]> git.mxchange.org Git - simgear.git/blob - simgear/scene/tgdb/obj.cxx
Reduce tree and object cover on steep slopes, configurable through materials.xml
[simgear.git] / simgear / scene / tgdb / obj.cxx
1 // obj.cxx -- routines to handle loading scenery and building the plib
2 //            scene graph.
3 //
4 // Written by Curtis Olson, started October 1997.
5 //
6 // Copyright (C) 1997  Curtis L. Olson  - http://www.flightgear.org/~curt
7 //
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU General Public License as
10 // published by the Free Software Foundation; either version 2 of the
11 // License, or (at your option) any later version.
12 //
13 // This program is distributed in the hope that it will be useful, but
14 // WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 // General Public License for more details.
17 //
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
21 //
22 // $Id$
23
24
25 #ifdef HAVE_CONFIG_H
26 #  include <simgear_config.h>
27 #endif
28
29 #include "obj.hxx"
30
31 #include <simgear/compiler.h>
32
33 #include <osg/Fog>
34 #include <osg/Geode>
35 #include <osg/Geometry>
36 #include <osg/Group>
37 #include <osg/LOD>
38 #include <osg/MatrixTransform>
39 #include <osg/Point>
40 #include <osg/StateSet>
41 #include <osg/Switch>
42
43 #include <boost/foreach.hpp>
44
45 #include <algorithm>
46
47 #include <simgear/debug/logstream.hxx>
48 #include <simgear/io/sg_binobj.hxx>
49 #include <simgear/math/sg_geodesy.hxx>
50 #include <simgear/math/sg_random.h>
51 #include <simgear/math/SGMisc.hxx>
52 #include <simgear/scene/material/Effect.hxx>
53 #include <simgear/scene/material/EffectGeode.hxx>
54 #include <simgear/scene/material/mat.hxx>
55 #include <simgear/scene/material/matmodel.hxx>
56 #include <simgear/scene/material/matlib.hxx>
57 #include <simgear/scene/model/SGOffsetTransform.hxx>
58 #include <simgear/scene/util/SGUpdateVisitor.hxx>
59 #include <simgear/scene/util/SGNodeMasks.hxx>
60 #include <simgear/scene/util/QuadTreeBuilder.hxx>
61 #include <simgear/scene/util/SGReaderWriterOptions.hxx>
62
63 #include "SGTexturedTriangleBin.hxx"
64 #include "SGLightBin.hxx"
65 #include "SGModelBin.hxx"
66 #include "SGBuildingBin.hxx"
67 #include "TreeBin.hxx"
68 #include "SGDirectionalLightBin.hxx"
69 #include "GroundLightManager.hxx"
70
71
72 #include "pt_lights.hxx"
73
74 using namespace simgear;
75
76 typedef std::map<std::string,SGTexturedTriangleBin> SGMaterialTriangleMap;
77 typedef std::list<SGLightBin> SGLightListBin;
78 typedef std::list<SGDirectionalLightBin> SGDirectionalLightListBin;
79
80 struct SGTileGeometryBin {
81   SGMaterialTriangleMap materialTriangleMap;
82   SGLightBin tileLights;
83   SGLightBin randomTileLights;
84   SGTreeBinList randomForest;
85   SGDirectionalLightBin runwayLights;
86   SGDirectionalLightBin taxiLights;
87   SGDirectionalLightListBin vasiLights;
88   SGDirectionalLightListBin rabitLights;
89   SGLightListBin odalLights;
90   SGDirectionalLightListBin holdshortLights;
91   SGDirectionalLightListBin reilLights;
92   SGMatModelBin randomModels;
93   SGBuildingBinList randomBuildings;
94
95   static SGVec4f
96   getMaterialLightColor(const SGMaterial* material)
97   {
98     if (!material)
99       return SGVec4f(1, 1, 1, 0.8);
100     return material->get_light_color();
101   }
102
103   static void
104   addPointGeometry(SGLightBin& lights,
105                    const std::vector<SGVec3d>& vertices,
106                    const SGVec4f& color,
107                    const int_list& pts_v)
108   {
109     for (unsigned i = 0; i < pts_v.size(); ++i)
110       lights.insert(toVec3f(vertices[pts_v[i]]), color);
111   }
112
113   static void
114   addPointGeometry(SGDirectionalLightBin& lights,
115                    const std::vector<SGVec3d>& vertices,
116                    const std::vector<SGVec3f>& normals,
117                    const SGVec4f& color,
118                    const int_list& pts_v,
119                    const int_list& pts_n)
120   {
121     // If the normal indices match the vertex indices, use seperate
122     // normal indices. Else reuse the vertex indices for the normals.
123     if (pts_v.size() == pts_n.size()) {
124       for (unsigned i = 0; i < pts_v.size(); ++i)
125         lights.insert(toVec3f(vertices[pts_v[i]]), normals[pts_n[i]], color);
126     } else {
127       for (unsigned i = 0; i < pts_v.size(); ++i)
128         lights.insert(toVec3f(vertices[pts_v[i]]), normals[pts_v[i]], color);
129     }
130   }
131
132   bool
133   insertPtGeometry(const SGBinObject& obj, SGMaterialLib* matlib)
134   {
135     if (obj.get_pts_v().size() != obj.get_pts_n().size()) {
136       SG_LOG(SG_TERRAIN, SG_ALERT,
137              "Group list sizes for points do not match!");
138       return false;
139     }
140
141     for (unsigned grp = 0; grp < obj.get_pts_v().size(); ++grp) {
142       std::string materialName = obj.get_pt_materials()[grp];
143       SGMaterial* material = 0;
144       if (matlib)
145           material = matlib->find(materialName);
146       SGVec4f color = getMaterialLightColor(material);
147
148       if (3 <= materialName.size() && materialName.substr(0, 3) != "RWY") {
149         // Just plain lights. Not something for the runway.
