]> git.mxchange.org Git - flightgear.git/blob - src/FDM/JSBSim/FGAtmosphere.cpp
Syncing with latest JSBSim code with retractable landing gear support.
[flightgear.git] / src / FDM / JSBSim / FGAtmosphere.cpp
1 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
3  Module:       FGAtmosphere.cpp
4  Author:       Jon Berndt
5                Implementation of 1959 Standard Atmosphere added by Tony Peden 
6  Date started: 11/24/98
7  Purpose:      Models the atmosphere
8  Called by:    FGSimExec
9
10  ------------- Copyright (C) 1999  Jon S. Berndt (jsb@hal-pc.org) -------------
11
12  This program is free software; you can redistribute it and/or modify it under
13  the terms of the GNU General Public License as published by the Free Software
14  Foundation; either version 2 of the License, or (at your option) any later
15  version.
16
17  This program is distributed in the hope that it will be useful, but WITHOUT
18  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
19  FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
20  details.
21
22  You should have received a copy of the GNU General Public License along with
23  this program; if not, write to the Free Software Foundation, Inc., 59 Temple
24  Place - Suite 330, Boston, MA  02111-1307, USA.
25
26  Further information about the GNU General Public License can also be found on
27  the world wide web at http://www.gnu.org.
28
29 FUNCTIONAL DESCRIPTION
30 --------------------------------------------------------------------------------
31 Models the atmosphere. The equation used below was determined by a third order
32 curve fit using Excel. The data is from the ICAO atmosphere model.
33
34 HISTORY
35 --------------------------------------------------------------------------------
36 11/24/98   JSB   Created
37 07/23/99   TP    Added implementation of 1959 Standard Atmosphere
38                  Moved calculation of Mach number to FGTranslation
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 COMMENTS, REFERENCES,  and NOTES
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
42 [1]   Anderson, John D. "Introduction to Flight, Third Edition", McGraw-Hill,
43       1989, ISBN 0-07-001641-0
44
45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
46 INCLUDES
47 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
48
49 #include "FGAtmosphere.h"
50 #include "FGState.h"
51 #include "FGFDMExec.h"
52 #include "FGFCS.h"
53 #include "FGAircraft.h"
54 #include "FGTranslation.h"
55 #include "FGRotation.h"
56 #include "FGPosition.h"
57 #include "FGAuxiliary.h"
58 #include "FGOutput.h"
59 #include "FGMatrix33.h"
60 #include "FGColumnVector3.h"
61 #include "FGColumnVector4.h"
62
63 static const char *IdSrc = "$Id$";
64 static const char *IdHdr = ID_ATMOSPHERE;
65
66 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67 CLASS IMPLEMENTATION
68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
69
70
71 FGAtmosphere::FGAtmosphere(FGFDMExec* fdmex) : FGModel(fdmex),
72                                                vDirectiondAccelDt(3),
73                                                vDirectionAccel(3),
74                                                vDirection(3),
75                                                vTurbulence(3),
76                                                vTurbulenceGrad(3),
77                                                vBodyTurbGrad(3),
78                                                vTurbPQR(3),
79                                                vWindNED(3)
80 {
81   Name = "FGAtmosphere";
82   lastIndex=0;
83   h = 0;
84   htab[0]=0;
85   htab[1]=36089.239;
86   htab[2]=65616.798;
87   htab[3]=104986.878;
88   htab[4]=154199.475;
89   htab[5]=170603.675;
90   htab[6]=200131.234;
91   htab[7]=259186.352; //ft.
92
93   MagnitudedAccelDt = MagnitudeAccel = Magnitude = 0.0;
94   turbType = ttNone;
95 //  turbType = ttBerndt; // temporarily disable turbulence until fully tested
96   TurbGain = 100.0;
97
98   if (debug_lvl & 2) cout << "Instantiated: " << Name << endl;
99 }
100
101 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
102
103 FGAtmosphere::~FGAtmosphere()
104 {
105   if (debug_lvl & 2) cout << "Destroyed:    FGAtmosphere" << endl;
106 }
107
108 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
109
110 bool FGAtmosphere::InitModel(void)
111 {
112   FGModel::InitModel();
113
114   Calculate(h);
115   SLtemperature = temperature;
116   SLpressure    = pressure;
117   SLdensity     = density;
118   SLsoundspeed  = sqrt(SHRatio*Reng*temperature);
119   rSLtemperature = 1.0/temperature;
120   rSLpressure    = 1.0/pressure;
121   rSLdensity     = 1.0/density;
122   rSLsoundspeed  = 1.0/SLsoundspeed;
123   useExternal=false;
124   
125   return true;
126 }
127
128 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
129
130 bool FGAtmosphere::Run(void)
131 {
132   if (!FGModel::Run()) {                 // if false then execute this Run()
133     //do temp, pressure, and density first
134     if (!useExternal) {
135       h = Position->Geth();
136       Calculate(h);
137     } else {
138       density = exDensity;
139       pressure = exPressure;
140       temperature = exTemperature;
141     }
142
143     if (turbType != ttNone) {
144       Turbulence();
145       vWindNED += vTurbulence;
146     }
147
148     if (vWindNED(1) != 0.0) psiw = atan2( vWindNED(2), vWindNED(1) );
149
150     if (psiw < 0) psiw += 2*M_PI;
151
152     soundspeed = sqrt(SHRatio*Reng*temperature);
153
154     State->Seta(soundspeed);
155
156     if (debug_lvl > 1) Debug();
157
158   } else {                               // skip Run() execution this time
159   }
160
161   return false;
162 }
163
164 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
165 //
166 // See reference 1
167
168 void FGAtmosphere::Calculate(double altitude)
169 {
170   double slope, reftemp, refpress;
171   int i = 0;
172
173   i = lastIndex;
174   if (altitude < htab[lastIndex]) {
175     if (altitude <= 0) { 
176       i = 0;
177       altitude=0;
178     } else {
179        i = lastIndex-1;
180        while (htab[i] > altitude) i--;
181     }   
182   } else if (altitude > htab[lastIndex+1]){
183     if (altitude >= htab[7]){
184       i = 7;
185       altitude = htab[7];
186     } else {
187       i = lastIndex+1;
188       while(htab[i+1] < altitude) i++;
189     }  
190   } 
191
192   switch(i) {
193   case 1:     // 36089 ft.
