]> git.mxchange.org Git - flightgear.git/blob - src/FDM/JSBSim/FGAtmosphere.cpp
Fix stall widths for the "auxilliary" (reverse flow) stalls so they
[flightgear.git] / src / FDM / JSBSim / FGAtmosphere.cpp
1 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
3  Module:       FGAtmosphere.cpp
4  Author:       Jon Berndt
5                Implementation of 1959 Standard Atmosphere added by Tony Peden
6  Date started: 11/24/98
7  Purpose:      Models the atmosphere
8  Called by:    FGSimExec
9
10  ------------- Copyright (C) 1999  Jon S. Berndt (jsb@hal-pc.org) -------------
11
12  This program is free software; you can redistribute it and/or modify it under
13  the terms of the GNU General Public License as published by the Free Software
14  Foundation; either version 2 of the License, or (at your option) any later
15  version.
16
17  This program is distributed in the hope that it will be useful, but WITHOUT
18  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
19  FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
20  details.
21
22  You should have received a copy of the GNU General Public License along with
23  this program; if not, write to the Free Software Foundation, Inc., 59 Temple
24  Place - Suite 330, Boston, MA  02111-1307, USA.
25
26  Further information about the GNU General Public License can also be found on
27  the world wide web at http://www.gnu.org.
28
29 FUNCTIONAL DESCRIPTION
30 --------------------------------------------------------------------------------
31 Models the atmosphere. The equation used below was determined by a third order
32 curve fit using Excel. The data is from the ICAO atmosphere model.
33
34 HISTORY
35 --------------------------------------------------------------------------------
36 11/24/98   JSB   Created
37 07/23/99   TP    Added implementation of 1959 Standard Atmosphere
38                  Moved calculation of Mach number to FGPropagate
39                  Later updated to '76 model
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41 COMMENTS, REFERENCES,  and NOTES
42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
43 [1]   Anderson, John D. "Introduction to Flight, Third Edition", McGraw-Hill,
44       1989, ISBN 0-07-001641-0
45
46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47 INCLUDES
48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
49
50 #include "FGAtmosphere.h"
51 #include "FGState.h"
52 #include "FGFDMExec.h"
53 #include "FGAircraft.h"
54 #include "FGPropagate.h"
55 #include "FGInertial.h"
56 #include "FGPropertyManager.h"
57
58 namespace JSBSim {
59
60 static const char *IdSrc = "$Id$";
61 static const char *IdHdr = ID_ATMOSPHERE;
62
63 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64 CLASS IMPLEMENTATION
65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
66
67
68 FGAtmosphere::FGAtmosphere(FGFDMExec* fdmex) : FGModel(fdmex)
69 {
70   Name = "FGAtmosphere";
71   lastIndex = 0;
72   h = 0.0;
73   psiw = 0.0;
74   htab[0]=0;
75   htab[1]=36089.239;
76   htab[2]=65616.798;
77   htab[3]=104986.878;
78   htab[4]=154199.475;
79   htab[5]=170603.675;
80   htab[6]=200131.234;
81   htab[7]=259186.352; //ft.
