]> git.mxchange.org Git - flightgear.git/blob - src/FDM/JSBSim/models/FGAtmosphere.cpp
8c47b022676420c76c3ae9a6f3ebf23aefed24ed
[flightgear.git] / src / FDM / JSBSim / models / FGAtmosphere.cpp
1 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
3  Module:       FGAtmosphere.cpp
4  Author:       Jon Berndt
5                Implementation of 1959 Standard Atmosphere added by Tony Peden
6  Date started: 11/24/98
7  Purpose:      Models the atmosphere
8  Called by:    FGSimExec
9
10  ------------- Copyright (C) 1999  Jon S. Berndt (jsb@hal-pc.org) -------------
11
12  This program is free software; you can redistribute it and/or modify it under
13  the terms of the GNU Lesser General Public License as published by the Free Software
14  Foundation; either version 2 of the License, or (at your option) any later
15  version.
16
17  This program is distributed in the hope that it will be useful, but WITHOUT
18  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
19  FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
20  details.
21
22  You should have received a copy of the GNU Lesser General Public License along with
23  this program; if not, write to the Free Software Foundation, Inc., 59 Temple
24  Place - Suite 330, Boston, MA  02111-1307, USA.
25
26  Further information about the GNU Lesser General Public License can also be found on
27  the world wide web at http://www.gnu.org.
28
29 FUNCTIONAL DESCRIPTION
30 --------------------------------------------------------------------------------
31 Models the atmosphere. The equation used below was determined by a third order
32 curve fit using Excel. The data is from the ICAO atmosphere model.
33
34 HISTORY
35 --------------------------------------------------------------------------------
36 11/24/98   JSB   Created
37 07/23/99   TP    Added implementation of 1959 Standard Atmosphere
38                  Moved calculation of Mach number to FGPropagate
39                  Later updated to '76 model
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41 COMMENTS, REFERENCES,  and NOTES
42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
43 [1]   Anderson, John D. "Introduction to Flight, Third Edition", McGraw-Hill,
44       1989, ISBN 0-07-001641-0
45
46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47 INCLUDES
48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
49
50 #include "FGAtmosphere.h"
51 #include <FGState.h>
52 #include <FGFDMExec.h>
53 #include "FGAircraft.h"
54 #include "FGPropagate.h"
55 #include "FGInertial.h"
56 #include <input_output/FGPropertyManager.h>
57
58 namespace JSBSim {
59
60 static const char *IdSrc = "$Id$";
61 static const char *IdHdr = ID_ATMOSPHERE;
62
63 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64 CLASS IMPLEMENTATION
65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
66
67 FGAtmosphere::FGAtmosphere(FGFDMExec* fdmex) : FGModel(fdmex)
68 {
69   Name = "FGAtmosphere";
70   lastIndex = 0;
71   h = 0.0;
72   psiw = 0.0;
73   htab[0]=0;
74   htab[1]= 36089.0;
75   htab[2]= 65617.0;
76   htab[3]=104987.0;
77   htab[4]=154199.0;
78   htab[5]=167322.0;
79   htab[6]=232940.0;
80   htab[7]=278385.0; //ft.
