]> git.mxchange.org Git - flightgear.git/blob - src/FDM/JSBSim/models/FGAtmosphere.cpp
Merge branch 'topics/bug150' into next
[flightgear.git] / src / FDM / JSBSim / models / FGAtmosphere.cpp
1 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
3  Module:       FGAtmosphere.cpp
4  Author:       Jon Berndt
5                Implementation of 1959 Standard Atmosphere added by Tony Peden
6  Date started: 11/24/98
7  Purpose:      Models the atmosphere
8  Called by:    FGSimExec
9
10  ------------- Copyright (C) 1999  Jon S. Berndt (jon@jsbsim.org) -------------
11
12  This program is free software; you can redistribute it and/or modify it under
13  the terms of the GNU Lesser General Public License as published by the Free Software
14  Foundation; either version 2 of the License, or (at your option) any later
15  version.
16
17  This program is distributed in the hope that it will be useful, but WITHOUT
18  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
19  FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
20  details.
21
22  You should have received a copy of the GNU Lesser General Public License along with
23  this program; if not, write to the Free Software Foundation, Inc., 59 Temple
24  Place - Suite 330, Boston, MA  02111-1307, USA.
25
26  Further information about the GNU Lesser General Public License can also be found on
27  the world wide web at http://www.gnu.org.
28
29 FUNCTIONAL DESCRIPTION
30 --------------------------------------------------------------------------------
31 Models the atmosphere. The equation used below was determined by a third order
32 curve fit using Excel. The data is from the ICAO atmosphere model.
33
34 HISTORY
35 --------------------------------------------------------------------------------
36 11/24/98   JSB   Created
37 07/23/99   TP    Added implementation of 1959 Standard Atmosphere
38                  Moved calculation of Mach number to FGPropagate
39                  Later updated to '76 model
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41 COMMENTS, REFERENCES,  and NOTES
42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
43 [1]   Anderson, John D. "Introduction to Flight, Third Edition", McGraw-Hill,
44       1989, ISBN 0-07-001641-0
45
46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47 INCLUDES
48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
49
50 #include "FGAtmosphere.h"
51 #include "FGAircraft.h"
52 #include "FGPropagate.h"
53 #include "FGInertial.h"
54 #include "FGAuxiliary.h"
55 #include "FGFDMExec.h"
56 #include "input_output/FGPropertyManager.h"
57 #include <iostream>
58 #include <cstdlib>
59
60 using namespace std;
61
62 namespace JSBSim {
63
64 static const char *IdSrc = "$Id: FGAtmosphere.cpp,v 1.35 2010/08/11 11:51:33 jberndt Exp $";
65 static const char *IdHdr = ID_ATMOSPHERE;
66
67 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
68 CLASS IMPLEMENTATION
69 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
70
71 FGAtmosphere::FGAtmosphere(FGFDMExec* fdmex) : FGModel(fdmex)
72 {
73   Name = "FGAtmosphere";
74   lastIndex = 0;
75   h = 0.0;
76   psiw = 0.0;
77   htab[0]=0;
78   htab[1]= 36089.0;
79   htab[2]= 65617.0;
80   htab[3]=104987.0;
81   htab[4]=154199.0;
82   htab[5]=167322.0;
83   htab[6]=232940.0;
84   htab[7]=278385.0; //ft.