82
83   MagnitudedAccelDt = MagnitudeAccel = Magnitude = 0.0;
84 //   turbType = ttNone;
85   turbType = ttStandard;
86 //   turbType = ttBerndt;
87   TurbGain = 0.0;
88   TurbRate = 1.0;
89
90   T_dev_sl = T_dev = delta_T = 0.0;
91
92   bind();
93   Debug(0);
94 }
95
96 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
97
98 FGAtmosphere::~FGAtmosphere()
99 {
100   unbind();
101   Debug(1);
102 }
103
104 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105
106 bool FGAtmosphere::InitModel(void)
107 {
108   FGModel::InitModel();
109
110   Calculate(h);
111   SLtemperature = intTemperature;
112   SLpressure    = intPressure;
113   SLdensity     = intDensity;
114   SLsoundspeed  = sqrt(SHRatio*Reng*intTemperature);
115   rSLtemperature = 1.0/intTemperature;
116   rSLpressure    = 1.0/intPressure;
117   rSLdensity     = 1.0/intDensity;
118   rSLsoundspeed  = 1.0/SLsoundspeed;
119   temperature=&intTemperature;
120   pressure=&intPressure;
121   density=&intDensity;
122
123   useExternal=false;
124
125   return true;
126 }
127
128 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
129
130 bool FGAtmosphere::Run(void)
131 {
132   if (!FGModel::Run()) {                 // if false then execute this Run()
133     //do temp, pressure, and density first
134     if (!useExternal) {
135       h = Propagate->Geth();
136       Calculate(h);
137     }
138
139     if (turbType != ttNone) {
140       Turbulence();
141       vWindNED += vTurbulence;
142     }
143
144     if (vWindNED(1) != 0.0) psiw = atan2( vWindNED(2), vWindNED(1) );
145
146     if (psiw < 0) psiw += 2*M_PI;
147
148     soundspeed = sqrt(SHRatio*Reng*(*temperature));
149
150     Debug(2);
151
152     return false;
153   } else {                               // skip Run() execution this time
154     return true;
155   }
156 }
157
158 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
159 //
160 // See reference 1
161
162 void FGAtmosphere::Calculate(double altitude)
163 {
164   double slope, reftemp, refpress;
165   int i = 0;
166
167   i = lastIndex;
168   if (altitude < htab[lastIndex]) {
169     if (altitude <= 0) {
170       i = 0;
171       altitude=0;
172     } else {
173        i = lastIndex-1;
174        while (htab[i] > altitude) i--;
175     }
176   } else if (altitude > htab[lastIndex+1]) {
177     if (altitude >= htab[7]) {
178       i = 7;
179       altitude = htab[7];
180     } else {
181       i = lastIndex+1;
182       while (htab[i+1] < altitude) i++;
183     }
184   }
185
186   switch(i) {
187   case 1:     // 36089 ft.
188     slope     = 0;
189     reftemp   = 389.97;
190     refpress  = 472.452;
191     //refdens   = 0.000706032;
192     break;
193   case 2:     // 65616 ft.
194     slope     = 0.00054864;
195     reftemp   = 389.97;
196     refpress  = 114.636;
197     //refdens   = 0.000171306;
198     break;
199   case 3:     // 104986 ft.
200     slope     = 0.00153619;
201     reftemp   = 411.57;
202     refpress  = 8.36364;
203     //refdens   = 1.18422e-05;
204     break;
205   case 4:     // 154199 ft.
206     slope     = 0;
207     reftemp   = 487.17;
208     refpress  = 0.334882;
209     //refdens   = 4.00585e-7;
210     break;
211   case 5:     // 170603 ft.
212     slope     = -0.00109728;
213     reftemp   = 487.17;
214     refpress  = 0.683084;
215     //refdens   = 8.17102e-7;
216     break;
217   case 6:     // 200131 ft.
218     slope     = -0.00219456;
219     reftemp   = 454.17;
220     refpress  = 0.00684986;
221     //refdens   = 8.77702e-9;
222     break;
223   case 7:     // 259186 ft.
224     slope     = 0;
225     reftemp   = 325.17;
226     refpress  = 0.000122276;
227     //refdens   = 2.19541e-10;
228     break;
229   case 0:
230   default:     // sea level
231     slope     = -0.00356616; // R/ft.
232     reftemp   = 518.67;    // R
233     refpress  = 2116.22;    // psf
234     //refdens   = 0.00237767;  // slugs/cubic ft.