150         addPointGeometry(tileLights, obj.get_wgs84_nodes(), color,
151                          obj.get_pts_v()[grp]);
152       } else if (materialName == "RWY_BLUE_TAXIWAY_LIGHTS"
153                  || materialName == "RWY_GREEN_TAXIWAY_LIGHTS") {
154         addPointGeometry(taxiLights, obj.get_wgs84_nodes(), obj.get_normals(),
155                          color, obj.get_pts_v()[grp], obj.get_pts_n()[grp]);
156       } else if (materialName == "RWY_VASI_LIGHTS") {
157         vasiLights.push_back(SGDirectionalLightBin());
158         addPointGeometry(vasiLights.back(), obj.get_wgs84_nodes(),
159                          obj.get_normals(), color, obj.get_pts_v()[grp],
160                          obj.get_pts_n()[grp]);
161       } else if (materialName == "RWY_SEQUENCED_LIGHTS") {
162         rabitLights.push_back(SGDirectionalLightBin());
163         addPointGeometry(rabitLights.back(), obj.get_wgs84_nodes(),
164                          obj.get_normals(), color, obj.get_pts_v()[grp],
165                          obj.get_pts_n()[grp]);
166       } else if (materialName == "RWY_ODALS_LIGHTS") {
167         odalLights.push_back(SGLightBin());
168         addPointGeometry(odalLights.back(), obj.get_wgs84_nodes(),
169                          color, obj.get_pts_v()[grp]);
170       } else if (materialName == "RWY_YELLOW_PULSE_LIGHTS") {
171         holdshortLights.push_back(SGDirectionalLightBin());
172         addPointGeometry(holdshortLights.back(), obj.get_wgs84_nodes(),
173                          obj.get_normals(), color, obj.get_pts_v()[grp],
174                          obj.get_pts_n()[grp]);
175       } else if (materialName == "RWY_REIL_LIGHTS") {
176         reilLights.push_back(SGDirectionalLightBin());
177         addPointGeometry(reilLights.back(), obj.get_wgs84_nodes(),
178                          obj.get_normals(), color, obj.get_pts_v()[grp],
179                          obj.get_pts_n()[grp]);
180       } else {
181         // what is left must be runway lights
182         addPointGeometry(runwayLights, obj.get_wgs84_nodes(),
183                          obj.get_normals(), color, obj.get_pts_v()[grp],
184                          obj.get_pts_n()[grp]);
185       }
186     }
187
188     return true;
189   }
190
191
192   static SGVec2f
193   getTexCoord(const std::vector<SGVec2f>& texCoords, const int_list& tc,
194               const SGVec2f& tcScale, unsigned i)
195   {
196     if (tc.empty())
197       return tcScale;
198     else if (tc.size() == 1)
199       return mult(texCoords[tc[0]], tcScale);
200     else
201       return mult(texCoords[tc[i]], tcScale);
202   }
203
204   static void
205   addTriangleGeometry(SGTexturedTriangleBin& triangles,
206                       const std::vector<SGVec3d>& vertices,
207                       const std::vector<SGVec3f>& normals,
208                       const std::vector<SGVec2f>& texCoords,
209                       const int_list& tris_v,
210                       const int_list& tris_n,
211                       const int_list& tris_tc,
212                       const SGVec2f& tcScale)
213   {
214     if (tris_v.size() != tris_n.size()) {
215       // If the normal indices do not match, they should be inmplicitly
216       // the same than the vertex indices. So just call ourselves again
217       // with the matching index vector.
218       addTriangleGeometry(triangles, vertices, normals, texCoords,
219                           tris_v, tris_v, tris_tc, tcScale);
220       return;
221     }
222
223     for (unsigned i = 2; i < tris_v.size(); i += 3) {
224       SGVertNormTex v0;
225       v0.vertex = toVec3f(vertices[tris_v[i-2]]);
226       v0.normal = normals[tris_n[i-2]];
227       v0.texCoord = getTexCoord(texCoords, tris_tc, tcScale, i-2);
228       SGVertNormTex v1;
229       v1.vertex = toVec3f(vertices[tris_v[i-1]]);
230       v1.normal = normals[tris_n[i-1]];
231       v1.texCoord = getTexCoord(texCoords, tris_tc, tcScale, i-1);
232       SGVertNormTex v2;
233       v2.vertex = toVec3f(vertices[tris_v[i]]);
234       v2.normal = normals[tris_n[i]];
235       v2.texCoord = getTexCoord(texCoords, tris_tc, tcScale, i);
236       triangles.insert(v0, v1, v2);
237     }
238   }
239
240   static void
241   addStripGeometry(SGTexturedTriangleBin& triangles,
242                    const std::vector<SGVec3d>& vertices,
243                    const std::vector<SGVec3f>& normals,
244                    const std::vector<SGVec2f>& texCoords,
245                    const int_list& strips_v,
246                    const int_list& strips_n,
247                    const int_list& strips_tc,
248                    const SGVec2f& tcScale)
249   {
250     if (strips_v.size() != strips_n.size()) {
251       // If the normal indices do not match, they should be inmplicitly
252       // the same than the vertex indices. So just call ourselves again
253       // with the matching index vector.
254       addStripGeometry(triangles, vertices, normals, texCoords,
255                        strips_v, strips_v, strips_tc, tcScale);
256       return;
257     }
258
259     for (unsigned i = 2; i < strips_v.size(); ++i) {
260       SGVertNormTex v0;
261       v0.vertex = toVec3f(vertices[strips_v[i-2]]);
262       v0.normal = normals[strips_n[i-2]];
263       v0.texCoord = getTexCoord(texCoords, strips_tc, tcScale, i-2);
264       SGVertNormTex v1;
265       v1.vertex = toVec3f(vertices[strips_v[i-1]]);
266       v1.normal = normals[strips_n[i-1]];
267       v1.texCoord = getTexCoord(texCoords, strips_tc, tcScale, i-1);
268       SGVertNormTex v2;
269       v2.vertex = toVec3f(vertices[strips_v[i]]);
270       v2.normal = normals[strips_n[i]];
271       v2.texCoord = getTexCoord(texCoords, strips_tc, tcScale, i);
272       if (i%2)
273         triangles.insert(v1, v0, v2);
274       else
275         triangles.insert(v0, v1, v2);
276     }
277   }
278   
279   static void
280   addFanGeometry(SGTexturedTriangleBin& triangles,
281                  const std::vector<SGVec3d>& vertices,
282                  const std::vector<SGVec3f>& normals,
283                  const std::vector<SGVec2f>& texCoords,
284                  const int_list& fans_v,
285                  const int_list& fans_n,
286                  const int_list& fans_tc,
287                  const SGVec2f& tcScale)
288   {
289     if (fans_v.size() != fans_n.size()) {
290       // If the normal indices do not match, they should be implicitly
291       // the same than the vertex indices. So just call ourselves again
292       // with the matching index vector.
