]> git.mxchange.org Git - flightgear.git/blob - src/FDM/JSBSim/models/FGAuxiliary.cpp
Merge branch 'master' of git://gitorious.org/fg/flightgear into next
[flightgear.git] / src / FDM / JSBSim / models / FGAuxiliary.cpp
1 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
3  Module:       FGAuxiliary.cpp
4  Author:       Tony Peden, Jon Berndt
5  Date started: 01/26/99
6  Purpose:      Calculates additional parameters needed by the visual system, etc.
7  Called by:    FGFDMExec
8
9  ------------- Copyright (C) 1999  Jon S. Berndt (jon@jsbsim.org) -------------
10
11  This program is free software; you can redistribute it and/or modify it under
12  the terms of the GNU Lesser General Public License as published by the Free Software
13  Foundation; either version 2 of the License, or (at your option) any later
14  version.
15
16  This program is distributed in the hope that it will be useful, but WITHOUT
17  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18  FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
19  details.
20
21  You should have received a copy of the GNU Lesser General Public License along with
22  this program; if not, write to the Free Software Foundation, Inc., 59 Temple
23  Place - Suite 330, Boston, MA  02111-1307, USA.
24
25  Further information about the GNU Lesser General Public License can also be found on
26  the world wide web at http://www.gnu.org.
27
28 FUNCTIONAL DESCRIPTION
29 --------------------------------------------------------------------------------
30 This class calculates various auxiliary parameters.
31
32 REFERENCES
33   Anderson, John D. "Introduction to Flight", 3rd Edition, McGraw-Hill, 1989
34                     pgs. 112-126
35 HISTORY
36 --------------------------------------------------------------------------------
37 01/26/99   JSB   Created
38
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 INCLUDES
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
42
43 #include "FGAuxiliary.h"
44 #include "FGAerodynamics.h"
45 #include "FGPropagate.h"
46 #include "FGAtmosphere.h"
47 #include "FGFDMExec.h"
48 #include "FGAircraft.h"
49 #include "FGInertial.h"
50 #include "FGExternalReactions.h"
51 #include "FGBuoyantForces.h"
52 #include "FGGroundReactions.h"
53 #include "FGPropulsion.h"
54 #include "FGMassBalance.h"
55 #include "input_output/FGPropertyManager.h"
56 #include <iostream>
57
58 using namespace std;
59
60 namespace JSBSim {
61
62 static const char *IdSrc = "$Id: FGAuxiliary.cpp,v 1.42 2010/07/27 23:18:19 jberndt Exp $";
63 static const char *IdHdr = ID_AUXILIARY;
64
65 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
66 CLASS IMPLEMENTATION
67 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
68
69
70 FGAuxiliary::FGAuxiliary(FGFDMExec* fdmex) : FGModel(fdmex)
71 {
72   Name = "FGAuxiliary";
73   vcas = veas = pt = tat = 0;
74   psl = rhosl = 1;
75   qbar = 0;
76   qbarUW = 0.0;
77   qbarUV = 0.0;
78   Re = 0.0;
79   Mach = 0.0;
80   alpha = beta = 0.0;
81   adot = bdot = 0.0;
82   gamma = Vt = Vground = 0.0;
83   psigt = 0.0;
84   day_of_year = 1;
85   seconds_in_day = 0.0;
86   hoverbmac = hoverbcg = 0.0;
87   tatc = RankineToCelsius(tat);
88
89   vPilotAccel.InitMatrix();
90   vPilotAccelN.InitMatrix();
91   vToEyePt.InitMatrix();
92   vAeroPQR.InitMatrix();
93   vEulerRates.InitMatrix();
94
95   bind();