235     break;
236
237   }
238
239   T_dev = 0.0;
240   if (delta_T != 0.0) {
241     T_dev = delta_T;
242   } else {
243     if ((h < 36089.239) && (T_dev_sl != 0.0)) {
244       T_dev = T_dev_sl * ( 1.0 - (h/36089.239));
245     }
246   } 
247   density_altitude = h + T_dev * 66.7;
248
249   reftemp+=T_dev;
250   if (slope == 0) {
251     intTemperature = reftemp;
252     intPressure = refpress*exp(-Inertial->SLgravity()/(reftemp*Reng)*(altitude-htab[i]));
253     //intDensity = refdens*exp(-Inertial->SLgravity()/(reftemp*Reng)*(altitude-htab[i]));
254     intDensity = intPressure/(Reng*intTemperature);
255   } else {
256     intTemperature = reftemp+slope*(altitude-htab[i]);
257     intPressure = refpress*pow(intTemperature/reftemp,-Inertial->SLgravity()/(slope*Reng));
258     //intDensity = refdens*pow(intTemperature/reftemp,-(Inertial->SLgravity()/(slope*Reng)+1));
259     intDensity = intPressure/(Reng*intTemperature);
260   }
261   lastIndex=i;
262   //cout << "Atmosphere:  h=" << altitude << " rho= " << intDensity << endl;
263 }
264
265 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
266 // Return the pressure at an arbitrary altitude and then restore the internal state
267
268 double FGAtmosphere::GetPressure(double alt) {
269   Calculate(alt);
270   double p = *pressure;
271   // Reset the internal atmospheric state
272   Run();
273   return(p);
274 }
275
276 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
277 // square a value, but preserve the original sign
278
279 static inline double square_signed (double value)
280 {
281     if (value < 0)
282         return value * value * -1;
283     else
284         return value * value;
285 }
286
287 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
288
289 void FGAtmosphere::Turbulence(void)
290 {
291   switch (turbType) {
292   case ttStandard: {
293     vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX));
294     vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX));
295     vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX));
296
297     MagnitudedAccelDt = 1 - 2.0*(double(rand())/double(RAND_MAX)) - Magnitude;
298                                 // Scale the magnitude so that it moves
299                                 // away from the peaks
300     MagnitudedAccelDt = ((MagnitudedAccelDt - Magnitude) /
301                          (1 + fabs(Magnitude)));
302     MagnitudeAccel    += MagnitudedAccelDt*rate*TurbRate*State->Getdt();
303     Magnitude         += MagnitudeAccel*rate*State->Getdt();
304
305     vDirectiondAccelDt.Normalize();
306
307                                 // deemphasise non-vertical forces
308     vDirectiondAccelDt(eX) = square_signed(vDirectiondAccelDt(eX));
309     vDirectiondAccelDt(eY) = square_signed(vDirectiondAccelDt(eY));
310
311     vDirectionAccel += vDirectiondAccelDt*rate*TurbRate*State->Getdt();
312     vDirectionAccel.Normalize();
313     vDirection      += vDirectionAccel*rate*State->Getdt();
314
315     vDirection.Normalize();
316
317                                 // Diminish turbulence within three wingspans
318                                 // of the ground
319     vTurbulence = TurbGain * Magnitude * vDirection;
320     double HOverBMAC = Auxiliary->GetHOverBMAC();
321     if (HOverBMAC < 3.0)
322         vTurbulence *= (HOverBMAC / 3.0) * (HOverBMAC / 3.0);
323
324     vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection;
325
326     vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad;
327
328     if (Aircraft->GetWingSpan() > 0) {
329       vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan();
330     } else {
331       vTurbPQR(eP) = vBodyTurbGrad(eY)/30.0;
332     }
333 //     if (Aircraft->GetHTailArm() != 0.0)
334 //       vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm();
335 //     else
336 //       vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0;
337
338     if (Aircraft->GetVTailArm() > 0)
339       vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm();
340     else
341       vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0;
342
343                                 // Clear the horizontal forces
344                                 // actually felt by the plane, now
345                                 // that we've used them to calculate
346                                 // moments.