293       addFanGeometry(triangles, vertices, normals, texCoords,
294                      fans_v, fans_v, fans_tc, tcScale);
295       return;
296     }
297
298     SGVertNormTex v0;
299     v0.vertex = toVec3f(vertices[fans_v[0]]);
300     v0.normal = normals[fans_n[0]];
301     v0.texCoord = getTexCoord(texCoords, fans_tc, tcScale, 0);
302     SGVertNormTex v1;
303     v1.vertex = toVec3f(vertices[fans_v[1]]);
304     v1.normal = normals[fans_n[1]];
305     v1.texCoord = getTexCoord(texCoords, fans_tc, tcScale, 1);
306     for (unsigned i = 2; i < fans_v.size(); ++i) {
307       SGVertNormTex v2;
308       v2.vertex = toVec3f(vertices[fans_v[i]]);
309       v2.normal = normals[fans_n[i]];
310       v2.texCoord = getTexCoord(texCoords, fans_tc, tcScale, i);
311       triangles.insert(v0, v1, v2);
312       v1 = v2;
313     }
314   }
315
316   SGVec2f getTexCoordScale(const std::string& name, SGMaterialLib* matlib)
317   {
318     if (!matlib)
319       return SGVec2f(1, 1);
320     SGMaterial* material = matlib->find(name);
321     if (!material)
322       return SGVec2f(1, 1);
323
324     return material->get_tex_coord_scale();
325   }
326
327   bool
328   insertSurfaceGeometry(const SGBinObject& obj, SGMaterialLib* matlib)
329   {
330     if (obj.get_tris_n().size() < obj.get_tris_v().size() ||
331         obj.get_tris_tc().size() < obj.get_tris_v().size()) {
332       SG_LOG(SG_TERRAIN, SG_ALERT,
333              "Group list sizes for triangles do not match!");
334       return false;
335     }
336
337     for (unsigned grp = 0; grp < obj.get_tris_v().size(); ++grp) {
338       std::string materialName = obj.get_tri_materials()[grp];
339       SGVec2f tcScale = getTexCoordScale(materialName, matlib);
340       addTriangleGeometry(materialTriangleMap[materialName],
341                           obj.get_wgs84_nodes(), obj.get_normals(),
342                           obj.get_texcoords(), obj.get_tris_v()[grp],
343                           obj.get_tris_n()[grp], obj.get_tris_tc()[grp],
344                           tcScale);
345     }
346
347     if (obj.get_strips_n().size() < obj.get_strips_v().size() ||
348         obj.get_strips_tc().size() < obj.get_strips_v().size()) {
349       SG_LOG(SG_TERRAIN, SG_ALERT,
350              "Group list sizes for strips do not match!");
351       return false;
352     }
353     for (unsigned grp = 0; grp < obj.get_strips_v().size(); ++grp) {
354       std::string materialName = obj.get_strip_materials()[grp];
355       SGVec2f tcScale = getTexCoordScale(materialName, matlib);
356       addStripGeometry(materialTriangleMap[materialName],
357                        obj.get_wgs84_nodes(), obj.get_normals(),
358                        obj.get_texcoords(), obj.get_strips_v()[grp],
359                        obj.get_strips_n()[grp], obj.get_strips_tc()[grp],
360                        tcScale);
361     }
362
363     if (obj.get_fans_n().size() < obj.get_fans_v().size() ||
364         obj.get_fans_tc().size() < obj.get_fans_v().size()) {
365       SG_LOG(SG_TERRAIN, SG_ALERT,
366              "Group list sizes for fans do not match!");
367       return false;
368     }
369     for (unsigned grp = 0; grp < obj.get_fans_v().size(); ++grp) {
370       std::string materialName = obj.get_fan_materials()[grp];
371       SGVec2f tcScale = getTexCoordScale(materialName, matlib);
372       addFanGeometry(materialTriangleMap[materialName],
373                      obj.get_wgs84_nodes(), obj.get_normals(),
374                      obj.get_texcoords(), obj.get_fans_v()[grp],
375                      obj.get_fans_n()[grp], obj.get_fans_tc()[grp],
376                      tcScale);
377     }
378     return true;
379   }
380
381   osg::Node* getSurfaceGeometry(SGMaterialLib* matlib) const
382   {
383     if (materialTriangleMap.empty())
384       return 0;
385
386     EffectGeode* eg = 0;
387     osg::Group* group = (materialTriangleMap.size() > 1 ? new osg::Group : 0);
388     //osg::Geode* geode = new osg::Geode;
389     SGMaterialTriangleMap::const_iterator i;
390     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
391       osg::Geometry* geometry = i->second.buildGeometry();
392       SGMaterial *mat = 0;
393       if (matlib)
394         mat = matlib->find(i->first);
395       eg = new EffectGeode;
396       if (mat)
397         eg->setEffect(mat->get_effect(i->second));
398       eg->addDrawable(geometry);
399       eg->runGenerators(geometry);  // Generate extra data needed by effect
400       if (group)
401         group->addChild(eg);
402     }
403     if (group)
404         return group;
405     else
406         return eg;
407   }
408
409   void computeRandomSurfaceLights(SGMaterialLib* matlib)
410   {
411     SGMaterialTriangleMap::iterator i;
412         
413     // generate a repeatable random seed
414     mt seed;
415     mt_init(&seed, unsigned(123));
416     
417     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
418       SGMaterial *mat = matlib->find(i->first);
419       if (!mat)
420         continue;
421
422       float coverage = mat->get_light_coverage();
423       if (coverage <= 0)
424         continue;
425       if (coverage < 10000.0) {
426         SG_LOG(SG_INPUT, SG_ALERT, "Light coverage is "
427                << coverage << ", pushing up to 10000");
428         coverage = 10000;
429       }
430       
431       std::vector<SGVec3f> randomPoints;
432       i->second.addRandomSurfacePoints(coverage, 3, mat->get_object_mask(i->second), randomPoints);
433       std::vector<SGVec3f>::iterator j;
434       for (j = randomPoints.begin(); j != randomPoints.end(); ++j) {
435         float zombie = mt_rand(&seed);
436         // factor = sg_random() ^ 2, range = 0 .. 1 concentrated towards 0
437         float factor = mt_rand(&seed);
438         factor *= factor;
439
440         float bright = 1;
441         SGVec4f color;
442         if ( zombie > 0.5 ) {
443           // 50% chance of yellowish
444           color = SGVec4f(0.9f, 0.9f, 0.3f, bright - factor * 0.2f);
445         } else if (zombie > 0.15f) {
446           // 35% chance of whitish
447           color = SGVec4f(0.9, 0.9f, 0.8f, bright - factor * 0.2f);
448         } else if (zombie > 0.05f) {
449           // 10% chance of orangish
450           color = SGVec4f(0.9f, 0.6f, 0.2f, bright - factor * 0.2f);
451         } else {
452           // 5% chance of redish