81
82   MagnitudedAccelDt = MagnitudeAccel = Magnitude = 0.0;
83 //  SetTurbType( ttCulp );
84   SetTurbType( ttNone );
85   TurbGain = 0.0;
86   TurbRate = 1.7;
87   Rhythmicity = 0.1;
88   spike = target_time = strength = 0.0;
89   wind_from_clockwise = 0.0;
90   SutherlandConstant = 198.72; // deg Rankine
91   Beta = 2.269690E-08; // slug/(sec ft R^0.5)
92
93   T_dev_sl = T_dev = delta_T = 0.0;
94   StandardTempOnly = false;
95   first_pass = true;
96   vGustNED.InitMatrix();
97   vTurbulenceNED.InitMatrix();
98
99   bind();
100   Debug(0);
101 }
102
103 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
104
105 FGAtmosphere::~FGAtmosphere()
106 {
107   Debug(1);
108 }
109
110 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
111
112 bool FGAtmosphere::InitModel(void)
113 {
114   if (!FGModel::InitModel()) return false;
115
116   UseInternal();  // this is the default
117
118   Calculate(h);
119   StdSLtemperature = SLtemperature = 518.67;
120   StdSLpressure    = SLpressure = 2116.22;
121   StdSLdensity     = SLdensity = 0.00237767;
122   StdSLsoundspeed  = SLsoundspeed = sqrt(SHRatio*Reng*StdSLtemperature);
123   rSLtemperature = 1.0/StdSLtemperature;
124   rSLpressure    = 1.0/StdSLpressure;
125   rSLdensity     = 1.0/StdSLdensity;
126   rSLsoundspeed  = 1.0/StdSLsoundspeed;
127
128   return true;
129 }
130
131 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
132
133 bool FGAtmosphere::Run(void)
134 {
135   if (FGModel::Run()) return true;
136   if (FDMExec->Holding()) return false;
137
138   T_dev = 0.0;
139   h = Propagate->Geth();
140
141   if (!useExternal) {
142     Calculate(h);
143     CalculateDerived();
144   } else {
145     CalculateDerived();
146   }
147
148   Debug(2);
149   return false;
150 }
151
152 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
153 //
154 // See reference 1
155
156 void FGAtmosphere::Calculate(double altitude)
157 {
158   double slope, reftemp, refpress;
159   int i = lastIndex;
160
161   if (altitude < htab[lastIndex]) {
162     if (altitude <= 0) {
163       i = 0;
164       altitude=0;
165     } else {
166        i = lastIndex-1;
167        while (htab[i] > altitude) i--;
168     }
169   } else if (altitude > htab[lastIndex+1]) {
170     if (altitude >= htab[7]) {
171       i = 7;
172       altitude = htab[7];
173     } else {
174       i = lastIndex+1;
175       while (htab[i+1] < altitude) i++;
176     }
177   }
178
179   switch(i) {
180   case 0: // Sea level
181     slope     = -0.00356616; // R/ft.
182     reftemp   = 518.67;   // in degrees Rankine, 288.15 Kelvin
183     refpress  = 2116.22;    // psf
184     //refdens   = 0.00237767;  // slugs/cubic ft.
185     break;
186   case 1:     // 36089 ft. or 11 km
187     slope     = 0;
188     reftemp   = 389.97; // in degrees Rankine, 216.65 Kelvin
189     refpress  = 472.763;
190     //refdens   = 0.000706032;
191     break;
192   case 2:     // 65616 ft. or 20 km
193     slope     = 0.00054864;
194     reftemp   = 389.97; // in degrees Rankine, 216.65 Kelvin
195     refpress  = 114.636;
196     //refdens   = 0.000171306;
197     break;
198   case 3:     // 104986 ft. or 32 km
199     slope     = 0.001536192;
200     reftemp   = 411.57; // in degrees Rankine, 228.65 Kelvin
201     refpress  = 18.128;
202     //refdens   = 1.18422e-05;
203     break;
204   case 4:     // 154199 ft. 47 km
205     slope     = 0;
206     reftemp   = 487.17; // in degrees Rankine, 270.65 Kelvin
207     refpress  = 2.316;
208     //refdens   = 4.00585e-7;
209     break;
210   case 5:     // 167322 ft. or 51 km
211     slope     = -0.001536192;
212     reftemp   = 487.17; // in degrees Rankine, 270.65 Kelvin
213     refpress  = 1.398;
214     //refdens   = 8.17102e-7;
215     break;
216   case 6:     // 232940 ft. or 71 km
217     slope     = -0.00109728;
218     reftemp   = 386.368; // in degrees Rankine, 214.649 Kelvin
219     refpress  = 0.0826;
220     //refdens   = 8.77702e-9;
221     break;
222   case 7:     // 278385 ft. or 84.8520 km
223     slope     = 0;
224     reftemp   = 336.5; // in degrees Rankine, 186.94 Kelvin
225     refpress  = 0.00831;
226     //refdens   = 2.19541e-10;
227     break;
228   default:     // sea level
229     slope     = -0.00356616; // R/ft.