194     slope     = 0;
195     reftemp   = 389.97;
196     refpress  = 472.452;
197     //refdens   = 0.000706032;
198     break;
199   case 2:     // 65616 ft.
200     slope     = 0.00054864;
201     reftemp   = 389.97;
202     refpress  = 114.636;
203     //refdens   = 0.000171306;
204     break;
205   case 3:     // 104986 ft.
206     slope     = 0.00153619;
207     reftemp   = 411.57;
208     refpress  = 8.36364;
209     //refdens   = 1.18422e-05;
210     break;
211   case 4:     // 154199 ft.
212     slope     = 0;
213     reftemp   = 487.17;
214     refpress  = 0.334882;
215     //refdens   = 4.00585e-7;
216     break;
217   case 5:     // 170603 ft.
218     slope     = -0.00109728;
219     reftemp   = 487.17;
220     refpress  = 0.683084;
221     //refdens   = 8.17102e-7;
222     break;
223   case 6:     // 200131 ft.
224     slope     = -0.00219456;
225     reftemp   = 454.17;
226     refpress  = 0.00684986;
227     //refdens   = 8.77702e-9;
228     break;
229   case 7:     // 259186 ft.
230     slope     = 0;
231     reftemp   = 325.17;
232     refpress  = 0.000122276;
233     //refdens   = 2.19541e-10;
234     break;
235   case 0:
236   default:     // sea level
237     slope     = -0.00356616; // R/ft.
238     reftemp   = 518.67;    // R
239     refpress  = 2116.22;    // psf
240     //refdens   = 0.00237767;  // slugs/cubic ft.
241     break;
242   
243   }
244  
245   if (slope == 0) {
246     temperature = reftemp;
247     pressure = refpress*exp(-Inertial->SLgravity()/(reftemp*Reng)*(altitude-htab[i]));
248     //density = refdens*exp(-Inertial->SLgravity()/(reftemp*Reng)*(altitude-htab[i]));
249     density = pressure/(Reng*temperature);
250   } else {
251     temperature = reftemp+slope*(altitude-htab[i]);
252     pressure = refpress*pow(temperature/reftemp,-Inertial->SLgravity()/(slope*Reng));
253     //density = refdens*pow(temperature/reftemp,-(Inertial->SLgravity()/(slope*Reng)+1));
254     density = pressure/(Reng*temperature);
255   }
256   lastIndex=i;
257   //cout << "Atmosphere:  h=" << altitude << " rho= " << density << endl;
258 }
259
260 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
261
262 void FGAtmosphere::Turbulence(void)
263 {
264   switch (turbType) {
265   case ttBerndt:
266     vDirectiondAccelDt(eX) = 1 - 2.0*(((double)(rand()))/RAND_MAX);
267     vDirectiondAccelDt(eY) = 1 - 2.0*(((double)(rand()))/RAND_MAX);
268     vDirectiondAccelDt(eZ) = 1 - 2.0*(((double)(rand()))/RAND_MAX);
269
270     MagnitudedAccelDt = 1 - 2.0*(((double)(rand()))/RAND_MAX);
271     MagnitudeAccel    += MagnitudedAccelDt*rate*State->Getdt();
272     Magnitude         += MagnitudeAccel*rate*State->Getdt();
273
274     vDirectiondAccelDt.Normalize();
275     vDirectionAccel += vDirectiondAccelDt*rate*State->Getdt();
276     vDirectionAccel.Normalize();
277     vDirection      += vDirectionAccel*rate*State->Getdt();
278     vDirection.Normalize();
279     
280     vTurbulence = TurbGain*Magnitude * vDirection;
281     vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection;
282
283     vBodyTurbGrad = State->GetTl2b()*vTurbulenceGrad;
284     vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan();
285     if (Aircraft->GetHTailArm() != 0.0)
286       vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm();
287     else
288       vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0;
289
290     if (Aircraft->GetVTailArm())
291       vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm();
292     else
293       vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0;
294
295     break;
296   default:
297     break;
298   }
299 }
300
301 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
302
303 void FGAtmosphere::Debug(void)
304 {
305   if (frame == 0) {
306     cout << "vTurbulence(X), vTurbulence(Y), vTurbulence(Z), "
307          << "vTurbulenceGrad(X), vTurbulenceGrad(Y), vTurbulenceGrad(Z), "
308          << "vDirection(X), vDirection(Y), vDirection(Z), "
309          << "Magnitude, "
310          << "vTurbPQR(P), vTurbPQR(Q), vTurbPQR(R), " << endl;
311   } else {
312     cout << vTurbulence << ", " << vTurbulenceGrad << ", " << vDirection << ", " << Magnitude << ", " << vTurbPQR << endl;
313   }
314 }
315