96
97   Debug(0);
98 }
99
100 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
101
102 bool FGAuxiliary::InitModel(void)
103 {
104   if (!FGModel::InitModel()) return false;
105
106   vcas = veas = pt = tat = 0;
107   psl = rhosl = 1;
108   qbar = 0;
109   qbarUW = 0.0;
110   qbarUV = 0.0;
111   Mach = 0.0;
112   alpha = beta = 0.0;
113   adot = bdot = 0.0;
114   gamma = Vt = Vground = 0.0;
115   psigt = 0.0;
116   day_of_year = 1;
117   seconds_in_day = 0.0;
118   hoverbmac = hoverbcg = 0.0;
119
120   vPilotAccel.InitMatrix();
121   vPilotAccelN.InitMatrix();
122   vToEyePt.InitMatrix();
123   vAeroPQR.InitMatrix();
124   vEulerRates.InitMatrix();
125
126   return true;
127 }
128   
129 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
130
131 FGAuxiliary::~FGAuxiliary()
132 {
133   Debug(1);
134 }
135
136 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
137
138 bool FGAuxiliary::Run()
139 {
140   double A,B,D;
141
142   if (FGModel::Run()) return true; // return true if error returned from base class
143   if (FDMExec->Holding()) return false;
144
145   RunPreFunctions();
146
147   const FGColumnVector3& vPQR = Propagate->GetPQR();
148   const FGColumnVector3& vUVW = Propagate->GetUVW();
149   const FGColumnVector3& vUVWdot = Propagate->GetUVWdot();
150   const FGColumnVector3& vVel = Propagate->GetVel();
151
152   p = Atmosphere->GetPressure();
153   rhosl = Atmosphere->GetDensitySL();
154   psl = Atmosphere->GetPressureSL();
155   sat = Atmosphere->GetTemperature();
156
157 // Rotation
158
159   double cTht = Propagate->GetCosEuler(eTht);
160   double sTht = Propagate->GetSinEuler(eTht);
161   double cPhi = Propagate->GetCosEuler(ePhi);
162   double sPhi = Propagate->GetSinEuler(ePhi);
163
164   vEulerRates(eTht) = vPQR(eQ)*cPhi - vPQR(eR)*sPhi;
165   if (cTht != 0.0) {
166     vEulerRates(ePsi) = (vPQR(eQ)*sPhi + vPQR(eR)*cPhi)/cTht;
167     vEulerRates(ePhi) = vPQR(eP) + vEulerRates(ePsi)*sTht;
168   }
169
170 // Combine the wind speed with aircraft speed to obtain wind relative speed
171   FGColumnVector3 wind = Propagate->GetTl2b()*Atmosphere->GetTotalWindNED();
172   vAeroPQR = vPQR - Atmosphere->GetTurbPQR();
173   vAeroUVW = vUVW - wind;
174
175   Vt = vAeroUVW.Magnitude();
176   if ( Vt > 0.05) {
177     if (vAeroUVW(eW) != 0.0)
178       alpha = vAeroUVW(eU)*vAeroUVW(eU) > 0.0 ? atan2(vAeroUVW(eW), vAeroUVW(eU)) : 0.0;
179     if (vAeroUVW(eV) != 0.0)
180       beta = vAeroUVW(eU)*vAeroUVW(eU)+vAeroUVW(eW)*vAeroUVW(eW) > 0.0 ? atan2(vAeroUVW(eV),
181              sqrt(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW))) : 0.0;
182
183     double mUW = (vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW));
184     double signU=1;
185     if (vAeroUVW(eU) != 0.0)
186       signU = vAeroUVW(eU)/fabs(vAeroUVW(eU));
187
188     if ( (mUW == 0.0) || (Vt == 0.0) ) {
189       adot = 0.0;
190       bdot = 0.0;
191     } else {
192       adot = (vAeroUVW(eU)*vUVWdot(eW) - vAeroUVW(eW)*vUVWdot(eU))/mUW;
193       bdot = (signU*mUW*vUVWdot(eV) - vAeroUVW(eV)*(vAeroUVW(eU)*vUVWdot(eU)
194               + vAeroUVW(eW)*vUVWdot(eW)))/(Vt*Vt*sqrt(mUW));
195     }
196   } else {
197     alpha = beta = adot = bdot = 0;
198   }
199
200   Re = Vt * Aircraft->Getcbar() / Atmosphere->GetKinematicViscosity();
201
202   qbar = 0.5*Atmosphere->GetDensity()*Vt*Vt;