85
86   MagnitudedAccelDt = MagnitudeAccel = Magnitude = 0.0;
87 //  SetTurbType( ttCulp );
88   SetTurbType( ttNone );
89   TurbGain = 1.0;
90   TurbRate = 10.0;
91   Rhythmicity = 0.1;
92   spike = target_time = strength = 0.0;
93   wind_from_clockwise = 0.0;
94   SutherlandConstant = 198.72; // deg Rankine
95   Beta = 2.269690E-08; // slug/(sec ft R^0.5)
96
97   T_dev_sl = T_dev = delta_T = 0.0;
98   StandardTempOnly = false;
99   first_pass = true;
100   vGustNED.InitMatrix();
101   vTurbulenceNED.InitMatrix();
102
103   bind();
104   Debug(0);
105 }
106
107 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
108
109 FGAtmosphere::~FGAtmosphere()
110 {
111   Debug(1);
112 }
113
114 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
115
116 bool FGAtmosphere::InitModel(void)
117 {
118   if (!FGModel::InitModel()) return false;
119
120   UseInternal();  // this is the default
121
122   Calculate(h);
123   StdSLtemperature = SLtemperature = 518.67;
124   StdSLpressure    = SLpressure = 2116.22;
125   StdSLdensity     = SLdensity = 0.00237767;
126   StdSLsoundspeed  = SLsoundspeed = sqrt(SHRatio*Reng*StdSLtemperature);
127   rSLtemperature = 1.0/StdSLtemperature;
128   rSLpressure    = 1.0/StdSLpressure;
129   rSLdensity     = 1.0/StdSLdensity;
130   rSLsoundspeed  = 1.0/StdSLsoundspeed;
131
132   return true;
133 }
134
135 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
136
137 bool FGAtmosphere::Run(void)
138 {
139   if (FGModel::Run()) return true;
140   if (FDMExec->Holding()) return false;
141
142   RunPreFunctions();
143
144   T_dev = 0.0;
145   h = Propagate->GetAltitudeASL();
146
147   if (!useExternal) {
148     Calculate(h);
149     CalculateDerived();
150   } else {
151     CalculateDerived();
152   }
153
154   RunPostFunctions();
155
156   Debug(2);
157   return false;
158 }
159
160 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
161 //
162 // See reference 1
163
164 void FGAtmosphere::Calculate(double altitude)
165 {
166   double slope, reftemp, refpress;
167   int i = lastIndex;
168
169   if (altitude < htab[lastIndex]) {
170     if (altitude <= 0) {
171       i = 0;
172       altitude=0;
173     } else {
174        i = lastIndex-1;
175        while (htab[i] > altitude) i--;
176     }
177   } else if (altitude > htab[lastIndex+1]) {
178     if (altitude >= htab[7]) {
179       i = 7;
180       altitude = htab[7];
181     } else {
182       i = lastIndex+1;
183       while (htab[i+1] < altitude) i++;
184     }
185   }
186
187   switch(i) {
188   case 0: // Sea level
189     slope     = -0.00356616; // R/ft.
190     reftemp   = 518.67;   // in degrees Rankine, 288.15 Kelvin
191     refpress  = 2116.22;    // psf
192     //refdens   = 0.00237767;  // slugs/cubic ft.
193     break;
194   case 1:     // 36089 ft. or 11 km
195     slope     = 0;
196     reftemp   = 389.97; // in degrees Rankine, 216.65 Kelvin
197     refpress  = 472.763;
198     //refdens   = 0.000706032;
199     break;
200   case 2:     // 65616 ft. or 20 km
201     slope     = 0.00054864;
202     reftemp   = 389.97; // in degrees Rankine, 216.65 Kelvin
203     refpress  = 114.636;
204     //refdens   = 0.000171306;
205     break;
206   case 3:     // 104986 ft. or 32 km
207     slope     = 0.001536192;
208     reftemp   = 411.57; // in degrees Rankine, 228.65 Kelvin
209     refpress  = 18.128;
210     //refdens   = 1.18422e-05;
211     break;
212   case 4:     // 154199 ft. 47 km
213     slope     = 0;
214     reftemp   = 487.17; // in degrees Rankine, 270.65 Kelvin
215     refpress  = 2.316;
216     //refdens   = 4.00585e-7;
217     break;
218   case 5:     // 167322 ft. or 51 km
219     slope     = -0.001536192;
220     reftemp   = 487.17; // in degrees Rankine, 270.65 Kelvin
221     refpress  = 1.398;
222     //refdens   = 8.17102e-7;
223     break;
224   case 6:     // 232940 ft. or 71 km
225     slope     = -0.00109728;
226     reftemp   = 386.368; // in degrees Rankine, 214.649 Kelvin
227     refpress  = 0.0826;
228     //refdens   = 8.77702e-9;
229     break;
230   case 7:     // 278385 ft. or 84.8520 km
231     slope     = 0;
232     reftemp   = 336.5; // in degrees Rankine, 186.94 Kelvin
233     refpress  = 0.00831;
234     //refdens   = 2.19541e-10;
235     break;
236   default:     // sea level
237     slope     = -0.00356616; // R/ft.