230     reftemp   = 518.67;   // in degrees Rankine, 288.15 Kelvin
231     refpress  = 2116.22;    // psf
232     //refdens   = 0.00237767;  // slugs/cubic ft.
233     break;
234
235   }
236
237   // If delta_T is set, then that is our temperature deviation at any altitude.
238   // If not, then we'll estimate a deviation based on the sea level deviation (if set).
239
240   if(!StandardTempOnly) {
241     T_dev = 0.0;
242     if (delta_T != 0.0) {
243       T_dev = delta_T;
244     } else {
245       if ((altitude < 36089.239) && (T_dev_sl != 0.0)) {
246         T_dev = T_dev_sl * ( 1.0 - (altitude/36089.239));
247       }
248     }
249     reftemp+=T_dev;
250   }
251
252   if (slope == 0) {
253     intTemperature = reftemp;
254     intPressure = refpress*exp(-Inertial->SLgravity()/(reftemp*Reng)*(altitude-htab[i]));
255     intDensity = intPressure/(Reng*intTemperature);
256   } else {
257     intTemperature = reftemp+slope*(altitude-htab[i]);
258     intPressure = refpress*pow(intTemperature/reftemp,-Inertial->SLgravity()/(slope*Reng));
259     intDensity = intPressure/(Reng*intTemperature);
260   }
261   
262   lastIndex=i;
263 }
264
265 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
266 // Calculate parameters derived from T, P and rho
267 // Sum gust and turbulence values in NED frame into the wind vector.
268
269 void FGAtmosphere::CalculateDerived(void)
270 {
271   T_dev = (*temperature) - GetTemperature(h);
272   density_altitude = h + T_dev * 66.7;
273
274   if (turbType != ttNone) Turbulence();
275
276   vTotalWindNED = vWindNED + vGustNED + vTurbulenceNED;
277
278    // psiw (Wind heading) is the direction the wind is blowing towards
279   if (vWindNED(eX) != 0.0) psiw = atan2( vWindNED(eY), vWindNED(eX) );
280   if (psiw < 0) psiw += 2*M_PI;
281
282   soundspeed = sqrt(SHRatio*Reng*(*temperature));
283
284   intViscosity = Beta * pow(intTemperature, 1.5) / (SutherlandConstant + intTemperature);
285   intKinematicViscosity = intViscosity / intDensity;
286 }
287
288
289 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
290 // Get the standard atmospheric properties at a specified altitude
291
292 void FGAtmosphere::GetStdAtmosphere(double altitude) {
293   StandardTempOnly = true;
294   Calculate(altitude);
295   StandardTempOnly = false;
296   atmosphere.Temperature = intTemperature;
297   atmosphere.Pressure = intPressure;
298   atmosphere.Density = intDensity;
299
300   // Reset the internal atmospheric state
301   Calculate(h);
302 }
303
304 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
305 // Get the standard pressure at a specified altitude
306
307 double FGAtmosphere::GetPressure(double altitude) {
308   GetStdAtmosphere(altitude);
309   return atmosphere.Pressure;
310 }
311
312 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
313 // Get the standard temperature at a specified altitude
314
315 double FGAtmosphere::GetTemperature(double altitude) {
316   GetStdAtmosphere(altitude);
317   return atmosphere.Temperature;
318 }
319
320 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
321 // Get the standard density at a specified altitude
322
323 double FGAtmosphere::GetDensity(double altitude) {
324   GetStdAtmosphere(altitude);
325   return atmosphere.Density;
326 }
327
328
329 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
330 // square a value, but preserve the original sign
331
332 static inline double square_signed (double value)
333 {
334     if (value < 0)
335         return value * value * -1;
336     else
337         return value * value;
338 }
339
340 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
341 //
342 // psi is the angle that the wind is blowing *towards*
343
344 void FGAtmosphere::SetWindspeed(double speed)
345 {
346   if (vWindNED.Magnitude() == 0.0) {
347     psiw = 0.0;
348     vWindNED(eNorth) = speed;
349   } else {
350     vWindNED(eNorth) = speed * cos(psiw);
351     vWindNED(eEast) = speed * sin(psiw);
352     vWindNED(eDown) = 0.0;