203   qbarUW = 0.5*Atmosphere->GetDensity()*(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW));
204   qbarUV = 0.5*Atmosphere->GetDensity()*(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eV)*vAeroUVW(eV));
205   Mach = Vt / Atmosphere->GetSoundSpeed();
206   MachU = vMachUVW(eU) = vAeroUVW(eU) / Atmosphere->GetSoundSpeed();
207   vMachUVW(eV) = vAeroUVW(eV) / Atmosphere->GetSoundSpeed();
208   vMachUVW(eW) = vAeroUVW(eW) / Atmosphere->GetSoundSpeed();
209
210 // Position
211
212   Vground = sqrt( vVel(eNorth)*vVel(eNorth) + vVel(eEast)*vVel(eEast) );
213
214   psigt = atan2(vVel(eEast), vVel(eNorth));
215   if (psigt < 0.0) psigt += 2*M_PI;
216   gamma = atan2(-vVel(eDown), Vground);
217
218   tat = sat*(1 + 0.2*Mach*Mach); // Total Temperature, isentropic flow
219   tatc = RankineToCelsius(tat);
220
221   if (MachU < 1) {   // Calculate total pressure assuming isentropic flow
222     pt = p*pow((1 + 0.2*MachU*MachU),3.5);
223   } else {
224     // Use Rayleigh pitot tube formula for normal shock in front of pitot tube
225     B = 5.76*MachU*MachU/(5.6*MachU*MachU - 0.8);
226     D = (2.8*MachU*MachU-0.4)*0.4167;
227     pt = p*pow(B,3.5)*D;
228   }
229
230   A = pow(((pt-p)/psl+1),0.28571);
231   if (MachU > 0.0) {
232     vcas = sqrt(7*psl/rhosl*(A-1));
233     veas = sqrt(2*qbar/rhosl);
234   } else {
235     vcas = veas = 0.0;
236   }
237
238   vPilotAccel.InitMatrix();
239   if ( Vt > 1.0 ) {
240      // Use the "+=" operator to avoid the creation of temporary objects.
241      vAircraftAccel = Aerodynamics->GetForces();
242      vAircraftAccel += Propulsion->GetForces();
243      vAircraftAccel += GroundReactions->GetForces();
244      vAircraftAccel += ExternalReactions->GetForces();
245      vAircraftAccel += BuoyantForces->GetForces();
246
247      vAircraftAccel /= MassBalance->GetMass();
248      // Nz is Acceleration in "g's", along normal axis (-Z body axis)
249      Nz = -vAircraftAccel(eZ)/Inertial->SLgravity();
250      vToEyePt = MassBalance->StructuralToBody(Aircraft->GetXYZep());
251      vPilotAccel = vAircraftAccel + Propagate->GetPQRdot() * vToEyePt;
252      vPilotAccel += vPQR * (vPQR * vToEyePt);
253   } else {
254      // The line below handles low velocity (and on-ground) cases, basically
255      // representing the opposite of the force that the landing gear would
256      // exert on the ground (which is just the total weight). This eliminates
257      // any jitter that could be introduced by the landing gear. Theoretically,
258      // this branch could be eliminated, with a penalty of having a short
259      // transient at startup (lasting only a fraction of a second).
260      vPilotAccel = Propagate->GetTl2b() * FGColumnVector3( 0.0, 0.0, -Inertial->SLgravity() );
261      Nz = -vPilotAccel(eZ)/Inertial->SLgravity();
262   }
263
264   vPilotAccelN = vPilotAccel/Inertial->SLgravity();
265
266   // VRP computation
267   const FGLocation& vLocation = Propagate->GetLocation();
268   FGColumnVector3& vrpStructural = Aircraft->GetXYZvrp();
269   FGColumnVector3 vrpBody = MassBalance->StructuralToBody( vrpStructural );
270   FGColumnVector3 vrpLocal = Propagate->GetTb2l() * vrpBody;
271   vLocationVRP = vLocation.LocalToLocation( vrpLocal );
272
273   // Recompute some derived values now that we know the dependent parameters values ...