238     reftemp   = 518.67;   // in degrees Rankine, 288.15 Kelvin
239     refpress  = 2116.22;    // psf
240     //refdens   = 0.00237767;  // slugs/cubic ft.
241     break;
242
243   }
244
245   // If delta_T is set, then that is our temperature deviation at any altitude.
246   // If not, then we'll estimate a deviation based on the sea level deviation (if set).
247
248   if(!StandardTempOnly) {
249     T_dev = 0.0;
250     if (delta_T != 0.0) {
251       T_dev = delta_T;
252     } else {
253       if ((altitude < 36089.239) && (T_dev_sl != 0.0)) {
254         T_dev = T_dev_sl * ( 1.0 - (altitude/36089.239));
255       }
256     }
257     reftemp+=T_dev;
258   }
259
260   if (slope == 0) {
261     intTemperature = reftemp;
262     intPressure = refpress*exp(-Inertial->SLgravity()/(reftemp*Reng)*(altitude-htab[i]));
263     intDensity = intPressure/(Reng*intTemperature);
264   } else {
265     intTemperature = reftemp+slope*(altitude-htab[i]);
266     intPressure = refpress*pow(intTemperature/reftemp,-Inertial->SLgravity()/(slope*Reng));
267     intDensity = intPressure/(Reng*intTemperature);
268   }
269   
270   lastIndex=i;
271 }
272
273 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
274 // Calculate parameters derived from T, P and rho
275 // Sum gust and turbulence values in NED frame into the wind vector.
276
277 void FGAtmosphere::CalculateDerived(void)
278 {
279   T_dev = (*temperature) - GetTemperature(h);
280
281   if (T_dev == 0.0) density_altitude = h;
282   else              density_altitude = 518.4/0.00357 * (1.0 - pow(GetDensityRatio(),0.235));
283
284   if (turbType != ttNone) Turbulence();
285
286   vTotalWindNED = vWindNED + vGustNED + vTurbulenceNED;
287
288    // psiw (Wind heading) is the direction the wind is blowing towards
289   if (vWindNED(eX) != 0.0) psiw = atan2( vWindNED(eY), vWindNED(eX) );
290   if (psiw < 0) psiw += 2*M_PI;
291
292   soundspeed = sqrt(SHRatio*Reng*(*temperature));
293
294   intViscosity = Beta * pow(intTemperature, 1.5) / (SutherlandConstant + intTemperature);
295   intKinematicViscosity = intViscosity / intDensity;
296 }
297
298
299 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
300 // Get the standard atmospheric properties at a specified altitude
301
302 void FGAtmosphere::GetStdAtmosphere(double altitude) {
303   StandardTempOnly = true;
304   Calculate(altitude);
305   StandardTempOnly = false;
306   atmosphere.Temperature = intTemperature;
307   atmosphere.Pressure = intPressure;
308   atmosphere.Density = intDensity;
309
310   // Reset the internal atmospheric state
311   Calculate(h);
312 }
313
314 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
315 // Get the standard pressure at a specified altitude
316
317 double FGAtmosphere::GetPressure(double altitude) {
318   GetStdAtmosphere(altitude);
319   return atmosphere.Pressure;
320 }
321
322 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
323 // Get the standard temperature at a specified altitude
324
325 double FGAtmosphere::GetTemperature(double altitude) {
326   GetStdAtmosphere(altitude);
327   return atmosphere.Temperature;
328 }
329
330 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
331 // Get the standard density at a specified altitude
332
333 double FGAtmosphere::GetDensity(double altitude) {
334   GetStdAtmosphere(altitude);
335   return atmosphere.Density;
336 }
337
338
339 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
340 // square a value, but preserve the original sign
341
342 static inline double square_signed (double value)
343 {
344     if (value < 0)
345         return value * value * -1;
346     else
347         return value * value;
348 }
349
350 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
351 //
352 // psi is the angle that the wind is blowing *towards*
353
354 void FGAtmosphere::SetWindspeed(double speed)
355 {
356   if (vWindNED.Magnitude() == 0.0) {
357     psiw = 0.0;
358     vWindNED(eNorth) = speed;
359   } else {
360     vWindNED(eNorth) = speed * cos(psiw);
361     vWindNED(eEast) = speed * sin(psiw);
362     vWindNED(eDown) = 0.0;
363   }
364 }
365
366 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
367
368 double FGAtmosphere::GetWindspeed(void) const
369 {
370   return vWindNED.Magnitude();
371 }
372
373 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
374 //
375 // psi is the angle that the wind is blowing *towards*
376
377 void FGAtmosphere::SetWindPsi(double dir)
378 {
379   double mag = GetWindspeed();
380   psiw = dir;
381   SetWindspeed(mag);  
382 }
383
384 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
385
386 void FGAtmosphere::Turbulence(void)
387 {
388   double DeltaT = rate*FDMExec->GetDeltaT();
389
390   switch (turbType) {
391   case ttStandard: {
392     // TurbGain = TurbGain * TurbGain * 100.0; // what is this!?
