]> git.mxchange.org Git - flightgear.git/blob - src/FDM/JSBSim/models/FGAuxiliary.cpp
Merge branch 'next' of git://gitorious.org/fg/flightgear
[flightgear.git] / src / FDM / JSBSim / models / FGAuxiliary.cpp
1 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
3  Module:       FGAuxiliary.cpp
4  Author:       Tony Peden, Jon Berndt
5  Date started: 01/26/99
6  Purpose:      Calculates additional parameters needed by the visual system, etc.
7  Called by:    FGFDMExec
8
9  ------------- Copyright (C) 1999  Jon S. Berndt (jon@jsbsim.org) -------------
10
11  This program is free software; you can redistribute it and/or modify it under
12  the terms of the GNU Lesser General Public License as published by the Free Software
13  Foundation; either version 2 of the License, or (at your option) any later
14  version.
15
16  This program is distributed in the hope that it will be useful, but WITHOUT
17  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18  FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
19  details.
20
21  You should have received a copy of the GNU Lesser General Public License along with
22  this program; if not, write to the Free Software Foundation, Inc., 59 Temple
23  Place - Suite 330, Boston, MA  02111-1307, USA.
24
25  Further information about the GNU Lesser General Public License can also be found on
26  the world wide web at http://www.gnu.org.
27
28 FUNCTIONAL DESCRIPTION
29 --------------------------------------------------------------------------------
30 This class calculates various auxiliary parameters.
31
32 REFERENCES
33   Anderson, John D. "Introduction to Flight", 3rd Edition, McGraw-Hill, 1989
34                     pgs. 112-126
35 HISTORY
36 --------------------------------------------------------------------------------
37 01/26/99   JSB   Created
38
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 INCLUDES
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
42
43 #include "FGAuxiliary.h"
44 #include "FGAerodynamics.h"
45 #include "FGPropagate.h"
46 #include "FGAtmosphere.h"
47 #include "FGFDMExec.h"
48 #include "FGAircraft.h"
49 #include "FGInertial.h"
50 #include "FGExternalReactions.h"
51 #include "FGBuoyantForces.h"
52 #include "FGGroundReactions.h"
53 #include "FGPropulsion.h"
54 #include "FGMassBalance.h"
55 #include "input_output/FGPropertyManager.h"
56 #include <iostream>
57
58 using namespace std;
59
60 namespace JSBSim {
61
62 static const char *IdSrc = "$Id: FGAuxiliary.cpp,v 1.47 2011/03/29 11:49:27 jberndt Exp $";
63 static const char *IdHdr = ID_AUXILIARY;
64
65 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
66 CLASS IMPLEMENTATION
67 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
68
69
70 FGAuxiliary::FGAuxiliary(FGFDMExec* fdmex) : FGModel(fdmex)
71 {
72   Name = "FGAuxiliary";
73   vcas = veas = pt = tat = 0;
74   psl = rhosl = 1;
75   qbar = 0;
76   qbarUW = 0.0;
77   qbarUV = 0.0;
78   Re = 0.0;
79   Mach = 0.0;
80   alpha = beta = 0.0;
81   adot = bdot = 0.0;
82   gamma = Vt = Vground = 0.0;
83   psigt = 0.0;
84   day_of_year = 1;
85   seconds_in_day = 0.0;
86   hoverbmac = hoverbcg = 0.0;
87   tatc = RankineToCelsius(tat);
88
89   vPilotAccel.InitMatrix();
90   vPilotAccelN.InitMatrix();
91   vToEyePt.InitMatrix();
92   vAeroPQR.InitMatrix();
93   vEulerRates.InitMatrix();
94
95   bind();
96
97   Debug(0);
98 }
99
100 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
101
102 bool FGAuxiliary::InitModel(void)
103 {
104   if (!FGModel::InitModel()) return false;
105
106   vcas = veas = pt = tat = 0;
107   psl = rhosl = 1;
108   qbar = 0;
109   qbarUW = 0.0;
110   qbarUV = 0.0;
111   Mach = 0.0;
112   alpha = beta = 0.0;
113   adot = bdot = 0.0;
114   gamma = Vt = Vground = 0.0;
115   psigt = 0.0;
116   day_of_year = 1;
117   seconds_in_day = 0.0;
118   hoverbmac = hoverbcg = 0.0;
119
120   vPilotAccel.InitMatrix();
121   vPilotAccelN.InitMatrix();
122   vToEyePt.InitMatrix();
123   vAeroPQR.InitMatrix();
124   vEulerRates.InitMatrix();
125
126   return true;
127 }
128   
129 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
130
131 FGAuxiliary::~FGAuxiliary()
132 {
133   Debug(1);
134 }
135
136 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
137
138 bool FGAuxiliary::Run()
139 {
140   double A,B,D;
141
142   if (FGModel::Run()) return true; // return true if error returned from base class
143   if (FDMExec->Holding()) return false;
144
145   RunPreFunctions();
146
147   const double density = FDMExec->GetAtmosphere()->GetDensity();
