1 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 ------------- Copyright (C) 1999 Anthony K. Peden (apeden@earthlink.net) -------------
9 This program is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free Software
11 Foundation; either version 2 of the License, or (at your option) any later
14 This program is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
16 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
19 You should have received a copy of the GNU General Public License along with
20 this program; if not, write to the Free Software Foundation, Inc., 59 Temple
21 Place - Suite 330, Boston, MA 02111-1307, USA.
23 Further information about the GNU General Public License can also be found on
24 the world wide web at http://www.gnu.org.
28 --------------------------------------------------------------------------------
32 FUNCTIONAL DESCRIPTION
33 --------------------------------------------------------------------------------
35 This class takes the given set of IC's and finds the aircraft state required to
36 maintain a specified flight condition. This flight condition can be
37 steady-level with non-zero sideslip, a steady turn, a pull-up or pushover.
38 On-ground conditions can be trimmed as well, but this is currently limited to
39 adjusting altitude and pitch angle only. It is implemented using an iterative,
40 one-axis-at-a-time scheme.
42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
49 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
53 #include "FGFDMExec.h"
54 #include "FGJSBBase.h"
55 #include "FGTrimAxis.h"
59 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
61 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
63 #define ID_TRIM "$Id$"
65 #if defined(_WIN32) && !defined(__CYGWIN__)
66 #define snprintf _snprintf
71 typedef enum { tLongitudinal, tFull, tGround, tPullup,
75 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
77 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
79 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
80 COMMENTS, REFERENCES, and NOTES [use "class documentation" below for API docs]
81 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
83 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
85 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
87 /** FGTrim -- the trimming routine for JSBSim.
88 FGTrim finds the aircraft attitude and control settings needed to maintain
89 the steady state described by the FGInitialCondition object . It does this
90 iteratively by assigning a control to each state and adjusting that control
91 until the state is within a specified tolerance of zero. States include the
92 recti-linear accelerations udot, vdot, and wdot, the angular accelerations
93 qdot, pdot, and rdot, and the difference between heading and ground track.
94 Controls include the usual flight deck controls available to the pilot plus
95 angle of attack (alpha), sideslip angle(beta), flight path angle (gamma),
96 pitch attitude(theta), roll attitude(phi), and altitude above ground. The
97 last three are used for on-ground trimming. The state-control pairs used in
98 a given trim are completely user configurable and several pre-defined modes
99 are provided as well. They are:
101 <li> tLongitudinal: Trim wdot with alpha, udot with thrust, qdot with elevator</li>
102 <li> tFull: tLongitudinal + vdot with phi, pdot with aileron, rdot with rudder
103 and heading minus ground track (hmgt) with beta</li>
104 <li> tPullup: tLongitudinal but adjust alpha to achieve load factor input
107 <li> tGround: wdot with altitude, qdot with theta, and pdot with phi</li>
109 The remaining modes include <b>tCustom</b>, which is completely user defined and
113 Note that trims can (and do) fail for reasons that are completely outside
114 the control of the trimming routine itself. The most common problem is the
115 initial conditions: is the model capable of steady state flight
116 at those conditions? Check the speed, altitude, configuration (flaps,
117 gear, etc.), weight, cg, and anything else that may be relevant.
