]> git.mxchange.org Git - flightgear.git/blob - src/Environment/ridge_lift.cxx
one final(?) cleanup:
[flightgear.git] / src / Environment / ridge_lift.cxx
1 // simulates ridge lift
2 //
3 // Written by Patrice Poly
4 // Copyright (C) 2009 Patrice Poly - p.polypa@gmail.com
5 //
6 //
7 // Entirely based  on the paper : 
8 // http://carrier.csi.cam.ac.uk/forsterlewis/soaring/sim/fsx/dev/sim_probe/sim_probe_paper.html
9 // by Ian Forster-Lewis, University of Cambridge, 26th December 2007
10 //
11 //
12 // This program is free software; you can redistribute it and/or
13 // modify it under the terms of the GNU General Public License as
14 // published by the Free Software Foundation; either version 2 of the
15 // License, or (at your option) any later version.
16 //
17 // This program is distributed in the hope that it will be useful, but
18 // WITHOUT ANY WARRANTY; without even the implied warranty of
19 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20 // General Public License for more details.
21 //
22 // You should have received a copy of the GNU General Public License
23 // along with this program; if not, write to the Free Software
24 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
25 //
26 //
27
28
29 #ifdef HAVE_CONFIG_H
30 #  include <config.h>
31 #endif
32
33 #include <Main/fg_props.hxx>
34 #include <Main/globals.hxx>
35 #include <Main/util.hxx>
36 #include <Scenery/scenery.hxx>
37 #include <string>
38 #include <math.h>
39
40
41 using std::string;
42
43 #include "ridge_lift.hxx"
44
45 static string CreateIndexedPropertyName(string Property, int index)
46 {
47         std::stringstream str;
48         str << index;
49         string tmp;
50         str >> tmp;
51         return Property + "[" + tmp + "]";
52 }
53
54 static inline double sign(double x) {
55         return x == 0 ? 0 : x > 0 ? 1.0 : -1.0;
56 }
57
58 static const    double BOUNDARY1_m = 40.0;
59
60 //constructor
61 FGRidgeLift::FGRidgeLift ()
62 {       
63         dist_probe_m[0] = 0.0; // in meters
64         dist_probe_m[1] = 250.0;
65         dist_probe_m[2] = 750.0;
66         dist_probe_m[3] = 2000.0;
67         dist_probe_m[4] = -100.0;
68
69         strength = 0.0;
70         timer = 0.0;
71 }
72
73 //destructor
74 FGRidgeLift::~FGRidgeLift()
75 {
76
77 }
78
79 void FGRidgeLift::init(void)
80 {
81         _ridge_lift_fps_node = fgGetNode("/environment/ridge-lift-fps", true);
82         _surface_wind_from_deg_node =
83                         fgGetNode("/environment/config/boundary/entry[0]/wind-from-heading-deg"
84                         , true);
85         _surface_wind_speed_node =
86                         fgGetNode("/environment/config/boundary/entry[0]/wind-speed-kt"
87                         , true);
88         _earth_radius_node = fgGetNode("/position/sea-level-radius-ft", true);
89         _user_longitude_node = fgGetNode("/position/longitude-deg", true);
90         _user_latitude_node = fgGetNode("/position/latitude-deg", true);
91         _user_altitude_ft_node = fgGetNode("/position/altitude-ft", true);
92         _user_altitude_agl_ft_node = fgGetNode("/position/altitude-agl-ft", true);
93 }
94
95 void FGRidgeLift::bind() {
96         string prop;
97
98         for( int i = 0; i < 5; i++ ) {
99                 prop = CreateIndexedPropertyName("/environment/ridge-lift/probe-elev-m", i );
100                 fgTie( prop.c_str(), this, i, &FGRidgeLift::get_probe_elev_m); // read-only
101
102                 prop = CreateIndexedPropertyName("/environment/ridge-lift/probe-lat-deg", i );
103                 fgTie( prop.c_str(), this, i, &FGRidgeLift::get_probe_lat_deg); // read-only
104
105                 prop = CreateIndexedPropertyName("/environment/ridge-lift/probe-lon-deg", i );
106                 fgTie( prop.c_str(), this, i, &FGRidgeLift::get_probe_lon_deg); // read-only
107         }
108
109         for( int i = 0; i < 4; i++ ) {
110                 prop = CreateIndexedPropertyName("/environment/ridge-lift/slope", i );
111                 fgTie( prop.c_str(), this, i, &FGRidgeLift::get_slope); // read-only
112         }
113 }
114
115 void FGRidgeLift::unbind() {
116         string prop;
117
118         for( int i = 0; i < 5; i++ ) {
119
120                 prop = CreateIndexedPropertyName("/environment/ridge-lift/probe-elev-m", i );
121                 fgUntie( prop.c_str() );
122
123                 prop = CreateIndexedPropertyName("/environment/ridge-lift/probe-lat-deg", i );
124                 fgUntie( prop.c_str() );
125
126                 prop = CreateIndexedPropertyName("/environment/ridge-lift/probe-lon-deg", i );
127                 fgUntie( prop.c_str() );
128         }
129
130         for( int i = 0; i < 4; i++ ) {
131                 prop = CreateIndexedPropertyName("/environment/ridge-lift/slope", i );
132                 fgUntie( prop.c_str() );
133         }
134 }
135
136 void FGRidgeLift::update(double dt) {
137
138         //get the windspeed at ground level
139
140         double ground_wind_from_rad = _surface_wind_from_deg_node->getDoubleValue() * SG_DEGREES_TO_RADIANS;
141         double ground_wind_speed_mps = _surface_wind_speed_node->getDoubleValue() * SG_NM_TO_METER / 3600;
142
143         timer -= dt;
144         if (timer <= 0.0 ) {
145                 // copy values 