353   }
354 }
355
356 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
357
358 double FGAtmosphere::GetWindspeed(void) const
359 {
360   return vWindNED.Magnitude();
361 }
362
363 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
364 //
365 // psi is the angle that the wind is blowing *towards*
366
367 void FGAtmosphere::SetWindPsi(double dir)
368 {
369   double mag = GetWindspeed();
370   psiw = dir;
371   SetWindspeed(mag);  
372 }
373
374 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
375
376 void FGAtmosphere::Turbulence(void)
377 {
378   switch (turbType) {
379   case ttStandard: {
380     TurbGain = TurbGain * TurbGain * 100.0;
381
382     vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX));
383     vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX));
384     vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX));
385
386     MagnitudedAccelDt = 1 - 2.0*(double(rand())/double(RAND_MAX)) - Magnitude;
387                                 // Scale the magnitude so that it moves
388                                 // away from the peaks
389     MagnitudedAccelDt = ((MagnitudedAccelDt - Magnitude) /
390                          (1 + fabs(Magnitude)));
391     MagnitudeAccel    += MagnitudedAccelDt*rate*TurbRate*State->Getdt();
392     Magnitude         += MagnitudeAccel*rate*State->Getdt();
393     Magnitude          = fabs(Magnitude);
394
395     vDirectiondAccelDt.Normalize();
396
397                                 // deemphasise non-vertical forces
398     vDirectiondAccelDt(eX) = square_signed(vDirectiondAccelDt(eX));
399     vDirectiondAccelDt(eY) = square_signed(vDirectiondAccelDt(eY));
400
401     vDirectionAccel += vDirectiondAccelDt*rate*TurbRate*State->Getdt();
402     vDirectionAccel.Normalize();
403     vDirection      += vDirectionAccel*rate*State->Getdt();
404
405     vDirection.Normalize();
406
407                                 // Diminish turbulence within three wingspans
408                                 // of the ground
409     vTurbulenceNED = TurbGain * Magnitude * vDirection;
410     double HOverBMAC = Auxiliary->GetHOverBMAC();
411     if (HOverBMAC < 3.0)
412         vTurbulenceNED *= (HOverBMAC / 3.0) * (HOverBMAC / 3.0);
413
414     // I don't believe these next two statements calculate the proper gradient over
415     // the aircraft body. One reason is because this has no relationship with the
416     // orientation or velocity of the aircraft, which it must have. What is vTurbulenceGrad
417     // supposed to represent? And the direction and magnitude of the turbulence can change,
418     // so both accelerations need to be accounted for, no?
419
420     // Need to determine the turbulence change in body axes between two time points.
421
422     vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection;
423     vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad;
424
425     if (Aircraft->GetWingSpan() > 0) {
426       vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan();
427     } else {
428       vTurbPQR(eP) = vBodyTurbGrad(eY)/30.0;
429     }
430 //     if (Aircraft->GetHTailArm() != 0.0)
431 //       vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm();
432 //     else
433 //       vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0;
434
435     if (Aircraft->GetVTailArm() > 0)
436       vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm();
437     else
438       vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0;
439
440                                 // Clear the horizontal forces
441                                 // actually felt by the plane, now
442                                 // that we've used them to calculate
443                                 // moments.
444                                 // Why? (JSB)
445 //    vTurbulenceNED(eX) = 0.0;
446 //    vTurbulenceNED(eY) = 0.0;
447
448     break;
449   }
450   case ttBerndt: { // This is very experimental and incomplete at the moment.
