]> git.mxchange.org Git - flightgear.git/blob - src/FDM/JSBSim/FGPropagate.cpp
Sync w. JSBSim CVS
[flightgear.git] / src / FDM / JSBSim / FGPropagate.cpp
1 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
3  Module:       FGPropagate.cpp
4  Author:       Jon S. Berndt
5  Date started: 01/05/99
6  Purpose:      Integrate the EOM to determine instantaneous position
7  Called by:    FGFDMExec
8
9  ------------- Copyright (C) 1999  Jon S. Berndt (jsb@hal-pc.org) -------------
10
11  This program is free software; you can redistribute it and/or modify it under
12  the terms of the GNU General Public License as published by the Free Software
13  Foundation; either version 2 of the License, or (at your option) any later
14  version.
15
16  This program is distributed in the hope that it will be useful, but WITHOUT
17  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18  FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
19  details.
20
21  You should have received a copy of the GNU General Public License along with
22  this program; if not, write to the Free Software Foundation, Inc., 59 Temple
23  Place - Suite 330, Boston, MA  02111-1307, USA.
24
25  Further information about the GNU General Public License can also be found on
26  the world wide web at http://www.gnu.org.
27
28 FUNCTIONAL DESCRIPTION
29 --------------------------------------------------------------------------------
30 This class encapsulates the integration of rates and accelerations to get the
31 current position of the aircraft.
32
33 HISTORY
34 --------------------------------------------------------------------------------
35 01/05/99   JSB   Created
36
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 COMMENTS, REFERENCES,  and NOTES
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 [1] Cooke, Zyda, Pratt, and McGhee, "NPSNET: Flight Simulation Dynamic Modeling
41     Using Quaternions", Presence, Vol. 1, No. 4, pp. 404-420  Naval Postgraduate
42     School, January 1994
43 [2] D. M. Henderson, "Euler Angles, Quaternions, and Transformation Matrices",
44     JSC 12960, July 1977
45 [3] Richard E. McFarland, "A Standard Kinematic Model for Flight Simulation at
46     NASA-Ames", NASA CR-2497, January 1975
47 [4] Barnes W. McCormick, "Aerodynamics, Aeronautics, and Flight Mechanics",
48     Wiley & Sons, 1979 ISBN 0-471-03032-5
49 [5] Bernard Etkin, "Dynamics of Flight, Stability and Control", Wiley & Sons,
50     1982 ISBN 0-471-08936-2
51
52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
53 INCLUDES
54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
55
56 #ifdef FGFS
57 #  include <simgear/compiler.h>
58 #  ifdef SG_HAVE_STD_INCLUDES
59 #    include <cmath>
60 #    include <iomanip>
61 #  else
62 #    include <math.h>
63 #    include <iomanip.h>
64 #  endif
65 #else
66 #  if defined(sgi) && !defined(__GNUC__)
67 #    include <math.h>
68 #    if (_COMPILER_VERSION < 740)
69 #      include <iomanip.h>
70 #    else
71 #      include <iomanip>
72 #    endif
73 #  else
74 #    include <cmath>
75 #    include <iomanip>
76 #  endif
77 #endif
78
79 #include "FGPropagate.h"
80 #include "FGState.h"
81 #include "FGFDMExec.h"
82 #include "FGAircraft.h"
83 #include "FGMassBalance.h"
84 #include "FGInertial.h"
85 #include "FGPropertyManager.h"
86
87 namespace JSBSim {
88
89 static const char *IdSrc = "$Id$";
90 static const char *IdHdr = ID_PROPAGATE;
91
92 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
93 CLASS IMPLEMENTATION
94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
95
96 FGPropagate::FGPropagate(FGFDMExec* fdmex) : FGModel(fdmex)
97 {
98   Name = "FGPropagate";
99
100   bind();
101   Debug(0);
102 }
103
104 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105
106 FGPropagate::~FGPropagate(void)
107 {
108   unbind();
109   Debug(1);
110 }
111
112 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
113
114 bool FGPropagate::InitModel(void)
115 {
116   FGModel::InitModel();
117
118   SeaLevelRadius = Inertial->RefRadius();          // For initialization ONLY
119   RunwayRadius   = SeaLevelRadius;
120
121   VState.vLocation.SetRadius( SeaLevelRadius + 4.0 );
122
123   return true;
124 }
125
126 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
127
128 void FGPropagate::SetInitialState(const FGInitialCondition *FGIC)
129 {
130   SeaLevelRadius = FGIC->GetSeaLevelRadiusFtIC();
131   RunwayRadius = FGIC->GetSeaLevelRadiusFtIC() + FGIC->GetTerrainAltitudeFtIC();
132
133   // Set the position lat/lon/radius
134   VState.vLocation = FGLocation( FGIC->GetLongitudeRadIC(),
135                           FGIC->GetLatitudeRadIC(),
136                           FGIC->GetAltitudeFtIC() + FGIC->GetSeaLevelRadiusFtIC() );
137
138   // Set the Orientation from the euler angles
139   VState.vQtrn = FGQuaternion( FGIC->GetPhiRadIC(),
140                         FGIC->GetThetaRadIC(),
141                         FGIC->GetPsiRadIC() );
142
143   // Set the velocities in the instantaneus body frame
144   VState.vUVW = FGColumnVector3( FGIC->GetUBodyFpsIC(),
145                           FGIC->GetVBodyFpsIC(),
146                           FGIC->GetWBodyFpsIC() );
147
148   // Set the angular velocities in the instantaneus body frame.