347     vTurbulence(eX) = 0.0;
348     vTurbulence(eY) = 0.0;
349
350     break;
351   }
352   case ttBerndt: {
353     vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX));
354     vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX));
355     vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX));
356
357
358     MagnitudedAccelDt = 1 - 2.0*(double(rand())/double(RAND_MAX)) - Magnitude;
359     MagnitudeAccel    += MagnitudedAccelDt*rate*State->Getdt();
360     Magnitude         += MagnitudeAccel*rate*State->Getdt();
361
362     vDirectiondAccelDt.Normalize();
363     vDirectionAccel += vDirectiondAccelDt*rate*State->Getdt();
364     vDirectionAccel.Normalize();
365     vDirection      += vDirectionAccel*rate*State->Getdt();
366
367                                 // Diminish z-vector within two wingspans
368                                 // of the ground
369     double HOverBMAC = Auxiliary->GetHOverBMAC();
370     if (HOverBMAC < 2.0)
371         vDirection(eZ) *= HOverBMAC / 2.0;
372
373     vDirection.Normalize();
374
375     vTurbulence = TurbGain*Magnitude * vDirection;
376     vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection;
377
378     vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad;
379     vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan();
380     if (Aircraft->GetHTailArm() > 0)
381       vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm();
382     else
383       vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0;
384
385     if (Aircraft->GetVTailArm() > 0)
386       vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm();
387     else
388       vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0;
389
390     break;
391   }
392   default:
393     break;
394   }
395 }
396
397 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
398
399 void FGAtmosphere::UseExternal(void) {
400   temperature=&exTemperature;
401   pressure=&exPressure;
402   density=&exDensity;
403   useExternal=true;
404 }
405
406 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
407
408 void FGAtmosphere::UseInternal(void) {
409   temperature=&intTemperature;
410   pressure=&intPressure;
411   density=&intDensity;
412   useExternal=false;
413 }
414
415 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
416
417 void FGAtmosphere::bind(void)
418 {
419   typedef double (FGAtmosphere::*PMF)(int) const;
420   PropertyManager->Tie("atmosphere/T-R", this,
421                        &FGAtmosphere::GetTemperature);
422   PropertyManager->Tie("atmosphere/rho-slugs_ft3", this,
423                        &FGAtmosphere::GetDensity);
424 //  PropertyManager->Tie("atmosphere/P-psf", this,
425 //                       &FGAtmosphere::GetPressure);
426   PropertyManager->Tie("atmosphere/a-fps", this,
427                        &FGAtmosphere::GetSoundSpeed);
428   PropertyManager->Tie("atmosphere/T-sl-R", this,
429                        &FGAtmosphere::GetTemperatureSL);
430   PropertyManager->Tie("atmosphere/rho-sl-slugs_ft3", this,
431                        &FGAtmosphere::GetDensitySL);
432   PropertyManager->Tie("atmosphere/P-sl-psf", this,
433                        &FGAtmosphere::GetPressureSL);
434   PropertyManager->Tie("atmosphere/a-sl-fps", this,
435                        &FGAtmosphere::GetSoundSpeedSL);
436   PropertyManager->Tie("atmosphere/theta-norm", this,
437                        &FGAtmosphere::GetTemperatureRatio);
438   PropertyManager->Tie("atmosphere/sigma-norm", this,
439                        &FGAtmosphere::GetDensityRatio);
440   PropertyManager->Tie("atmosphere/delta-norm", this,
441                        &FGAtmosphere::GetPressureRatio);
442   PropertyManager->Tie("atmosphere/a-norm", this,
443                        &FGAtmosphere::GetSoundSpeedRatio);
444   PropertyManager->Tie("atmosphere/psiw-rad", this,
445                        &FGAtmosphere::GetWindPsi);
446   PropertyManager->Tie("atmosphere/delta-T", this,
447                        &FGAtmosphere::GetDeltaT, &FGAtmosphere::SetDeltaT);
448   PropertyManager->Tie("atmosphere/T-sl-dev-F", this,