146
147                 double user_latitude_rad = _user_latitude_node->getDoubleValue() * SG_DEGREES_TO_RADIANS;
148                 double user_longitude_rad = _user_longitude_node->getDoubleValue() * SG_DEGREES_TO_RADIANS;
149         
150                 double earth_rad_m = _earth_radius_node->getDoubleValue() * SG_FEET_TO_METER;
151                 if( earth_rad_m < SG_EPSILON )
152                                 earth_rad_m = SG_EARTH_RAD * 1000;
153
154                 // Placing the probes
155         
156                 for (int i = 0; i < sizeof(probe_lat_rad)/sizeof(probe_lat_rad[0]); i++) {
157                         double probe_radius_ratio = dist_probe_m[i]/earth_rad_m;
158
159                         probe_lat_rad[i] = asin(sin(user_latitude_rad)*cos(probe_radius_ratio)
160                                         +cos(user_latitude_rad)*sin(probe_radius_ratio)*cos(ground_wind_from_rad));
161                         if (probe_lat_rad[i] < SG_EPSILON ) {
162                                 probe_lon_rad[i] = user_latitude_rad; // probe on a pole        
163                         } else {
164                                 probe_lon_rad[i] = fmod((user_longitude_rad+asin(sin(ground_wind_from_rad)
165                                                         *sin(probe_radius_ratio)/cos(probe_lat_rad[i]))+SG_PI)
166                                                 ,SGD_2PI)-SG_PI;
167                         }
168                         probe_lat_deg[i]= probe_lat_rad[i] * SG_RADIANS_TO_DEGREES;
169                         probe_lon_deg[i]= probe_lon_rad[i] * SG_RADIANS_TO_DEGREES;
170                 }
171         
172                 for (int i = 0; i < sizeof(probe_elev_m)/sizeof(probe_elev_m[0]); i++) {
173                         double elevation = 0;
174                         if (globals->get_scenery()->get_elevation_m(SGGeod::fromGeodM(
175                                 SGGeod::fromRad(probe_lon_rad[i],probe_lat_rad[i]), 20000), elevation, 0)) {
176                                 if ( elevation > 0.1 ) { 
177                                         probe_elev_m[i] = elevation; 
178                                 } else { 
179                                         probe_elev_m[i] = 0.1 ;
180                                 }
181                         } else { 
182                                 probe_elev_m[i] = 0.1;
183                         }
184                 }
185
186                 // slopes
187                 double adj_slope[4];
188                 slope[0] = (probe_elev_m[0] - probe_elev_m[1]) / dist_probe_m[1];
189                 slope[1] = (probe_elev_m[1] - probe_elev_m[2]) / dist_probe_m[2];
190                 slope[2] = (probe_elev_m[2] - probe_elev_m[3]) / dist_probe_m[3];
191                 slope[3] = (probe_elev_m[4] - probe_elev_m[0]) / -dist_probe_m[4];
192         
193                 for (int i = 0; i < sizeof(slope)/sizeof(slope[0]); i++)
194                         adj_slope[i] = sin(atan(5.0 * pow ( (fabs(slope[i])),1.7) ) ) *sign(slope[i]);
195         
196                 //adjustment
197                 adj_slope[0] = 0.2 * adj_slope[0];
198                 adj_slope[1] = 0.2 * adj_slope[1];
199                 if ( adj_slope [2] < 0.0 ) {
200                         adj_slope[2] = 0.5 * adj_slope[2];
201                 } else {
202                         adj_slope[2] = 0.0 ;
203                 }
204         
205                 if ( ( adj_slope [0] >= 0.0 ) && ( adj_slope [3] < 0.0 ) ) {
206                         adj_slope[3] = 0.0;
207                 } else {
208                         adj_slope[3] = 0.2 * adj_slope[3];
209                 }
210                 lift_factor = adj_slope[0]+adj_slope[1]+adj_slope[2]+adj_slope[3];
211         
212                 // restart the timer
213                 timer = 1.0;
214         }
215         
216         //user altitude above ground
217         double user_altitude_agl_m = _user_altitude_agl_ft_node->getDoubleValue() * SG_FEET_TO_METER;
218         
219         //boundaries
220         double boundary2_m = 130.0; // in the lift
221         if (lift_factor < 0.0) { // in the sink
222                 double highest_probe_temp= max ( probe_elev_m[1], probe_elev_m[2] );
223                 double highest_probe_downwind_m= max ( highest_probe_temp, probe_elev_m[3] );
224                 boundary2_m = highest_probe_downwind_m - probe_elev_m[0];
225         }
226
227         double agl_factor;
228         if ( user_altitude_agl_m < BOUNDARY1_m ) {
229                 agl_factor = 0.5+0.5*user_altitude_agl_m /BOUNDARY1_m ;
230         } else if ( user_altitude_agl_m < boundary2_m ) {
231                 agl_factor = 1.0;
232         } else {
233                 agl_factor = exp(-(2 + probe_elev_m[0] / 2000) * 
234                                 (user_altitude_agl_m - boundary2_m) / max(probe_elev_m[0],200.0));
235         }
236         
237         double lift_mps = lift_factor* ground_wind_speed_mps * agl_factor;
238         
239         //the updraft, finally, in ft per second
240         strength = fgGetLowPass( strength, lift_mps * SG_METER_TO_FEET, dt );
241 //      if(isnan(strength)) strength=0; 
242          _ridge_lift_fps_node->setDoubleValue( strength );
243 }