451
452     TurbGain = TurbGain * TurbGain * 100.0;
453   
454     vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX));
455     vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX));
456     vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX));
457
458
459     MagnitudedAccelDt = 1 - 2.0*(double(rand())/double(RAND_MAX)) - Magnitude;
460     MagnitudeAccel    += MagnitudedAccelDt*rate*State->Getdt();
461     Magnitude         += MagnitudeAccel*rate*State->Getdt();
462
463     vDirectiondAccelDt.Normalize();
464     vDirectionAccel += vDirectiondAccelDt*rate*State->Getdt();
465     vDirectionAccel.Normalize();
466     vDirection      += vDirectionAccel*rate*State->Getdt();
467
468                                 // Diminish z-vector within two wingspans
469                                 // of the ground
470     double HOverBMAC = Auxiliary->GetHOverBMAC();
471     if (HOverBMAC < 2.0)
472         vDirection(eZ) *= HOverBMAC / 2.0;
473
474     vDirection.Normalize();
475
476     vTurbulenceNED = TurbGain*Magnitude * vDirection;
477     vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection;
478
479     vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad;
480     vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan();
481     if (Aircraft->GetHTailArm() > 0)
482       vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm();
483     else
484       vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0;
485
486     if (Aircraft->GetVTailArm() > 0)
487       vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm();
488     else
489       vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0;
490
491     break;
492   }
493   case ttCulp: { 
494
495     vTurbPQR(eP) = wind_from_clockwise;
496     if (TurbGain == 0.0) return;
497   
498     // keep the inputs within allowable limts for this model
499     if (TurbGain < 0.0) TurbGain = 0.0;
500     if (TurbGain > 1.0) TurbGain = 1.0;
501     if (TurbRate < 0.0) TurbRate = 0.0;
502     if (TurbRate > 30.0) TurbRate = 30.0;
503     if (Rhythmicity < 0.0) Rhythmicity = 0.0;
504     if (Rhythmicity > 1.0) Rhythmicity = 1.0;
505
506     // generate a sine wave corresponding to turbulence rate in hertz
507     double time = FDMExec->GetSimTime();
508     double sinewave = sin( time * TurbRate * 6.283185307 );
509
510     double random = 0.0;
511     if (target_time == 0.0) {
512       strength = random = 1 - 2.0*(double(rand())/double(RAND_MAX));
513       target_time = time + 0.71 + (random * 0.5);
514     }
515     if (time > target_time) {
516       spike = 1.0;
517       target_time = 0.0;
518     }    
519
520     // max vertical wind speed in fps, corresponds to TurbGain = 1.0
521     double max_vs = 40;
522
523     vTurbulenceNED(1) = vTurbulenceNED(2) = vTurbulenceNED(3) = 0.0;
524     double delta = strength * max_vs * TurbGain * (1-Rhythmicity) * spike;
525
526     // Vertical component of turbulence.
527     vTurbulenceNED(3) = sinewave * max_vs * TurbGain * Rhythmicity;
528     vTurbulenceNED(3)+= delta;
529     double HOverBMAC = Auxiliary->GetHOverBMAC();
530     if (HOverBMAC < 3.0)
531         vTurbulenceNED(3) *= HOverBMAC * 0.3333;
532  
533     // Yaw component of turbulence.
534     vTurbulenceNED(1) = sin( delta * 3.0 );
535     vTurbulenceNED(2) = cos( delta * 3.0 );
536
537     // Roll component of turbulence. Clockwise vortex causes left roll.