149   VState.vPQR = FGColumnVector3( FGIC->GetPRadpsIC(),
150                           FGIC->GetQRadpsIC(),
151                           FGIC->GetRRadpsIC() );
152
153   // Compute some derived values.
154   vVel = VState.vQtrn.GetTInv()*VState.vUVW;
155 }
156
157 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
158 /*
159 Purpose: Called on a schedule to perform EOM integration
160 Notes:   [JB] Run in standalone mode, SeaLevelRadius will be reference radius.
161          In FGFS, SeaLevelRadius is stuffed from FGJSBSim in JSBSim.cxx each pass.
162
163 At the top of this Run() function, see several "shortcuts" (or, aliases) being
164 set up for use later, rather than using the longer class->function() notation.
165
166 Here, propagation of state is done using a simple explicit Euler scheme (see the
167 bottom of the function). This propagation is done using the current state values
168 and current derivatives. Based on these values we compute an approximation to the
169 state values for (now + dt).
170
171 */
172
173 bool FGPropagate::Run(void)
174 {
175   if (FGModel::Run()) return true;  // Fast return if we have nothing to do ...
176
177   double dt = State->Getdt()*rate;  // The 'stepsize'
178   const FGColumnVector3 omega( 0.0, 0.0, Inertial->omega() ); // earth rotation
179   const FGColumnVector3& vForces = Aircraft->GetForces();     // current forces
180   const FGColumnVector3& vMoments = Aircraft->GetMoments();   // current moments
181
182   double mass = MassBalance->GetMass();             // mass
183   const FGMatrix33& J = MassBalance->GetJ();        // inertia matrix
184   const FGMatrix33& Jinv = MassBalance->GetJinv();  // inertia matrix inverse
185   double r = GetRadius();                           // radius
186   if (r == 0.0) {cerr << "radius = 0 !" << endl; r = 1e-16;} // radius check
187   double rInv = 1.0/r;
188   FGColumnVector3 gAccel( 0.0, 0.0, Inertial->GetGAccel(r) );
189
190   // The rotation matrices:
191   const FGMatrix33& Tl2b = GetTl2b();  // local to body frame
192   const FGMatrix33& Tb2l = GetTb2l();  // body to local frame
193   const FGMatrix33& Tec2l = VState.vLocation.GetTec2l();  // earth centered to local frame
194   const FGMatrix33& Tl2ec = VState.vLocation.GetTl2ec();  // local to earth centered frame
195
196   // Inertial angular velocity measured in the body frame.
197   const FGColumnVector3 pqri = VState.vPQR + Tl2b*(Tec2l*omega);
198
199   // Compute vehicle velocity wrt EC frame, expressed in Local horizontal frame.
200   vVel = Tb2l * VState.vUVW;
201
202   // First compute the time derivatives of the vehicle state values:
203
204   // Compute body frame rotational accelerations based on the current body moments
205   vPQRdot = Jinv*(vMoments - pqri*(J*pqri));
206
207   // Compute body frame accelerations based on the current body forces
208   vUVWdot = VState.vUVW*VState.vPQR + vForces/mass;
209
210   // Centrifugal acceleration.