393
394     vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX));
395     vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX));
396     vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX));
397
398     MagnitudedAccelDt = 1 - 2.0*(double(rand())/double(RAND_MAX)) - Magnitude;
399                                 // Scale the magnitude so that it moves
400                                 // away from the peaks
401     MagnitudedAccelDt = ((MagnitudedAccelDt - Magnitude) /
402                          (1 + fabs(Magnitude)));
403     MagnitudeAccel    += MagnitudedAccelDt*TurbRate*DeltaT;
404     Magnitude         += MagnitudeAccel*DeltaT;
405     Magnitude          = fabs(Magnitude);
406
407     vDirectiondAccelDt.Normalize();
408
409                                 // deemphasise non-vertical forces
410     vDirectiondAccelDt(eX) = square_signed(vDirectiondAccelDt(eX));
411     vDirectiondAccelDt(eY) = square_signed(vDirectiondAccelDt(eY));
412
413     vDirectionAccel += vDirectiondAccelDt*TurbRate*DeltaT;
414     vDirectionAccel.Normalize();
415     vDirection      += vDirectionAccel*DeltaT;
416
417     vDirection.Normalize();
418
419                                 // Diminish turbulence within three wingspans
420                                 // of the ground
421     vTurbulenceNED = TurbGain * Magnitude * vDirection;
422     double HOverBMAC = Auxiliary->GetHOverBMAC();
423     if (HOverBMAC < 3.0)
424         vTurbulenceNED *= (HOverBMAC / 3.0) * (HOverBMAC / 3.0);
425
426     // I don't believe these next two statements calculate the proper gradient over
427     // the aircraft body. One reason is because this has no relationship with the
428     // orientation or velocity of the aircraft, which it must have. What is vTurbulenceGrad
429     // supposed to represent? And the direction and magnitude of the turbulence can change,
430     // so both accelerations need to be accounted for, no?
431
432     // Need to determine the turbulence change in body axes between two time points.
433
434     vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection;
435     vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad;
436
437     if (Aircraft->GetWingSpan() > 0) {
438       vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan();
439     } else {
440       vTurbPQR(eP) = vBodyTurbGrad(eY)/30.0;
441     }
442 //     if (Aircraft->GetHTailArm() != 0.0)
443 //       vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm();
444 //     else
445 //       vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0;
446
447     if (Aircraft->GetVTailArm() > 0)
448       vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm();
449     else
450       vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0;
451
452                                 // Clear the horizontal forces
453                                 // actually felt by the plane, now
454                                 // that we've used them to calculate
455                                 // moments.
456                                 // Why? (JSB)
457 //    vTurbulenceNED(eX) = 0.0;
458 //    vTurbulenceNED(eY) = 0.0;
459
460     break;
461   }
462   case ttBerndt: { // This is very experimental and incomplete at the moment.
