg::Group;
1044     groundLights2->setStateSet(lightManager->getGroundLightStateSet());
1045     groundLights2->setNodeMask(GROUNDLIGHTS2_BIT);
1046     osg::Geode* geode = new osg::Geode;
1047     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.randomTileLights, 2, -0.15f));
1048     groundLights1->addChild(geode);
1049     lightGroup->addChild(groundLights1);
1050     geode = new osg::Geode;
1051     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.randomTileLights));
1052     groundLights2->addChild(geode);
1053     lightGroup->addChild(groundLights2);
1054   }
1055
1056   if (!tileGeometryBin.vasiLights.empty()) {
1057     EffectGeode* vasiGeode = new EffectGeode;
1058     Effect* vasiEffect
1059         = getLightEffect(24, osg::Vec3(1, 0.0001, 0.000001), 1, 24, true);
1060     vasiGeode->setEffect(vasiEffect);
1061     SGVec4f red(1, 0, 0, 1);
1062     SGMaterial* mat = 0;
1063     if (matlib)
1064       mat = matlib->find("RWY_RED_LIGHTS");
1065     if (mat)
1066       red = mat->get_light_color();
1067     SGVec4f white(1, 1, 1, 1);
1068     mat = 0;
1069     if (matlib)
1070       mat = matlib->find("RWY_WHITE_LIGHTS");
1071     if (mat)
1072       white = mat->get_light_color();
1073     SGDirectionalLightListBin::const_iterator i;
1074     for (i = tileGeometryBin.vasiLights.begin();
1075          i != tileGeometryBin.vasiLights.end(); ++i) {
1076       vasiGeode->addDrawable(SGLightFactory::getVasi(up, *i, red, white));
1077     }
1078     vasiGeode->setStateSet(lightManager->getRunwayLightStateSet());
1079     lightGroup->addChild(vasiGeode);
1080   }
1081   
1082   Effect* runwayEffect = 0;
1083   if (tileGeometryBin.runwayLights.getNumLights() > 0
1084       || !tileGeometryBin.rabitLights.empty()
1085       || !tileGeometryBin.reilLights.empty()
1086       || !tileGeometryBin.odalLights.empty()
1087       || tileGeometryBin.taxiLights.getNumLights() > 0)
1088       runwayEffect = getLightEffect(16, osg::Vec3(1, 0.001, 0.0002), 1, 16, true);
1089   if (tileGeometryBin.runwayLights.getNumLights() > 0
1090       || !tileGeometryBin.rabitLights.empty()
1091       || !tileGeometryBin.reilLights.empty()
1092       || !tileGeometryBin.odalLights.empty()
1093       || !tileGeometryBin.holdshortLights.empty()) {
1094     osg::Group* rwyLights = new osg::Group;
1095     rwyLights->setStateSet(lightManager->getRunwayLightStateSet());
1096     rwyLights->setNodeMask(RUNWAYLIGHTS_BIT);
1097     if (tileGeometryBin.runwayLights.getNumLights() != 0) {
1098       EffectGeode* geode = new EffectGeode;
1099       geode->setEffect(runwayEffect);
1100       geode->addDrawable(SGLightFactory::getLights(tileGeometryBin
1101                                                    .runwayLights));
1102       rwyLights->addChild(geode);
1103     }
1104     SGDirectionalLightListBin::const_iterator i;
1105     for (i = tileGeometryBin.rabitLights.begin();
1106          i != tileGeometryBin.rabitLights.end(); ++i) {
1107       rwyLights->addChild(SGLightFactory::getSequenced(*i));
1108     }
1109     for (i = tileGeometryBin.reilLights.begin();
1110          i != tileGeometryBin.reilLights.end(); ++i) {
1111       rwyLights->addChild(SGLightFactory::getSequenced(*i));
1112     }
1113     for (i = tileGeometryBin.holdshortLights.begin();
1114          i != tileGeometryBin.holdshortLights.end(); ++i) {
1115       rwyLights->addChild(SGLightFactory::getHoldShort(*i));
1116     }
1117     SGLightListBin::const_iterator j;
1118     for (j = tileGeometryBin.odalLights.begin();
1119          j != tileGeometryBin.odalLights.end(); ++j) {
1120       rwyLights->addChild(SGLightFactory::getOdal(*j));
1121     }
1122     lightGroup->addChild(rwyLights);
1123   }
1124
1125   if (tileGeometryBin.taxiLights.getNumLights() > 0) {
1126     osg::Group* taxiLights = new osg::Group;
1127     taxiLights->setStateSet(lightManager->getTaxiLightStateSet());
1128     taxiLights->setNodeMask(RUNWAYLIGHTS_BIT);
1129     EffectGeode* geode = new EffectGeode;
1130     geode->setEffect(runwayEffect);
1131     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.taxiLights));
1132     taxiLights->addChild(geode);
1133     lightGroup->addChild(taxiLights);
1134   }
1135
1136   // The toplevel transform for that tile.
1137   osg::MatrixTransform* transform = new osg::MatrixTransform;
1138   transform->setName(path);
1139   transform->setMatrix(osg::Matrix::rotate(toOsg(hlOr))*
1140                        osg::Matrix::translate(toOsg(center)));
1141   transform->addChild(terrainGroup);
1142   if (lightGroup->getNumChildren() > 0) {
1143     osg::LOD* lightLOD = new osg::LOD;
1144     lightLOD->addChild(lightGroup.get(), 0, 30000);
1145     // VASI is always on, so doesn't use light bits.
1146     lightLOD->setNodeMask(LIGHTS_BITS | MODEL_BIT); 
1147     transform->addChild(lightLOD);
1148   }
1149   
1150   if (randomObjects.valid() || forestNode.valid() || buildingNode.valid()) {
1151   
1152     // Add a LoD node, so we don't try to display anything when the tile center
1153     // is more than 20km away.
1154     osg::LOD* objectLOD = new osg::LOD;
1155     
1156     if (randomObjects.valid()) objectLOD->addChild(randomObjects.get(), 0, 20000);
1157     if (forestNode.valid())  objectLOD->addChild(forestNode.get(), 0, 20000);
1158     if (buildingNode.valid()) objectLOD->addChild(buildingNode.get(), 0, 20000);
1159     
1160     unsigned nodeMask = SG_NODEMASK_CASTSHADOW_BIT | SG_NODEMASK_RECIEVESHADOW_BIT | SG_NODEMASK_TERRAIN_BIT;
1161     objectLOD->setNodeMask(nodeMask);
1162     transform->addChild(objectLOD);
1163   }
1164   
1165   return transform;
1166 }