453           color = SGVec4f(0.9f, 0.2f, 0.2f, bright - factor * 0.2f);
454         }
455         randomTileLights.insert(*j, color);
456       }
457     }
458   }
459   
460   void computeRandomObjectsAndBuildings(
461     SGMaterialLib* matlib, 
462     float building_density, 
463     bool use_random_objects, 
464     bool use_random_buildings)
465   {
466     SGMaterialTriangleMap::iterator i;
467         
468     // generate a repeatable random seed
469     mt seed;
470     mt_init(&seed, unsigned(123));
471     
472     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
473       SGMaterial *mat = matlib->find(i->first);
474       SGTexturedTriangleBin triangleBin = i->second;
475       
476       if (!mat)
477         continue;
478
479       osg::Texture2D* object_mask  = mat->get_object_mask(triangleBin);
480       int   group_count            = mat->get_object_group_count();
481       float building_coverage      = mat->get_building_coverage();      
482       float cos_zero_density_angle = mat->get_cos_object_zero_density_slope_angle();
483       float cos_max_density_angle  = mat->get_cos_object_max_density_slope_angle();
484       
485       bool found = false;
486       SGBuildingBin* bin = NULL;
487       
488       if (building_coverage > 0) {      
489         BOOST_FOREACH(bin, randomBuildings)
490         {
491           if (bin->getMaterialName() == mat->get_names()[0]) {
492               found = true;
493               break;
494           }
495         }
496         
497         if (!found) {
498           bin = new SGBuildingBin(mat);
499           randomBuildings.push_back(bin);
500         }       
501       }            
502       
503       unsigned num = i->second.getNumTriangles();
504       int random_dropped = 0;
505       int mask_dropped = 0;
506       int building_dropped = 0;
507       int triangle_dropped = 0;
508
509       for (unsigned i = 0; i < num; ++i) {
510         SGTexturedTriangleBin::triangle_ref triangleRef = triangleBin.getTriangleRef(i);
511         
512         SGVec3f vorigin = triangleBin.getVertex(triangleRef[0]).vertex;
513         SGVec3f v0 = triangleBin.getVertex(triangleRef[1]).vertex - vorigin;
514         SGVec3f v1 = triangleBin.getVertex(triangleRef[2]).vertex - vorigin;
515         SGVec2f torigin = triangleBin.getVertex(triangleRef[0]).texCoord;
516         SGVec2f t0 = triangleBin.getVertex(triangleRef[1]).texCoord - torigin;
517         SGVec2f t1 = triangleBin.getVertex(triangleRef[2]).texCoord - torigin;
518         SGVec3f normal = cross(v0, v1);
519         
520         // Ensure the slope isn't too steep by checking the
521         // cos of the angle between the slope normal and the
522         // vertical (conveniently the z-component of the normalized
523         // normal) and values passed in.                   
524         float cos = normalize(normal).z();
525         float slope_density = 1.0;
526         if (cos < cos_zero_density_angle) continue; // Too steep for any objects
527         if (cos < cos_max_density_angle) {
528           slope_density = 
529             (cos - cos_zero_density_angle) / 
530             (cos_max_density_angle - cos_zero_density_angle);
531         }
532                 
533         // Containers to hold the random buildings and objects generated
534         // for this triangle for collision detection purposes.
535         std::vector< std::pair< SGVec3f, float> > triangleObjectsList;
536         std::vector< std::pair< SGVec3f, float> > triangleBuildingList;
537         
538         // Compute the area
539         float area = 0.5f*length(normal);
540         if (area <= SGLimitsf::min())
541           continue;
542
543         // Generate any random objects          
544         if (use_random_objects && (group_count > 0))
545         {
546           for (int j = 0; j < group_count; j++)
547           {
548             SGMatModelGroup *object_group =  mat->get_object_group(j);
549             int nObjects = object_group->get_object_count();
550             
551             if (nObjects == 0) continue;
552               
553             // For each of the random models in the group, determine an appropriate
554             // number of random placements and insert them.
555             for (int k = 0; k < nObjects; k++) {
556               SGMatModel * object = object_group->get_object(k);
557               
558               // Determine the number of objecst to place, taking into account
559               // the slope density factor.
560               double n = slope_density * area / object->get_coverage_m2();
561               
562               // Use the zombie door method to determine fractional object placement.
563               n = n + mt_rand(&seed);
564
565               // place an object each unit of area
566               while ( n > 1.0 ) {
567                 float a = mt_rand(&seed);
568                 float b = mt_rand(&seed);
569                 if ( a + b > 1 ) {
570                   a = 1 - a;
571                   b = 1 - b;
572                 }
573
574                 SGVec3f randomPoint = vorigin + a*v0 + b*v1;
575                 float rotation = static_cast<float>(mt_rand(&seed));
576                 
577                 // Check that the point is sufficiently far from
578                 // the edge of the triangle by measuring the distance
579                 // from the three lines that make up the triangle.                          
580                 float spacing = object->get_spacing_m();
581                 
582                 SGVec3f p = randomPoint - vorigin;          
583                 float edges[] = { length(cross(p     , p - v0)) / length(v0),
584                                   length(cross(p - v0, p - v1)) / length(v1 - v0),
585                                   length(cross(p - v1, p     )) / length(v1)      };
586                 float edge_dist = *std::min_element(edges, edges + 3);   
587                 
588                 if (edge_dist < spacing) { 
589                   n -= 1.0;
590                   continue; 
591                 }                
592                 
593                 if (object_mask != NULL) {
594                   SGVec2f texCoord = torigin + a*t0 + b*t1;
595                   
596                   // Check this random point against the object mask
597                   // blue (for buildings) channel. 