120 FGFDMExec* FDMExec = new FGFDMExec();
124 FGInitialCondition* fgic = new FGInitialCondition(FDMExec);
125 FGTrim *fgt(FDMExec,fgic,tFull);
126 fgic->SetVcaibratedKtsIC(100);
127 fgic->SetAltitudeFtIC(1000);
128 fgic->SetClimbRate(500);
129 if( !fgt->DoTrim() ) {
130 cout << "Trim Failed" << endl;
135 @see <a href="http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/jsbsim/JSBSim/FGTrim.h?rev=HEAD&content-type=text/vnd.viewcvs-markup">
137 @see <a href="http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/jsbsim/JSBSim/FGTrim.cpp?rev=HEAD&content-type=text/vnd.viewcvs-markup">
141 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
143 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
145 class FGTrim : public FGJSBBase
149 vector<FGTrimAxis*> TrimAxes;
150 unsigned int current_axis;
153 int DebugLevel, Debug;
154 double Tolerance, A_Tolerance;
155 double wdot,udot,qdot;
157 double *sub_iterations;
160 int max_sub_iterations;
166 unsigned int axis_count;
168 double xlo,xhi,alo,ahi;
172 double psidot,thetadot;
175 FGInitialCondition* fgic;
179 /** @return false if there is no change in the current axis accel
180 between accel(control_min) and accel(control_max). If there is a
181 change, sets solutionDomain to:
182 0 for no sign change,
183 -1 if sign change between accel(control_min) and accel(0)
184 1 if sign between accel(0) and accel(control_max)
186 bool findInterval(void);
188 bool checkLimits(void);
190 void setupPullup(void);
191 void setupTurn(void);
193 void updateRates(void);
198 /** Initializes the trimming class
199 @param FDMExec pointer to a JSBSim executive object.
200 @param FGIC pointer to a FGInitialCondition object
202 FGTrim(FGFDMExec *FDMExec, TrimMode tt=tGround );
210 /** Print the results of the trim. For each axis trimmed, this
211 includes the final state value, control value, and tolerance
213 @return true if trim succeeds
217 /** Iteration statistics
221 /** Clear all state-control pairs and set a predefined trim mode
222 @param TrimMode the set of axes to trim. Can be:
223 tLongitudinal, tFull, tGround, tCustom, or tNone
225 void SetMode(TrimMode tt);
227 /** Clear all state-control pairs from the current configuration.
228 The trimming routine must have at least one state-control pair
229 configured to be useful
231 void ClearStates(void);
233 /** Add a state-control pair to the current configuration. See the enums
234 State and Control in FGTrimAxis.h for the available options.
235 Will fail if the given state is already configured.
236 @param state the accel or other condition to zero
237 @param control the control used to zero the state
238 @return true if add is successful
240 bool AddState( State state, Control control );
242 /** Remove a specific state-control pair from the current configuration
243 @param state the state to remove
244 @return true if removal is successful
246 bool RemoveState( State state );
248 /** Change the control used to zero a state previously configured
249 @param state the accel or other condition to zero
250 @param control the control used to zero the state
252 bool EditState( State state, Control new_control );
254 /** automatically switch to trimming longitudinal acceleration with
255 flight path angle (gamma) once it becomes apparent that there
256 is not enough/too much thrust.
257 @param gamma_fallback true to enable fallback
259 inline void SetGammaFallback(bool bb) { gamma_fallback=bb; }
261 /** query the fallback state
262 @return true if fallback is enabled.
264 inline bool GetGammaFallback(void) { return gamma_fallback; }
266 /** Set the iteration limit. DoTrim() will return false if limit
267 iterations are reached before trim is achieved. The default
268 is 60. This does not ordinarily need to be changed.
269 @param ii integer iteration limit
271 inline void SetMaxCycles(int ii) { max_iterations = ii; }
273 /** Set the per-axis iteration limit. Attempt to zero each state
274 by iterating limit times before moving on to the next. The
275 default limit is 100 and also does not ordinarily need to
277 @param ii integer iteration limit
279 inline void SetMaxCyclesPerAxis(int ii) { max_sub_iterations = ii; }
281 /** Set the tolerance for declaring a state trimmed. Angular accels are
282 held to a tolerance of 1/10th of the given. The default is
283 0.001 for the recti-linear accelerations and 0.0001 for the angular.
285 inline void SetTolerance(double tt) {
287 A_Tolerance = tt / 10;
291 Debug level 1 shows results of each top-level iteration
292 Debug level 2 shows level 1 & results of each per-axis iteration
294 inline void SetDebug(int level) { DebugLevel = level; }
295 inline void ClearDebug(void) { DebugLevel = 0; }
298 Output debug data for one of the axes
299 The State enum is defined in FGTrimAxis.h
301 inline void DebugState(State state) { debug_axis=state; }
303 inline void SetTargetNlf(float nlf) { targetNlf=nlf; }
304 inline double GetTargetNlf(void) { return targetNlf; }