538     vTurbPQR(eP) += delta * 0.04;
539
540     spike = spike * 0.9;
541     break;
542   }
543   default:
544     break;
545   }
546 }
547
548 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
549
550 void FGAtmosphere::UseExternal(void)
551 {
552   temperature=&exTemperature;
553   pressure=&exPressure;
554   density=&exDensity;
555   useExternal=true;
556 }
557
558 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
559
560 void FGAtmosphere::UseInternal(void)
561 {
562   temperature=&intTemperature;
563   pressure=&intPressure;
564   density=&intDensity;
565   useExternal=false;
566 }
567
568 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
569
570 void FGAtmosphere::bind(void)
571 {
572   typedef double (FGAtmosphere::*PMF)(int) const;
573   typedef double (FGAtmosphere::*PMFv)(void) const;
574   typedef void   (FGAtmosphere::*PMFd)(int,double);
575   PropertyManager->Tie("atmosphere/T-R", this, (PMFv)&FGAtmosphere::GetTemperature);
576   PropertyManager->Tie("atmosphere/rho-slugs_ft3", this, (PMFv)&FGAtmosphere::GetDensity);
577   PropertyManager->Tie("atmosphere/P-psf", this, (PMFv)&FGAtmosphere::GetPressure);
578   PropertyManager->Tie("atmosphere/a-fps", this, &FGAtmosphere::GetSoundSpeed);
579   PropertyManager->Tie("atmosphere/T-sl-R", this, &FGAtmosphere::GetTemperatureSL);
580   PropertyManager->Tie("atmosphere/rho-sl-slugs_ft3", this, &FGAtmosphere::GetDensitySL);
581   PropertyManager->Tie("atmosphere/P-sl-psf", this, &FGAtmosphere::GetPressureSL);
582   PropertyManager->Tie("atmosphere/a-sl-fps", this, &FGAtmosphere::GetSoundSpeedSL);
583   PropertyManager->Tie("atmosphere/theta", this, &FGAtmosphere::GetTemperatureRatio);
584   PropertyManager->Tie("atmosphere/sigma", this, &FGAtmosphere::GetDensityRatio);
585   PropertyManager->Tie("atmosphere/delta", this, &FGAtmosphere::GetPressureRatio);
586   PropertyManager->Tie("atmosphere/a-ratio", this, &FGAtmosphere::GetSoundSpeedRatio);
587   PropertyManager->Tie("atmosphere/psiw-rad", this, &FGAtmosphere::GetWindPsi, &FGAtmosphere::SetWindPsi);
588   PropertyManager->Tie("atmosphere/delta-T", this, &FGAtmosphere::GetDeltaT, &FGAtmosphere::SetDeltaT);
589   PropertyManager->Tie("atmosphere/T-sl-dev-F", this, &FGAtmosphere::GetSLTempDev, &FGAtmosphere::SetSLTempDev);
590   PropertyManager->Tie("atmosphere/density-altitude", this, &FGAtmosphere::GetDensityAltitude);
591
592   PropertyManager->Tie("atmosphere/wind-north-fps", this, eNorth, (PMF)&FGAtmosphere::GetWindNED,
593                                                           (PMFd)&FGAtmosphere::SetWindNED);
594   PropertyManager->Tie("atmosphere/wind-east-fps",  this, eEast, (PMF)&FGAtmosphere::GetWindNED,
595                                                           (PMFd)&FGAtmosphere::SetWindNED);
596   PropertyManager->Tie("atmosphere/wind-down-fps",  this, eDown, (PMF)&FGAtmosphere::GetWindNED,
597                                                           (PMFd)&FGAtmosphere::SetWindNED);
598   PropertyManager->Tie("atmosphere/wind-mag-fps", this, &FGAtmosphere::GetWindspeed,
599                                                         &FGAtmosphere::SetWindspeed);
600   PropertyManager->Tie("atmosphere/total-wind-north-fps", this, eNorth, (PMF)&FGAtmosphere::GetTotalWindNED);
601   PropertyManager->Tie("atmosphere/total-wind-east-fps",  this, eEast,  (PMF)&FGAtmosphere::GetTotalWindNED);
602   PropertyManager->Tie("atmosphere/total-wind-down-fps",  this, eDown,  (PMF)&FGAtmosphere::GetTotalWindNED);
603
604   PropertyManager->Tie("atmosphere/gust-north-fps", this, eNorth, (PMF)&FGAtmosphere::GetGustNED,