598                   osg::Image* img = object_mask->getImage();            
599                   unsigned int x = (int) (img->s() * texCoord.x()) % img->s();
600                   unsigned int y = (int) (img->t() * texCoord.y()) % img->t();
601                   
602                   if (mt_rand(&seed) > img->getColor(x, y).b()) { 
603                     // Failed object mask check
604                     n -= 1.0;
605                     continue;                    
606                   }
607                   
608                   rotation = img->getColor(x,y).r();
609                 }
610                 
611                 bool close = false;
612
613                 // Check it isn't too close to any other random objects in the triangle
614                 std::vector<std::pair<SGVec3f, float> >::iterator l;
615                 for (l = triangleObjectsList.begin(); l != triangleObjectsList.end(); ++l) {
616                   float min_dist2 = (l->second + object->get_spacing_m()) * 
617                                     (l->second + object->get_spacing_m());
618                   
619                   if (distSqr(l->first, randomPoint) > min_dist2) {
620                     close = true;
621                     continue;
622                   }
623                 }
624                 
625                 if (!close) {
626                     triangleObjectsList.push_back(std::make_pair(randomPoint, object->get_spacing_m()));
627                     randomModels.insert(randomPoint, 
628                                         object, 
629                                         (int)object->get_randomized_range_m(&seed), 
630                                         rotation);
631                 }
632                 
633                 n -= 1.0;
634               }
635             }
636           }
637         }        
638         
639         // Random objects now generated.  Now generate the random buildings (if any);
640         if (use_random_buildings && (building_coverage > 0) && (building_density > 0)) {
641           
642           // Calculate the number of buildings, taking into account building density (which is linear)
643           // and the slope density factor.  
644           double num = building_density * building_density * slope_density * area / building_coverage;
645           
646           // For partial units of area, use a zombie door method to
647           // create the proper random chance of an object being created
648           // for this triangle.
649           num = num + mt_rand(&seed);
650
651           if (num < 1.0f) {
652             continue;          
653           }
654           
655           // Cosine of the angle between the two vectors.
656           float cosine = (dot(v0, v1) / (length(v0) * length(v1)));
657
658           // Determine a grid spacing in each vector such that the correct
659           // coverage will result.
660           float stepv0 = (sqrtf(building_coverage) / building_density) / length(v0) / sqrtf(1 - cosine * cosine);
661           float stepv1 = (sqrtf(building_coverage) / building_density) / length(v1);
662           
663           stepv0 = std::min(stepv0, 1.0f);
664           stepv1 = std::min(stepv1, 1.0f);
665           
666           // Start at a random point. a will be immediately incremented below.
667           float a = -mt_rand(&seed) * stepv0;  
668           float b = mt_rand(&seed) * stepv1;
669
670           // Place an object each unit of area
671           while (num > 1.0) {
672
673             // Set the next location to place a building          
674             a += stepv0;
675             
676             if ((a + b) > 1.0f) {
677               // Reached the end of the scan-line on v0. Reset and increment
678               // scan-line on v1
679               a = mt_rand(&seed) * stepv0;
680               b += stepv1;
681             }
682             
683             if (b > 1.0f) {
684               // In a degenerate case of a single point, we might be outside the 
685               // scanline.  Note that we need to still ensure that a+b < 1.
686               b = mt_rand(&seed) * stepv1 * (1.0f - a);
687             }
688             
689             if ((a + b) > 1.0f ) {
690               // Truly degenerate case - simply choose a random point guaranteed
691               // to fulfil the constraing of a+b < 1.
692               a = mt_rand(&seed);
693               b = mt_rand(&seed) * (1.0f - a);
694             }
695             
696             SGVec3f randomPoint = vorigin + a*v0 + b*v1;
697             float rotation = mt_rand(&seed);
698             
699             if (object_mask != NULL) {
700               SGVec2f texCoord = torigin + a*t0 + b*t1;
701               osg::Image* img = object_mask->getImage();            
702               int x = (int) (img->s() * texCoord.x()) % img->s();
703               int y = (int) (img->t() * texCoord.y()) % img->t();
704               
705               // In some degenerate cases x or y can be < 1, in which case the mod operand fails
706               while (x < 0) x += img->s();
707               while (y < 0) y += img->t();
708
709               if (mt_rand(&seed) < img->getColor(x, y).b()) {  
710                 // Object passes mask. Rotation is taken from the red channel
711                 rotation = img->getColor(x,y).r();
712               } else {
713                 // Fails mask test - try again.
714                 mask_dropped++;
715                 num -= 1.0;
716                 continue;
717               }  
718             }
719
720             // Check building isn't too close to the triangle edge.
721             float type_roll = mt_rand(&seed);
722             SGBuildingBin::BuildingType buildingtype = bin->getBuildingType(type_roll);
723             float radius = bin->getBuildingMaxRadius(buildingtype);
724                       
725             // Determine the actual center of the building, by shifting from the 
726             // center of the front face to the true center.
727             osg::Matrix rotationMat = osg::Matrix::rotate(- rotation * M_PI * 2,
728                                                  osg::Vec3f(0.0, 0.0, 1.0));
729             SGVec3f buildingCenter = randomPoint + toSG(osg::Vec3f(-0.5 * bin->getBuildingMaxDepth(buildingtype), 0.0, 0.0) * rotationMat);
730
731             SGVec3f p = buildingCenter - vorigin;          
732             float edges[] = { length(cross(p     , p - v0)) / length(v0),
733                               length(cross(p - v0, p - v1)) / length(v1 - v0),
734                               length(cross(p - v1, p     )) / length(v1)      };
735             float edge_dist = *std::min_element(edges, edges + 3);   
736             
737             if (edge_dist < radius) { 
738               num -= 1.0;
739               triangle_dropped++;
740               continue; 
741             }
742                       
743             // Check building isn't too close to random objects and other buildings.          