274   hoverbcg = Propagate->GetDistanceAGL() / Aircraft->GetWingSpan();
275
276   FGColumnVector3 vMac = Propagate->GetTb2l()*MassBalance->StructuralToBody(Aircraft->GetXYZrp());
277   hoverbmac = (Propagate->GetDistanceAGL() + vMac(3)) / Aircraft->GetWingSpan();
278
279   // when all model are executed, 
280   // please calculate the distance from the initial point
281
282   CalculateRelativePosition();
283
284   RunPostFunctions();
285
286   return false;
287 }
288
289 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
290 //
291 // A positive headwind is blowing with you, a negative headwind is blowing against you.
292 // psi is the direction the wind is blowing *towards*.
293
294 double FGAuxiliary::GetHeadWind(void) const
295 {
296   double psiw,vw;
297
298   psiw = Atmosphere->GetWindPsi();
299   vw = Atmosphere->GetTotalWindNED().Magnitude();
300
301   return vw*cos(psiw - Propagate->GetEuler(ePsi));
302 }
303
304 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
305 //
306 // A positive crosswind is blowing towards the right (from teh perspective of the
307 // pilot). A negative crosswind is blowing towards the -Y direction (left).
308 // psi is the direction the wind is blowing *towards*.
309
310 double FGAuxiliary::GetCrossWind(void) const
311 {
312   double psiw,vw;
313
314   psiw = Atmosphere->GetWindPsi();
315   vw = Atmosphere->GetTotalWindNED().Magnitude();
316
317   return  vw*sin(psiw - Propagate->GetEuler(ePsi));
318 }
319
320 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
321
322 void FGAuxiliary::bind(void)
323 {
324   typedef double (FGAuxiliary::*PMF)(int) const;
325   typedef double (FGAuxiliary::*PF)(void) const;
326   PropertyManager->Tie("propulsion/tat-r", this, &FGAuxiliary::GetTotalTemperature);
327   PropertyManager->Tie("propulsion/tat-c", this, &FGAuxiliary::GetTAT_C);
328   PropertyManager->Tie("propulsion/pt-lbs_sqft", this, &FGAuxiliary::GetTotalPressure);
329   PropertyManager->Tie("velocities/vc-fps", this, &FGAuxiliary::GetVcalibratedFPS);
330   PropertyManager->Tie("velocities/vc-kts", this, &FGAuxiliary::GetVcalibratedKTS);
331   PropertyManager->Tie("velocities/ve-fps", this, &FGAuxiliary::GetVequivalentFPS);
332   PropertyManager->Tie("velocities/ve-kts", this, &FGAuxiliary::GetVequivalentKTS);
333   PropertyManager->Tie("velocities/machU", this, &FGAuxiliary::GetMachU);
334   PropertyManager->Tie("velocities/p-aero-rad_sec", this, eX, (PMF)&FGAuxiliary::GetAeroPQR);
335   PropertyManager->Tie("velocities/q-aero-rad_sec", this, eY, (PMF)&FGAuxiliary::GetAeroPQR);
336   PropertyManager->Tie("velocities/r-aero-rad_sec", this, eZ, (PMF)&FGAuxiliary::GetAeroPQR);
337   PropertyManager->Tie("velocities/phidot-rad_sec", this, ePhi, (PMF)&FGAuxiliary::GetEulerRates);
338   PropertyManager->Tie("velocities/thetadot-rad_sec", this, eTht, (PMF)&FGAuxiliary::GetEulerRates);
339   PropertyManager->Tie("velocities/psidot-rad_sec", this, ePsi, (PMF)&FGAuxiliary::GetEulerRates);
340   PropertyManager->Tie("velocities/u-aero-fps", this, eU, (PMF)&FGAuxiliary::GetAeroUVW);
341   PropertyManager->Tie("velocities/v-aero-fps", this, eV, (PMF)&FGAuxiliary::GetAeroUVW);
342   PropertyManager->Tie("velocities/w-aero-fps", this, eW, (PMF)&FGAuxiliary::GetAeroUVW);