463
464     vDirectiondAccelDt(eX) = GaussianRandomNumber();
465     vDirectiondAccelDt(eY) = GaussianRandomNumber();
466     vDirectiondAccelDt(eZ) = GaussianRandomNumber();
467 /*
468     MagnitudedAccelDt = GaussianRandomNumber();
469     MagnitudeAccel    += MagnitudedAccelDt * DeltaT;
470     Magnitude         += MagnitudeAccel * DeltaT;
471 */
472     Magnitude         += GaussianRandomNumber() * DeltaT;
473
474     vDirectiondAccelDt.Normalize();
475     vDirectionAccel += TurbRate * vDirectiondAccelDt * DeltaT;
476     vDirectionAccel.Normalize();
477     vDirection      += vDirectionAccel*DeltaT;
478
479     // Diminish z-vector within two wingspans of the ground
480     double HOverBMAC = Auxiliary->GetHOverBMAC();
481     if (HOverBMAC < 2.0) vDirection(eZ) *= HOverBMAC / 2.0;
482
483     vDirection.Normalize();
484
485     vTurbulenceNED = TurbGain*Magnitude * vDirection;
486     vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection;
487
488     vBodyTurbGrad = Propagate->GetTl2b() * vTurbulenceGrad;
489     vTurbPQR(eP) = vBodyTurbGrad(eY) / Aircraft->GetWingSpan();
490     if (Aircraft->GetHTailArm() > 0)
491       vTurbPQR(eQ) = vBodyTurbGrad(eZ) / Aircraft->GetHTailArm();
492     else
493       vTurbPQR(eQ) = vBodyTurbGrad(eZ) / 10.0;
494
495     if (Aircraft->GetVTailArm() > 0)
496       vTurbPQR(eR) = vBodyTurbGrad(eX) / Aircraft->GetVTailArm();
497     else
498       vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0;
499
500     break;
501   }
502   case ttCulp: { 
503
504     vTurbPQR(eP) = wind_from_clockwise;
505     if (TurbGain == 0.0) return;
506   
507     // keep the inputs within allowable limts for this model
508     if (TurbGain < 0.0) TurbGain = 0.0;
509     if (TurbGain > 1.0) TurbGain = 1.0;
510     if (TurbRate < 0.0) TurbRate = 0.0;
511     if (TurbRate > 30.0) TurbRate = 30.0;
512     if (Rhythmicity < 0.0) Rhythmicity = 0.0;
513     if (Rhythmicity > 1.0) Rhythmicity = 1.0;
514
515     // generate a sine wave corresponding to turbulence rate in hertz
516     double time = FDMExec->GetSimTime();
517     double sinewave = sin( time * TurbRate * 6.283185307 );
518
519     double random = 0.0;
520     if (target_time == 0.0) {
521       strength = random = 1 - 2.0*(double(rand())/double(RAND_MAX));
522       target_time = time + 0.71 + (random * 0.5);
523     }
524     if (time > target_time) {
525       spike = 1.0;
526       target_time = 0.0;
527     }    
528
529     // max vertical wind speed in fps, corresponds to TurbGain = 1.0
530     double max_vs = 40;
531
532     vTurbulenceNED(1) = vTurbulenceNED(2) = vTurbulenceNED(3) = 0.0;
533     double delta = strength * max_vs * TurbGain * (1-Rhythmicity) * spike;
534
535     // Vertical component of turbulence.
536     vTurbulenceNED(3) = sinewave * max_vs * TurbGain * Rhythmicity;
537     vTurbulenceNED(3)+= delta;
538     double HOverBMAC = Auxiliary->GetHOverBMAC();
539     if (HOverBMAC < 3.0)
540         vTurbulenceNED(3) *= HOverBMAC * 0.3333;
541  
542     // Yaw component of turbulence.
543     vTurbulenceNED(1) = sin( delta * 3.0 );
544     vTurbulenceNED(2) = cos( delta * 3.0 );
545
546     // Roll component of turbulence. Clockwise vortex causes left roll.