744             bool close = false;
745             std::vector<std::pair<SGVec3f, float> >::iterator iter;
746             
747             for (iter = triangleBuildingList.begin(); iter != triangleBuildingList.end(); ++iter) {
748               float min_dist = iter->second + radius;
749               if (distSqr(iter->first, buildingCenter) < min_dist * min_dist) {
750                 close = true;
751                 continue;
752               }            
753             }
754             
755             if (close) {
756               num -= 1.0;
757               building_dropped++;
758               continue;            
759             }
760             
761             for (iter = triangleObjectsList.begin(); iter != triangleObjectsList.end(); ++iter) {
762               float min_dist = iter->second + radius;
763               if (distSqr(iter->first, buildingCenter) < min_dist * min_dist) {
764                 close = true;
765                 continue;
766               }            
767             }
768             
769             if (close) {
770               num -= 1.0;
771               random_dropped++;
772               continue;            
773             }          
774
775             std::pair<SGVec3f, float> pt = std::make_pair(buildingCenter, radius);              
776             triangleBuildingList.push_back(pt);
777             bin->insert(randomPoint, rotation, buildingtype);
778             num -= 1.0;
779           }
780         }
781         
782         triangleObjectsList.clear();
783         triangleBuildingList.clear();        
784       }
785       
786       SG_LOG(SG_TERRAIN, SG_DEBUG, "Random Buildings: " << bin->getNumBuildings());
787       SG_LOG(SG_TERRAIN, SG_DEBUG, "  Dropped due to mask: " << mask_dropped);
788       SG_LOG(SG_TERRAIN, SG_DEBUG, "  Dropped due to random object: " << random_dropped);
789       SG_LOG(SG_TERRAIN, SG_DEBUG, "  Dropped due to other buildings: " << building_dropped);
790     }
791   }
792   
793   void computeRandomForest(SGMaterialLib* matlib, float vegetation_density)
794   {
795     SGMaterialTriangleMap::iterator i;
796
797     // generate a repeatable random seed
798     mt seed;
799
800     mt_init(&seed, unsigned(586));
801
802     for (i = materialTriangleMap.begin(); i != materialTriangleMap.end(); ++i) {
803       SGMaterial *mat = matlib->find(i->first);
804       if (!mat)
805         continue;
806
807       float wood_coverage = mat->get_wood_coverage();
808       if ((wood_coverage <= 0) || (vegetation_density <= 0))
809         continue;
810               
811       // Attributes that don't vary by tree but do vary by material
812       bool found = false;
813       TreeBin* bin = NULL;
814       
815       BOOST_FOREACH(bin, randomForest)
816       {
817         if ((bin->texture           == mat->get_tree_texture()  ) &&
818             (bin->texture_varieties == mat->get_tree_varieties()) &&
819             (bin->range             == mat->get_tree_range()    ) &&
820             (bin->width             == mat->get_tree_width()    ) &&
821             (bin->height            == mat->get_tree_height()   )   ) {
822             found = true;
823             break;
824         }
825       }
826       
827       if (!found) {
828         bin = new TreeBin();
829         bin->texture = mat->get_tree_texture();
830           SG_LOG(SG_INPUT, SG_DEBUG, "Tree texture " << bin->texture);
831         bin->range   = mat->get_tree_range();
832         bin->width   = mat->get_tree_width();
833         bin->height  = mat->get_tree_height();
834         bin->texture_varieties = mat->get_tree_varieties();
835         randomForest.push_back(bin);
836       }
837
838       std::vector<SGVec3f> randomPoints;
839       i->second.addRandomTreePoints(wood_coverage,
840                                     mat->get_object_mask(i->second),
841                                     vegetation_density,
842                                     mat->get_cos_tree_max_density_slope_angle(),
843                                     mat->get_cos_tree_zero_density_slope_angle(),
844                                     randomPoints);
845       
846       std::vector<SGVec3f>::iterator k;
847       for (k = randomPoints.begin(); k != randomPoints.end(); ++k) {
848         bin->insert(*k);
849       }
850     }
851   }
852
853   bool insertBinObj(const SGBinObject& obj, SGMaterialLib* matlib)
854   {
855     if (!insertPtGeometry(obj, matlib))
856       return false;
857     if (!insertSurfaceGeometry(obj, matlib))
858       return false;
859     return true;
860   }
861 };
862
863 typedef std::pair<osg::Node*, int> ModelLOD;
864 struct MakeQuadLeaf {
865     osg::LOD* operator() () const { return new osg::LOD; }
866 };
867 struct AddModelLOD {
868     void operator() (osg::LOD* leaf, ModelLOD& mlod) const
869     {
870         leaf->addChild(mlod.first, 0, mlod.second);
871     }
872 };
873 struct GetModelLODCoord {
874     GetModelLODCoord() {}
875     GetModelLODCoord(const GetModelLODCoord& rhs)
876     {}
877     osg::Vec3 operator() (const ModelLOD& mlod) const
878     {
879         return mlod.first->getBound().center();
880     }
881 };
882
883 typedef QuadTreeBuilder<osg::LOD*, ModelLOD, MakeQuadLeaf, AddModelLOD,
884                         GetModelLODCoord>  RandomObjectsQuadtree;
885
886 osg::Node*
887 SGLoadBTG(const std::string& path, const simgear::SGReaderWriterOptions* options)
888 {
889   SGBinObject tile;
890   if (!tile.read_bin(path))
891     return NULL;
892
893   SGMaterialLib* matlib = 0;
894   bool use_random_objects = false;
895   bool use_random_vegetation = false;
896   bool use_random_buildings = false;
897   float vegetation_density = 1.0f;  
898   float building_density = 1.0f;
899   if (options) {
900     matlib = options->getMaterialLib();
901     SGPropertyNode* propertyNode = options->getPropertyNode().get();
902     if (propertyNode) {
903         use_random_objects
904             = propertyNode->getBoolValue("/sim/rendering/random-objects",
905                                          use_random_objects);
906         use_random_vegetation
907             = propertyNode->getBoolValue("/sim/rendering/random-vegetation",
908                                          use_random_vegetation);        
909         vegetation_density
910             = propertyNode->getFloatValue("/sim/rendering/vegetation-density",
911                                           vegetation_density);
912         use_random_buildings
913             = propertyNode->getBoolValue("/sim/rendering/random-buildings",
914                                          use_random_buildings);        
915         building_density
916             = propertyNode->getFloatValue("/sim/rendering/building-density",
917                                           building_density);
918     }
919   }
920
921   SGVec3d center = tile.get_gbs_center();
922   SGGeod geodPos = SGGeod::fromCart(center);
923   SGQuatd hlOr = SGQuatd::fromLonLat(geodPos)*SGQuatd::fromEulerDeg(0, 0, 180);
924
925   // rotate the tiles so that the bounding boxes get nearly axis aligned.