211   FGColumnVector3 ecVel = Tl2ec*vVel;
212   FGColumnVector3 ace = 2.0*omega*ecVel;
213   vUVWdot -= Tl2b*(Tec2l*ace);
214
215   // Coriolis acceleration.
216   FGColumnVector3 aeec = omega*(omega*VState.vLocation);
217   vUVWdot -= Tl2b*(Tec2l*aeec);
218
219   // Gravitation accel
220   vUVWdot += Tl2b*gAccel;
221
222   // Compute vehicle velocity wrt EC frame, expressed in EC frame
223   FGColumnVector3 vLocationDot = Tl2ec * vVel;
224
225   FGColumnVector3 omegaLocal( rInv*vVel(eEast),
226                               -rInv*vVel(eNorth),
227                               -rInv*vVel(eEast)*VState.vLocation.GetTanLatitude() );
228
229   // Compute quaternion orientation derivative on current body rates
230   FGQuaternion vQtrndot = VState.vQtrn.GetQDot( VState.vPQR - Tl2b*omegaLocal );
231
232   // Propagate velocities
233   VState.vPQR += dt*vPQRdot;
234   VState.vUVW += dt*vUVWdot;
235
236   // Propagate positions
237   VState.vQtrn += dt*vQtrndot;
238   VState.vLocation += dt*vLocationDot;
239
240   return false;
241 }
242
243 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
244
245 void FGPropagate::Seth(double tt)
246 {
247   VState.vLocation.SetRadius( tt + SeaLevelRadius );
248 }
249
250 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
251
252 void FGPropagate::SetDistanceAGL(double tt)
253 {
254   VState.vLocation.SetRadius( tt + RunwayRadius );
255 }
256
257 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
258
259 void FGPropagate::bind(void)
260 {
261   typedef double (FGPropagate::*PMF)(int) const;
262   PropertyManager->Tie("velocities/h-dot-fps", this, &FGPropagate::Gethdot);
263
264   PropertyManager->Tie("velocities/v-north-fps", this, eNorth, (PMF)&FGPropagate::GetVel);
265   PropertyManager->Tie("velocities/v-east-fps", this, eEast, (PMF)&FGPropagate::GetVel);
266   PropertyManager->Tie("velocities/v-down-fps", this, eDown, (PMF)&FGPropagate::GetVel);
267
268   PropertyManager->Tie("velocities/u-fps", this, eU, (PMF)&FGPropagate::GetUVW);
269   PropertyManager->Tie("velocities/v-fps", this, eV, (PMF)&FGPropagate::GetUVW);
270   PropertyManager->Tie("velocities/w-fps", this, eW, (PMF)&FGPropagate::GetUVW);
271
272   PropertyManager->Tie("velocities/p-rad_sec", this, eP, (PMF)&FGPropagate::GetPQR);
273   PropertyManager->Tie("velocities/q-rad_sec", this, eQ, (PMF)&FGPropagate::GetPQR);
274   PropertyManager->Tie("velocities/r-rad_sec", this, eR, (PMF)&FGPropagate::GetPQR);
275
276   PropertyManager->Tie("accelerations/pdot-rad_sec", this, eP, (PMF)&FGPropagate::GetPQRdot);
277   PropertyManager->Tie("accelerations/qdot-rad_sec", this, eQ, (PMF)&FGPropagate::GetPQRdot);
278   PropertyManager->Tie("accelerations/rdot-rad_sec", this, eR, (PMF)&FGPropagate::GetPQRdot);
279
280   PropertyManager->Tie("accelerations/udot-fps", this, eU, (PMF)&FGPropagate::GetUVWdot);
281   PropertyManager->Tie("accelerations/vdot-fps", this, eV, (PMF)&FGPropagate::GetUVWdot);
282   PropertyManager->Tie("accelerations/wdot-fps", this, eW, (PMF)&FGPropagate::GetUVWdot);
283
284   PropertyManager->Tie("position/h-sl-ft", this, &FGPropagate::Geth, &FGPropagate::Seth, true);
285   PropertyManager->Tie("position/lat-gc-rad", this, &FGPropagate::GetLatitude, &FGPropagate::SetLatitude);
286   PropertyManager->Tie("position/long-gc-rad", this, &FGPropagate::GetLongitude, &FGPropagate::SetLongitude);
287   PropertyManager->Tie("position/h-agl-ft", this,  &FGPropagate::GetDistanceAGL, &FGPropagate::SetDistanceAGL);
288   PropertyManager->Tie("position/radius-to-vehicle-ft", this, &FGPropagate::GetRadius);
289
290   PropertyManager->Tie("metrics/runway-radius", this, &FGPropagate::GetRunwayRadius, &FGPropagate::SetRunwayRadius);
291
292   PropertyManager->Tie("attitude/phi-rad", this, &FGPropagate::Getphi);