343   PropertyManager->Tie("velocities/vt-fps", this, &FGAuxiliary::GetVt, &FGAuxiliary::SetVt, true);
344   PropertyManager->Tie("velocities/mach", this, &FGAuxiliary::GetMach, &FGAuxiliary::SetMach, true);
345   PropertyManager->Tie("velocities/vg-fps", this, &FGAuxiliary::GetVground);
346   PropertyManager->Tie("accelerations/a-pilot-x-ft_sec2", this, eX, (PMF)&FGAuxiliary::GetPilotAccel);
347   PropertyManager->Tie("accelerations/a-pilot-y-ft_sec2", this, eY, (PMF)&FGAuxiliary::GetPilotAccel);
348   PropertyManager->Tie("accelerations/a-pilot-z-ft_sec2", this, eZ, (PMF)&FGAuxiliary::GetPilotAccel);
349   PropertyManager->Tie("accelerations/n-pilot-x-norm", this, eX, (PMF)&FGAuxiliary::GetNpilot);
350   PropertyManager->Tie("accelerations/n-pilot-y-norm", this, eY, (PMF)&FGAuxiliary::GetNpilot);
351   PropertyManager->Tie("accelerations/n-pilot-z-norm", this, eZ, (PMF)&FGAuxiliary::GetNpilot);
352   PropertyManager->Tie("accelerations/Nz", this, &FGAuxiliary::GetNz);
353   /* PropertyManager->Tie("atmosphere/headwind-fps", this, &FGAuxiliary::GetHeadWind, true);
354   PropertyManager->Tie("atmosphere/crosswind-fps", this, &FGAuxiliary::GetCrossWind, true); */
355   PropertyManager->Tie("aero/alpha-rad", this, (PF)&FGAuxiliary::Getalpha, &FGAuxiliary::Setalpha, true);
356   PropertyManager->Tie("aero/beta-rad", this, (PF)&FGAuxiliary::Getbeta, &FGAuxiliary::Setbeta, true);
357   PropertyManager->Tie("aero/mag-beta-rad", this, (PF)&FGAuxiliary::GetMagBeta);
358   PropertyManager->Tie("aero/alpha-deg", this, inDegrees, (PMF)&FGAuxiliary::Getalpha);
359   PropertyManager->Tie("aero/beta-deg", this, inDegrees, (PMF)&FGAuxiliary::Getbeta);
360   PropertyManager->Tie("aero/mag-beta-deg", this, inDegrees, (PMF)&FGAuxiliary::GetMagBeta);
361   PropertyManager->Tie("aero/Re", this, &FGAuxiliary::GetReynoldsNumber);
362   PropertyManager->Tie("aero/qbar-psf", this, &FGAuxiliary::Getqbar, &FGAuxiliary::Setqbar, true);
363   PropertyManager->Tie("aero/qbarUW-psf", this, &FGAuxiliary::GetqbarUW, &FGAuxiliary::SetqbarUW, true);
364   PropertyManager->Tie("aero/qbarUV-psf", this, &FGAuxiliary::GetqbarUV, &FGAuxiliary::SetqbarUV, true);
365   PropertyManager->Tie("aero/alphadot-rad_sec", this, (PF)&FGAuxiliary::Getadot, &FGAuxiliary::Setadot, true);
366   PropertyManager->Tie("aero/betadot-rad_sec", this, (PF)&FGAuxiliary::Getbdot, &FGAuxiliary::Setbdot, true);
367   PropertyManager->Tie("aero/alphadot-deg_sec", this, inDegrees, (PMF)&FGAuxiliary::Getadot);
368   PropertyManager->Tie("aero/betadot-deg_sec", this, inDegrees, (PMF)&FGAuxiliary::Getbdot);
369   PropertyManager->Tie("aero/h_b-cg-ft", this, &FGAuxiliary::GetHOverBCG);
370   PropertyManager->Tie("aero/h_b-mac-ft", this, &FGAuxiliary::GetHOverBMAC);
371   PropertyManager->Tie("flight-path/gamma-rad", this, &FGAuxiliary::GetGamma, &FGAuxiliary::SetGamma);
372   PropertyManager->Tie("flight-path/psi-gt-rad", this, &FGAuxiliary::GetGroundTrack);
373
374   PropertyManager->Tie("position/distance-from-start-lon-mt", this, &FGAuxiliary::GetLongitudeRelativePosition);
375   PropertyManager->Tie("position/distance-from-start-lat-mt", this, &FGAuxiliary::GetLatitudeRelativePosition);