926   // this will help the collision tree's bounding boxes a bit ...
927   std::vector<SGVec3d> nodes = tile.get_wgs84_nodes();
928   for (unsigned i = 0; i < nodes.size(); ++i)
929     nodes[i] = hlOr.transform(nodes[i]);
930   tile.set_wgs84_nodes(nodes);
931
932   SGQuatf hlOrf(hlOr[0], hlOr[1], hlOr[2], hlOr[3]);
933   std::vector<SGVec3f> normals = tile.get_normals();
934   for (unsigned i = 0; i < normals.size(); ++i)
935     normals[i] = hlOrf.transform(normals[i]);
936   tile.set_normals(normals);
937
938   SGTileGeometryBin tileGeometryBin;
939   if (!tileGeometryBin.insertBinObj(tile, matlib))
940     return NULL;
941
942   SGVec3f up(0, 0, 1);
943   GroundLightManager* lightManager = GroundLightManager::instance();
944
945   osg::ref_ptr<osg::Group> lightGroup = new SGOffsetTransform(0.94);
946   osg::ref_ptr<osg::Group> randomObjects;
947   osg::ref_ptr<osg::Group> forestNode;
948   osg::ref_ptr<osg::Group> buildingNode;  
949   osg::Group* terrainGroup = new osg::Group;
950
951   osg::Node* node = tileGeometryBin.getSurfaceGeometry(matlib);
952   if (node)
953     terrainGroup->addChild(node);
954     
955   if (matlib && (use_random_objects || use_random_buildings)) {
956     tileGeometryBin.computeRandomObjectsAndBuildings(matlib, 
957                                                      building_density, 
958                                                      use_random_objects, 
959                                                      use_random_buildings);    
960   }
961
962   if (tileGeometryBin.randomModels.getNumModels() > 0) {
963     // Generate a repeatable random seed
964     mt seed;
965     mt_init(&seed, unsigned(123));
966
967     std::vector<ModelLOD> models;
968     for (unsigned int i = 0;
969          i < tileGeometryBin.randomModels.getNumModels(); i++) {
970       SGMatModelBin::MatModel obj
971         = tileGeometryBin.randomModels.getMatModel(i);          
972
973       SGPropertyNode* root = options->getPropertyNode()->getRootNode();
974       osg::Node* node = obj.model->get_random_model(root, &seed);
975     
976       // Create a matrix to place the object in the correct
977       // location, and then apply the rotation matrix created
978       // above, with an additional random (or taken from
979       // the object mask) heading rotation if appropriate.
980       osg::Matrix transformMat;
981       transformMat = osg::Matrix::translate(toOsg(obj.position));
982       if (obj.model->get_heading_type() == SGMatModel::HEADING_RANDOM) {
983         // Rotate the object around the z axis.
984         double hdg = mt_rand(&seed) * M_PI * 2;
985         transformMat.preMult(osg::Matrix::rotate(hdg,
986                                                  osg::Vec3d(0.0, 0.0, 1.0)));
987       }
988
989       if (obj.model->get_heading_type() == SGMatModel::HEADING_MASK) {
990         // Rotate the object around the z axis.
991         double hdg =  - obj.rotation * M_PI * 2;
992         transformMat.preMult(osg::Matrix::rotate(hdg,
993                                                  osg::Vec3d(0.0, 0.0, 1.0)));
994       }
995       
996       osg::MatrixTransform* position =
997         new osg::MatrixTransform(transformMat);
998       position->addChild(node);
999       models.push_back(ModelLOD(position, obj.lod));
1000     }
1001     RandomObjectsQuadtree quadtree((GetModelLODCoord()), (AddModelLOD()));
1002     quadtree.buildQuadTree(models.begin(), models.end());
1003     randomObjects = quadtree.getRoot();
1004     randomObjects->setName("Random objects");
1005   }
1006
1007   if (tileGeometryBin.randomBuildings.size() > 0) {
1008     buildingNode = createRandomBuildings(tileGeometryBin.randomBuildings, osg::Matrix::identity(),
1009                                 options);                                
1010     buildingNode->setName("Random buildings");
1011   }
1012
1013   if (use_random_vegetation && matlib) {
1014     // Now add some random forest.
1015     tileGeometryBin.computeRandomForest(matlib, vegetation_density);
1016     
1017     if (tileGeometryBin.randomForest.size() > 0) {
1018       forestNode = createForest(tileGeometryBin.randomForest, osg::Matrix::identity(),
1019                                 options);
1020       forestNode->setName("Random trees");
1021     }
1022   }  
1023
1024   // FIXME: ugly, has a side effect
1025   if (matlib)
1026     tileGeometryBin.computeRandomSurfaceLights(matlib);
1027
1028   if (tileGeometryBin.tileLights.getNumLights() > 0
1029       || tileGeometryBin.randomTileLights.getNumLights() > 0) {
1030     osg::Group* groundLights0 = new osg::Group;
1031     groundLights0->setStateSet(lightManager->getGroundLightStateSet());
1032     groundLights0->setNodeMask(GROUNDLIGHTS0_BIT);
1033     osg::Geode* geode = new osg::Geode;
1034     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.tileLights));
1035     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.randomTileLights, 4, -0.3f));
1036     groundLights0->addChild(geode);
1037     lightGroup->addChild(groundLights0);
1038   }
1039   
1040   if (tileGeometryBin.randomTileLights.getNumLights() > 0) {
1041     osg::Group* groundLights1 = new osg::Group;
1042     groundLights1->setStateSet(lightManager->getGroundLightStateSet());
1043     groundLights1->setNodeMask(GROUNDLIGHTS1_BIT);
1044     osg::Group* groundLights2 = new osg::Group;
1045     groundLights2->setStateSet(lightManager->getGroundLightStateSet());
1046     groundLights2->setNodeMask(GROUNDLIGHTS2_BIT);
1047     osg::Geode* geode = new osg::Geode;