293   PropertyManager->Tie("attitude/theta-rad", this, &FGPropagate::Gettht);
294   PropertyManager->Tie("attitude/psi-rad", this, &FGPropagate::Getpsi);
295
296   PropertyManager->Tie("attitude/roll-rad", this, &FGPropagate::Getphi);
297   PropertyManager->Tie("attitude/pitch-rad", this, &FGPropagate::Gettht);
298   PropertyManager->Tie("attitude/heading-true-rad", this, &FGPropagate::Getpsi);
299 }
300
301 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
302
303 void FGPropagate::unbind(void)
304 {
305   PropertyManager->Untie("velocities/v-north-fps");
306   PropertyManager->Untie("velocities/v-east-fps");
307   PropertyManager->Untie("velocities/v-down-fps");
308   PropertyManager->Untie("velocities/h-dot-fps");
309   PropertyManager->Untie("velocities/u-fps");
310   PropertyManager->Untie("velocities/v-fps");
311   PropertyManager->Untie("velocities/w-fps");
312   PropertyManager->Untie("velocities/p-rad_sec");
313   PropertyManager->Untie("velocities/q-rad_sec");
314   PropertyManager->Untie("velocities/r-rad_sec");
315   PropertyManager->Untie("accelerations/udot-fps");
316   PropertyManager->Untie("accelerations/vdot-fps");
317   PropertyManager->Untie("accelerations/wdot-fps");
318   PropertyManager->Untie("accelerations/pdot-rad_sec");
319   PropertyManager->Untie("accelerations/qdot-rad_sec");
320   PropertyManager->Untie("accelerations/rdot-rad_sec");
321   PropertyManager->Untie("position/h-sl-ft");
322   PropertyManager->Untie("position/lat-gc-rad");
323   PropertyManager->Untie("position/long-gc-rad");
324   PropertyManager->Untie("position/h-agl-ft");
325   PropertyManager->Untie("position/radius-to-vehicle-ft");
326   PropertyManager->Untie("metrics/runway-radius");
327   PropertyManager->Untie("attitude/phi-rad");
328   PropertyManager->Untie("attitude/theta-rad");
329   PropertyManager->Untie("attitude/psi-rad");
330   PropertyManager->Untie("attitude/roll-rad");
331   PropertyManager->Untie("attitude/pitch-rad");
332   PropertyManager->Untie("attitude/heading-true-rad");
333 }
334
335 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
336 //    The bitmasked value choices are as follows:
337 //    unset: In this case (the default) JSBSim would only print
338 //       out the normally expected messages, essentially echoing
339 //       the config files as they are read. If the environment
340 //       variable is not set, debug_lvl is set to 1 internally
341 //    0: This requests JSBSim not to output any messages
342 //       whatsoever.
343 //    1: This value explicity requests the normal JSBSim
344 //       startup messages
345 //    2: This value asks for a message to be printed out when
346 //       a class is instantiated
347 //    4: When this value is set, a message is displayed when a
348 //       FGModel object executes its Run() method
349 //    8: When this value is set, various runtime state variables
350 //       are printed out periodically
351 //    16: When set various parameters are sanity checked and
352 //       a message is printed out when they go out of bounds
353
354 void FGPropagate::Debug(int from)
355 {
356   if (debug_lvl <= 0) return;
357
358   if (debug_lvl & 1) { // Standard console startup message output
359     if (from == 0) { // Constructor
360
361     }
362   }
363   if (debug_lvl & 2 ) { // Instantiation/Destruction notification
364     if (from == 0) cout << "Instantiated: FGPropagate" << endl;
365     if (from == 1) cout << "Destroyed:    FGPropagate" << endl;
366   }
367   if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
368   }
369   if (debug_lvl & 8 ) { // Runtime state variables
370   }
371   if (debug_lvl & 16) { // Sanity checking
372   }
373   if (debug_lvl & 64) {
374     if (from == 0) { // Constructor
375       cout << IdSrc << endl;
376       cout << IdHdr << endl;
377     }
378   }
379 }
380 }