449                        &FGAtmosphere::GetSLTempDev, &FGAtmosphere::SetSLTempDev);
450   PropertyManager->Tie("atmosphere/density-altitude", this,
451                        &FGAtmosphere::GetDensityAltitude);
452   PropertyManager->Tie("atmosphere/p-turb-rad_sec", this,1,
453                        (PMF)&FGAtmosphere::GetTurbPQR);
454   PropertyManager->Tie("atmosphere/q-turb-rad_sec", this,2,
455                        (PMF)&FGAtmosphere::GetTurbPQR);
456   PropertyManager->Tie("atmosphere/r-turb-rad_sec", this,3,
457                        (PMF)&FGAtmosphere::GetTurbPQR);
458 }
459
460 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
461
462 void FGAtmosphere::unbind(void)
463 {
464   PropertyManager->Untie("atmosphere/T-R");
465   PropertyManager->Untie("atmosphere/rho-slugs_ft3");
466 //  PropertyManager->Untie("atmosphere/P-psf");
467   PropertyManager->Untie("atmosphere/a-fps");
468   PropertyManager->Untie("atmosphere/T-sl-R");
469   PropertyManager->Untie("atmosphere/rho-sl-slugs_ft3");
470   PropertyManager->Untie("atmosphere/P-sl-psf");
471   PropertyManager->Untie("atmosphere/a-sl-fps");
472   PropertyManager->Untie("atmosphere/delta-T");
473   PropertyManager->Untie("atmosphere/T-sl-dev-F");
474   PropertyManager->Untie("atmosphere/density-altitude");
475   PropertyManager->Untie("atmosphere/theta-norm");
476   PropertyManager->Untie("atmosphere/sigma-norm");
477   PropertyManager->Untie("atmosphere/delta-norm");
478   PropertyManager->Untie("atmosphere/a-norm");
479   PropertyManager->Untie("atmosphere/psiw-rad");
480   PropertyManager->Untie("atmosphere/p-turb-rad_sec");
481   PropertyManager->Untie("atmosphere/q-turb-rad_sec");
482   PropertyManager->Untie("atmosphere/r-turb-rad_sec");
483 }
484
485 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
486 //    The bitmasked value choices are as follows:
487 //    unset: In this case (the default) JSBSim would only print
488 //       out the normally expected messages, essentially echoing
489 //       the config files as they are read. If the environment
490 //       variable is not set, debug_lvl is set to 1 internally
491 //    0: This requests JSBSim not to output any messages
492 //       whatsoever.
493 //    1: This value explicity requests the normal JSBSim
494 //       startup messages
495 //    2: This value asks for a message to be printed out when
496 //       a class is instantiated
497 //    4: When this value is set, a message is displayed when a
498 //       FGModel object executes its Run() method
499 //    8: When this value is set, various runtime state variables
500 //       are printed out periodically
501 //    16: When set various parameters are sanity checked and
502 //       a message is printed out when they go out of bounds
503
504 void FGAtmosphere::Debug(int from)
505 {
506   if (debug_lvl <= 0) return;
507
508   if (debug_lvl & 1) { // Standard console startup message output
509     if (from == 0) { // Constructor
510     }
511   }
512   if (debug_lvl & 2 ) { // Instantiation/Destruction notification
513     if (from == 0) cout << "Instantiated: FGAtmosphere" << endl;
514     if (from == 1) cout << "Destroyed:    FGAtmosphere" << endl;
515   }
516   if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
517   }
518   if (debug_lvl & 8 ) { // Runtime state variables
519   }
520   if (debug_lvl & 16) { // Sanity checking
521   }
522   if (debug_lvl & 32) { // Turbulence
523     if (frame == 0 && from == 2) {
524       cout << "vTurbulence(X), vTurbulence(Y), vTurbulence(Z), "
525            << "vTurbulenceGrad(X), vTurbulenceGrad(Y), vTurbulenceGrad(Z), "
526            << "vDirection(X), vDirection(Y), vDirection(Z), "
527            << "Magnitude, "
528            << "vTurbPQR(P), vTurbPQR(Q), vTurbPQR(R), " << endl;
529     } else if (from == 2) {
530       cout << vTurbulence << ", " << vTurbulenceGrad << ", " << vDirection << ", " << Magnitude << ", " << vTurbPQR << endl;
531     }
532   }
533   if (debug_lvl & 64) {
534     if (from == 0) { // Constructor
535       cout << IdSrc << endl;
536       cout << IdHdr << endl;
537     }
538   }
539 }
540
541 } // namespace JSBSim