605                                                           (PMFd)&FGAtmosphere::SetGustNED);
606   PropertyManager->Tie("atmosphere/gust-east-fps",  this, eEast, (PMF)&FGAtmosphere::GetGustNED,
607                                                           (PMFd)&FGAtmosphere::SetGustNED);
608   PropertyManager->Tie("atmosphere/gust-down-fps",  this, eDown, (PMF)&FGAtmosphere::GetGustNED,
609                                                           (PMFd)&FGAtmosphere::SetGustNED);
610
611   PropertyManager->Tie("atmosphere/p-turb-rad_sec", this,1, (PMF)&FGAtmosphere::GetTurbPQR);
612   PropertyManager->Tie("atmosphere/q-turb-rad_sec", this,2, (PMF)&FGAtmosphere::GetTurbPQR);
613   PropertyManager->Tie("atmosphere/r-turb-rad_sec", this,3, (PMF)&FGAtmosphere::GetTurbPQR);
614   PropertyManager->Tie("atmosphere/turb-rate", this, &FGAtmosphere::GetTurbRate, &FGAtmosphere::SetTurbRate);
615   PropertyManager->Tie("atmosphere/turb-gain", this, &FGAtmosphere::GetTurbGain, &FGAtmosphere::SetTurbGain);
616   PropertyManager->Tie("atmosphere/turb-rhythmicity", this, &FGAtmosphere::GetRhythmicity,
617                                                             &FGAtmosphere::SetRhythmicity);
618 }
619
620 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
621 //    The bitmasked value choices are as follows:
622 //    unset: In this case (the default) JSBSim would only print
623 //       out the normally expected messages, essentially echoing
624 //       the config files as they are read. If the environment
625 //       variable is not set, debug_lvl is set to 1 internally
626 //    0: This requests JSBSim not to output any messages
627 //       whatsoever.
628 //    1: This value explicity requests the normal JSBSim
629 //       startup messages
630 //    2: This value asks for a message to be printed out when
631 //       a class is instantiated
632 //    4: When this value is set, a message is displayed when a
633 //       FGModel object executes its Run() method
634 //    8: When this value is set, various runtime state variables
635 //       are printed out periodically
636 //    16: When set various parameters are sanity checked and
637 //       a message is printed out when they go out of bounds
638
639 void FGAtmosphere::Debug(int from)
640 {
641   if (debug_lvl <= 0) return;
642
643   if (debug_lvl & 1) { // Standard console startup message output
644     if (from == 0) { // Constructor
645     }
646   }
647   if (debug_lvl & 2 ) { // Instantiation/Destruction notification
648     if (from == 0) cout << "Instantiated: FGAtmosphere" << endl;
649     if (from == 1) cout << "Destroyed:    FGAtmosphere" << endl;
650   }
651   if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
652   }
653   if (debug_lvl & 8 ) { // Runtime state variables
654   }
655   if (debug_lvl & 16) { // Sanity checking
656   }
657   if (debug_lvl & 128) { // Turbulence
658     if (first_pass && from == 2) {
659       first_pass = false;
660       cout << "vTurbulenceNED(X), vTurbulenceNED(Y), vTurbulenceNED(Z), "
661            << "vTurbulenceGrad(X), vTurbulenceGrad(Y), vTurbulenceGrad(Z), "
662            << "vDirection(X), vDirection(Y), vDirection(Z), "
663            << "Magnitude, "
664            << "vTurbPQR(P), vTurbPQR(Q), vTurbPQR(R), " << endl;
665     } 
666     if (from == 2) {
667       cout << vTurbulenceNED << ", " << vTurbulenceGrad << ", " << vDirection << ", " << Magnitude << ", " << vTurbPQR << endl;
668     }
669   }
670   if (debug_lvl & 64) {
671     if (from == 0) { // Constructor
672       cout << IdSrc << endl;
673       cout << IdHdr << endl;
674     }
675   }
676 }
677
678 } // namespace JSBSim