376   PropertyManager->Tie("position/distance-from-start-mag-mt", this, &FGAuxiliary::GetDistanceRelativePosition);
377   PropertyManager->Tie("position/vrp-gc-latitude_deg", &vLocationVRP, &FGLocation::GetLatitudeDeg);
378   PropertyManager->Tie("position/vrp-longitude_deg", &vLocationVRP, &FGLocation::GetLongitudeDeg);
379   PropertyManager->Tie("position/vrp-radius-ft", &vLocationVRP, &FGLocation::GetRadius);
380 }
381
382 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
383
384 void FGAuxiliary::CalculateRelativePosition(void)
385
386   const double earth_radius_mt = Inertial->GetRefRadius()*fttom;
387   lat_relative_position=(FDMExec->GetPropagate()->GetLatitude()  - FDMExec->GetIC()->GetLatitudeDegIC() *degtorad)*earth_radius_mt;
388   lon_relative_position=(FDMExec->GetPropagate()->GetLongitude() - FDMExec->GetIC()->GetLongitudeDegIC()*degtorad)*earth_radius_mt;
389   relative_position = sqrt(lat_relative_position*lat_relative_position + lon_relative_position*lon_relative_position);
390 };
391
392 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
393
394 double FGAuxiliary::BadUnits(void) const
395 {
396   cerr << "Bad units" << endl; return 0.0;
397 }
398
399 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
400 //    The bitmasked value choices are as follows:
401 //    unset: In this case (the default) JSBSim would only print
402 //       out the normally expected messages, essentially echoing
403 //       the config files as they are read. If the environment
404 //       variable is not set, debug_lvl is set to 1 internally
405 //    0: This requests JSBSim not to output any messages
406 //       whatsoever.
407 //    1: This value explicity requests the normal JSBSim
408 //       startup messages
409 //    2: This value asks for a message to be printed out when
410 //       a class is instantiated
411 //    4: When this value is set, a message is displayed when a
412 //       FGModel object executes its Run() method
413 //    8: When this value is set, various runtime state variables
414 //       are printed out periodically
415 //    16: When set various parameters are sanity checked and
416 //       a message is printed out when they go out of bounds
417
418 void FGAuxiliary::Debug(int from)
419 {
420   if (debug_lvl <= 0) return;
421
422   if (debug_lvl & 1) { // Standard console startup message output
423     if (from == 0) { // Constructor
424
425     }
426   }
427   if (debug_lvl & 2 ) { // Instantiation/Destruction notification
428     if (from == 0) cout << "Instantiated: FGAuxiliary" << endl;
429     if (from == 1) cout << "Destroyed:    FGAuxiliary" << endl;
430   }
431   if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
432   }
433   if (debug_lvl & 8 ) { // Runtime state variables
434   }
435   if (debug_lvl & 16) { // Sanity checking
436     if (Mach > 100 || Mach < 0.00)
437       cout << "FGPropagate::Mach is out of bounds: " << Mach << endl;
438     if (qbar > 1e6 || qbar < 0.00)
439       cout << "FGPropagate::qbar is out of bounds: " << qbar << endl;
440   }
441   if (debug_lvl & 64) {
442     if (from == 0) { // Constructor
443       cout << IdSrc << endl;
444       cout << IdHdr << endl;
445     }
446   }
447 }
448
449 } // namespace JSBSim