547     vTurbPQR(eP) += delta * 0.04;
548
549     spike = spike * 0.9;
550     break;
551   }
552   default:
553     break;
554   }
555 }
556
557 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
558
559 void FGAtmosphere::UseExternal(void)
560 {
561   temperature=&exTemperature;
562   pressure=&exPressure;
563   density=&exDensity;
564   useExternal=true;
565 }
566
567 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
568
569 void FGAtmosphere::UseInternal(void)
570 {
571   temperature=&intTemperature;
572   pressure=&intPressure;
573   density=&intDensity;
574   useExternal=false;
575 }
576
577 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
578
579 void FGAtmosphere::bind(void)
580 {
581   typedef double (FGAtmosphere::*PMF)(int) const;
582   typedef double (FGAtmosphere::*PMFv)(void) const;
583   typedef int (FGAtmosphere::*PMFt)(void) const;
584   typedef void   (FGAtmosphere::*PMFd)(int,double);
585   typedef void   (FGAtmosphere::*PMFi)(int);
586   PropertyManager->Tie("atmosphere/T-R", this, (PMFv)&FGAtmosphere::GetTemperature);
587   PropertyManager->Tie("atmosphere/rho-slugs_ft3", this, (PMFv)&FGAtmosphere::GetDensity);
588   PropertyManager->Tie("atmosphere/P-psf", this, (PMFv)&FGAtmosphere::GetPressure);
589   PropertyManager->Tie("atmosphere/a-fps", this, &FGAtmosphere::GetSoundSpeed);
590   PropertyManager->Tie("atmosphere/T-sl-R", this, &FGAtmosphere::GetTemperatureSL);
591   PropertyManager->Tie("atmosphere/rho-sl-slugs_ft3", this, &FGAtmosphere::GetDensitySL);
592   PropertyManager->Tie("atmosphere/P-sl-psf", this, &FGAtmosphere::GetPressureSL);
593   PropertyManager->Tie("atmosphere/a-sl-fps", this, &FGAtmosphere::GetSoundSpeedSL);
594   PropertyManager->Tie("atmosphere/theta", this, &FGAtmosphere::GetTemperatureRatio);
595   PropertyManager->Tie("atmosphere/sigma", this, &FGAtmosphere::GetDensityRatio);
596   PropertyManager->Tie("atmosphere/delta", this, &FGAtmosphere::GetPressureRatio);
597   PropertyManager->Tie("atmosphere/a-ratio", this, &FGAtmosphere::GetSoundSpeedRatio);
598   PropertyManager->Tie("atmosphere/psiw-rad", this, &FGAtmosphere::GetWindPsi, &FGAtmosphere::SetWindPsi);
599   PropertyManager->Tie("atmosphere/delta-T", this, &FGAtmosphere::GetDeltaT, &FGAtmosphere::SetDeltaT);
600   PropertyManager->Tie("atmosphere/T-sl-dev-F", this, &FGAtmosphere::GetSLTempDev, &FGAtmosphere::SetSLTempDev);
601   PropertyManager->Tie("atmosphere/density-altitude", this, &FGAtmosphere::GetDensityAltitude);
602
603   PropertyManager->Tie("atmosphere/wind-north-fps", this, eNorth, (PMF)&FGAtmosphere::GetWindNED,
604                                                           (PMFd)&FGAtmosphere::SetWindNED);
605   PropertyManager->Tie("atmosphere/wind-east-fps",  this, eEast, (PMF)&FGAtmosphere::GetWindNED,
606                                                           (PMFd)&FGAtmosphere::SetWindNED);
607   PropertyManager->Tie("atmosphere/wind-down-fps",  this, eDown, (PMF)&FGAtmosphere::GetWindNED,
608                                                           (PMFd)&FGAtmosphere::SetWindNED);
609   PropertyManager->Tie("atmosphere/wind-mag-fps", this, &FGAtmosphere::GetWindspeed,
610                                                         &FGAtmosphere::SetWindspeed);
611   PropertyManager->Tie("atmosphere/total-wind-north-fps", this, eNorth, (PMF)&FGAtmosphere::GetTotalWindNED);
612   PropertyManager->Tie("atmosphere/total-wind-east-fps",  this, eEast,  (PMF)&FGAtmosphere::GetTotalWindNED);
613   PropertyManager->Tie("atmosphere/total-wind-down-fps",  this, eDown,  (PMF)&FGAtmosphere::GetTotalWindNED);
614
615   PropertyManager->Tie("atmosphere/gust-north-fps", this, eNorth, (PMF)&FGAtmosphere::GetGustNED,
616                                                           (PMFd)&FGAtmosphere::SetGustNED);
617   PropertyManager->Tie("atmosphere/gust-east-fps",  this, eEast, (PMF)&FGAtmosphere::GetGustNED,
618                                                           (PMFd)&FGAtmosphere::SetGustNED);