1048     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.randomTileLights, 2, -0.15f));
1049     groundLights1->addChild(geode);
1050     lightGroup->addChild(groundLights1);
1051     geode = new osg::Geode;
1052     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.randomTileLights));
1053     groundLights2->addChild(geode);
1054     lightGroup->addChild(groundLights2);
1055   }
1056
1057   if (!tileGeometryBin.vasiLights.empty()) {
1058     EffectGeode* vasiGeode = new EffectGeode;
1059     Effect* vasiEffect
1060         = getLightEffect(24, osg::Vec3(1, 0.0001, 0.000001), 1, 24, true);
1061     vasiGeode->setEffect(vasiEffect);
1062     SGVec4f red(1, 0, 0, 1);
1063     SGMaterial* mat = 0;
1064     if (matlib)
1065       mat = matlib->find("RWY_RED_LIGHTS");
1066     if (mat)
1067       red = mat->get_light_color();
1068     SGVec4f white(1, 1, 1, 1);
1069     mat = 0;
1070     if (matlib)
1071       mat = matlib->find("RWY_WHITE_LIGHTS");
1072     if (mat)
1073       white = mat->get_light_color();
1074     SGDirectionalLightListBin::const_iterator i;
1075     for (i = tileGeometryBin.vasiLights.begin();
1076          i != tileGeometryBin.vasiLights.end(); ++i) {
1077       vasiGeode->addDrawable(SGLightFactory::getVasi(up, *i, red, white));
1078     }
1079     vasiGeode->setStateSet(lightManager->getRunwayLightStateSet());
1080     lightGroup->addChild(vasiGeode);
1081   }
1082   
1083   Effect* runwayEffect = 0;
1084   if (tileGeometryBin.runwayLights.getNumLights() > 0
1085       || !tileGeometryBin.rabitLights.empty()
1086       || !tileGeometryBin.reilLights.empty()
1087       || !tileGeometryBin.odalLights.empty()
1088       || tileGeometryBin.taxiLights.getNumLights() > 0)
1089       runwayEffect = getLightEffect(16, osg::Vec3(1, 0.001, 0.0002), 1, 16, true);
1090   if (tileGeometryBin.runwayLights.getNumLights() > 0
1091       || !tileGeometryBin.rabitLights.empty()
1092       || !tileGeometryBin.reilLights.empty()
1093       || !tileGeometryBin.odalLights.empty()
1094       || !tileGeometryBin.holdshortLights.empty()) {
1095     osg::Group* rwyLights = new osg::Group;
1096     rwyLights->setStateSet(lightManager->getRunwayLightStateSet());
1097     rwyLights->setNodeMask(RUNWAYLIGHTS_BIT);
1098     if (tileGeometryBin.runwayLights.getNumLights() != 0) {
1099       EffectGeode* geode = new EffectGeode;
1100       geode->setEffect(runwayEffect);
1101       geode->addDrawable(SGLightFactory::getLights(tileGeometryBin
1102                                                    .runwayLights));
1103       rwyLights->addChild(geode);
1104     }
1105     SGDirectionalLightListBin::const_iterator i;
1106     for (i = tileGeometryBin.rabitLights.begin();
1107          i != tileGeometryBin.rabitLights.end(); ++i) {
1108       rwyLights->addChild(SGLightFactory::getSequenced(*i));
1109     }
1110     for (i = tileGeometryBin.reilLights.begin();
1111          i != tileGeometryBin.reilLights.end(); ++i) {
1112       rwyLights->addChild(SGLightFactory::getSequenced(*i));
1113     }
1114     for (i = tileGeometryBin.holdshortLights.begin();
1115          i != tileGeometryBin.holdshortLights.end(); ++i) {
1116       rwyLights->addChild(SGLightFactory::getHoldShort(*i));
1117     }
1118     SGLightListBin::const_iterator j;
1119     for (j = tileGeometryBin.odalLights.begin();
1120          j != tileGeometryBin.odalLights.end(); ++j) {
1121       rwyLights->addChild(SGLightFactory::getOdal(*j));
1122     }
1123     lightGroup->addChild(rwyLights);
1124   }
1125
1126   if (tileGeometryBin.taxiLights.getNumLights() > 0) {
1127     osg::Group* taxiLights = new osg::Group;
1128     taxiLights->setStateSet(lightManager->getTaxiLightStateSet());
1129     taxiLights->setNodeMask(RUNWAYLIGHTS_BIT);
1130     EffectGeode* geode = new EffectGeode;
1131     geode->setEffect(runwayEffect);
1132     geode->addDrawable(SGLightFactory::getLights(tileGeometryBin.taxiLights));
1133     taxiLights->addChild(geode);
1134     lightGroup->addChild(taxiLights);
1135   }
1136
1137   // The toplevel transform for that tile.
1138   osg::MatrixTransform* transform = new osg::MatrixTransform;
1139   transform->setName(path);
1140   transform->setMatrix(osg::Matrix::rotate(toOsg(hlOr))*
1141                        osg::Matrix::translate(toOsg(center)));
1142   transform->addChild(terrainGroup);
1143   if (lightGroup->getNumChildren() > 0) {
1144     osg::LOD* lightLOD = new osg::LOD;
1145     lightLOD->addChild(lightGroup.get(), 0, 60000);
1146     // VASI is always on, so doesn't use light bits.
1147     lightLOD->setNodeMask(LIGHTS_BITS | MODEL_BIT | PERMANENTLIGHT_BIT);
1148     transform->addChild(lightLOD);
1149   }
1150   
1151   if (randomObjects.valid() || forestNode.valid() || buildingNode.valid()) {
1152   
1153     // Add a LoD node, so we don't try to display anything when the tile center
1154     // is more than 20km away.
1155     osg::LOD* objectLOD = new osg::LOD;
1156     
1157     if (randomObjects.valid()) objectLOD->addChild(randomObjects.get(), 0, 20000);
1158     if (forestNode.valid())  objectLOD->addChild(forestNode.get(), 0, 20000);
1159     if (buildingNode.valid()) objectLOD->addChild(buildingNode.get(), 0, 20000);
1160     
1161     unsigned nodeMask = SG_NODEMASK_CASTSHADOW_BIT | SG_NODEMASK_RECEIVESHADOW_BIT | SG_NODEMASK_TERRAIN_BIT;
1162     objectLOD->setNodeMask(nodeMask);
1163     transform->addChild(objectLOD);
1164   }
1165   transform->setNodeMask( ~simgear::MODELLIGHT_BIT );
1166   
1167   return transform;
1168 }