619   PropertyManager->Tie("atmosphere/gust-down-fps",  this, eDown, (PMF)&FGAtmosphere::GetGustNED,
620                                                           (PMFd)&FGAtmosphere::SetGustNED);
621
622   PropertyManager->Tie("atmosphere/turb-north-fps", this, eNorth, (PMF)&FGAtmosphere::GetTurbNED,
623                                                           (PMFd)&FGAtmosphere::SetTurbNED);
624   PropertyManager->Tie("atmosphere/turb-east-fps",  this, eEast, (PMF)&FGAtmosphere::GetTurbNED,
625                                                           (PMFd)&FGAtmosphere::SetTurbNED);
626   PropertyManager->Tie("atmosphere/turb-down-fps",  this, eDown, (PMF)&FGAtmosphere::GetTurbNED,
627                                                           (PMFd)&FGAtmosphere::SetTurbNED);
628
629   PropertyManager->Tie("atmosphere/p-turb-rad_sec", this,1, (PMF)&FGAtmosphere::GetTurbPQR);
630   PropertyManager->Tie("atmosphere/q-turb-rad_sec", this,2, (PMF)&FGAtmosphere::GetTurbPQR);
631   PropertyManager->Tie("atmosphere/r-turb-rad_sec", this,3, (PMF)&FGAtmosphere::GetTurbPQR);
632   PropertyManager->Tie("atmosphere/turb-type", this, (PMFt)&FGAtmosphere::GetTurbType, (PMFi)&FGAtmosphere::SetTurbType);
633   PropertyManager->Tie("atmosphere/turb-rate", this, &FGAtmosphere::GetTurbRate, &FGAtmosphere::SetTurbRate);
634   PropertyManager->Tie("atmosphere/turb-gain", this, &FGAtmosphere::GetTurbGain, &FGAtmosphere::SetTurbGain);
635   PropertyManager->Tie("atmosphere/turb-rhythmicity", this, &FGAtmosphere::GetRhythmicity,
636                                                             &FGAtmosphere::SetRhythmicity);
637 }
638
639 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
640 //    The bitmasked value choices are as follows:
641 //    unset: In this case (the default) JSBSim would only print
642 //       out the normally expected messages, essentially echoing
643 //       the config files as they are read. If the environment
644 //       variable is not set, debug_lvl is set to 1 internally
645 //    0: This requests JSBSim not to output any messages
646 //       whatsoever.
647 //    1: This value explicity requests the normal JSBSim
648 //       startup messages
649 //    2: This value asks for a message to be printed out when
650 //       a class is instantiated
651 //    4: When this value is set, a message is displayed when a
652 //       FGModel object executes its Run() method
653 //    8: When this value is set, various runtime state variables
654 //       are printed out periodically
655 //    16: When set various parameters are sanity checked and
656 //       a message is printed out when they go out of bounds
657
658 void FGAtmosphere::Debug(int from)
659 {
660   if (debug_lvl <= 0) return;
661
662   if (debug_lvl & 1) { // Standard console startup message output
663     if (from == 0) { // Constructor
664     }
665   }
666   if (debug_lvl & 2 ) { // Instantiation/Destruction notification
667     if (from == 0) cout << "Instantiated: FGAtmosphere" << endl;
668     if (from == 1) cout << "Destroyed:    FGAtmosphere" << endl;
669   }
670   if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
671   }
672   if (debug_lvl & 8 ) { // Runtime state variables
673   }
674   if (debug_lvl & 16) { // Sanity checking
675   }
676   if (debug_lvl & 128) { // Turbulence
677     if (first_pass && from == 2) {
678       first_pass = false;
679       cout << "vTurbulenceNED(X), vTurbulenceNED(Y), vTurbulenceNED(Z), "
680            << "vTurbulenceGrad(X), vTurbulenceGrad(Y), vTurbulenceGrad(Z), "
681            << "vDirection(X), vDirection(Y), vDirection(Z), "
682            << "Magnitude, "
683            << "vTurbPQR(P), vTurbPQR(Q), vTurbPQR(R), " << endl;
684     } 
685     if (from == 2) {
686       cout << vTurbulenceNED << ", " << vTurbulenceGrad << ", " << vDirection << ", " << Magnitude << ", " << vTurbPQR << endl;
687     }
688   }
689   if (debug_lvl & 64) {
690     if (from == 0) { // Constructor
691       cout << IdSrc << endl;
692       cout << IdHdr << endl;
693     }
694   }
695 }
696
697 } // namespace JSBSim