148   const double soundspeed = FDMExec->GetAtmosphere()->GetSoundSpeed();
149   const double DistanceAGL = FDMExec->GetPropagate()->GetDistanceAGL();
150   const double wingspan = FDMExec->GetAircraft()->GetWingSpan();
151   const FGMatrix33& Tl2b = FDMExec->GetPropagate()->GetTl2b();
152   const FGMatrix33& Tb2l = FDMExec->GetPropagate()->GetTb2l();
153
154   const FGColumnVector3& vPQR = FDMExec->GetPropagate()->GetPQR();
155   const FGColumnVector3& vUVW = FDMExec->GetPropagate()->GetUVW();
156   const FGColumnVector3& vUVWdot = FDMExec->GetPropagate()->GetUVWdot();
157   const FGColumnVector3& vVel = FDMExec->GetPropagate()->GetVel();
158
159   p = FDMExec->GetAtmosphere()->GetPressure();
160   rhosl = FDMExec->GetAtmosphere()->GetDensitySL();
161   psl = FDMExec->GetAtmosphere()->GetPressureSL();
162   sat = FDMExec->GetAtmosphere()->GetTemperature();
163
164 // Rotation
165
166   double cTht = FDMExec->GetPropagate()->GetCosEuler(eTht);
167   double sTht = FDMExec->GetPropagate()->GetSinEuler(eTht);
168   double cPhi = FDMExec->GetPropagate()->GetCosEuler(ePhi);
169   double sPhi = FDMExec->GetPropagate()->GetSinEuler(ePhi);
170
171   vEulerRates(eTht) = vPQR(eQ)*cPhi - vPQR(eR)*sPhi;
172   if (cTht != 0.0) {
173     vEulerRates(ePsi) = (vPQR(eQ)*sPhi + vPQR(eR)*cPhi)/cTht;
174     vEulerRates(ePhi) = vPQR(eP) + vEulerRates(ePsi)*sTht;
175   }
176
177 // Combine the wind speed with aircraft speed to obtain wind relative speed
178   FGColumnVector3 wind = Tl2b*FDMExec->GetAtmosphere()->GetTotalWindNED();
179   vAeroPQR = vPQR - FDMExec->GetAtmosphere()->GetTurbPQR();
180   vAeroUVW = vUVW - wind;
181
182   Vt = vAeroUVW.Magnitude();
183   double Vt2 = Vt*Vt;
184   alpha = beta = adot = bdot = 0;
185   double mUW = (vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW));
186
187   if ( Vt > 1.0 ) {
188     if (vAeroUVW(eW) != 0.0)
189       alpha = vAeroUVW(eU)*vAeroUVW(eU) > 0.0 ? atan2(vAeroUVW(eW), vAeroUVW(eU)) : 0.0;
190     if (vAeroUVW(eV) != 0.0)
191       beta = mUW > 0.0 ? atan2(vAeroUVW(eV), sqrt(mUW)) : 0.0;
192
193     double signU=1;
194     if (vAeroUVW(eU) < 0.0) signU=-1;
195
196     if ( mUW >= 1.0 ) {
197       adot = (vAeroUVW(eU)*vUVWdot(eW) - vAeroUVW(eW)*vUVWdot(eU))/mUW;
198       bdot = (signU*mUW*vUVWdot(eV)
199              - vAeroUVW(eV)*(vAeroUVW(eU)*vUVWdot(eU) + vAeroUVW(eW)*vUVWdot(eW)))/(Vt2*sqrt(mUW));
200     }
201   }
202
203   Re = Vt * FDMExec->GetAircraft()->Getcbar() / FDMExec->GetAtmosphere()->GetKinematicViscosity();
204
205   qbar = 0.5*density*Vt2;
206   qbarUW = 0.5*density*(mUW);
207   qbarUV = 0.5*density*(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eV)*vAeroUVW(eV));
208   Mach = Vt / soundspeed;
209   MachU = vMachUVW(eU) = vAeroUVW(eU) / soundspeed;
210   vMachUVW(eV) = vAeroUVW(eV) / soundspeed;
211   vMachUVW(eW) = vAeroUVW(eW) / soundspeed;
212
213 // Position
214
215   Vground = sqrt( vVel(eNorth)*vVel(eNorth) + vVel(eEast)*vVel(eEast) );
216
217   psigt = atan2(vVel(eEast), vVel(eNorth));
218   if (psigt < 0.0) psigt += 2*M_PI;
219   gamma = atan2(-vVel(eDown), Vground);
220
221   tat = sat*(1 + 0.2*Mach*Mach); // Total Temperature, isentropic flow
222   tatc = RankineToCelsius(tat);
223
224   if (MachU < 1) {   // Calculate total pressure assuming isentropic flow
225     pt = p*pow((1 + 0.2*MachU*MachU),3.5);
226   } else {
227     // Use Rayleigh pitot tube formula for normal shock in front of pitot tube
228     B = 5.76*MachU*MachU/(5.6*MachU*MachU - 0.8);
229     D = (2.8*MachU*MachU-0.4)*0.4167;
230     pt = p*pow(B,3.5)*D;
231   }
232
233   A = pow(((pt-p)/psl+1),0.28571);
234   if (MachU > 0.0) {
235     vcas = sqrt(7*psl/rhosl*(A-1));
236     veas = sqrt(2*qbar/rhosl);
237   } else {
238     vcas = veas = 0.0;
239   }
240
241   const double SLgravity = FDMExec->GetInertial()->SLgravity();
242
243   vPilotAccel.InitMatrix();
244   if ( Vt > 1.0 ) {
245      vAircraftAccel = FDMExec->GetAircraft()->GetBodyAccel();
246      // Nz is Acceleration in "g's", along normal axis (-Z body axis)
247      Nz = -vAircraftAccel(eZ)/SLgravity;
248      vToEyePt = FDMExec->GetMassBalance()->StructuralToBody(FDMExec->GetAircraft()->GetXYZep());
249      vPilotAccel = vAircraftAccel + FDMExec->GetPropagate()->GetPQRdot() * vToEyePt;
250      vPilotAccel += vPQR * (vPQR * vToEyePt);
251   } else {
252      // The line below handles low velocity (and on-ground) cases, basically
253      // representing the opposite of the force that the landing gear would
254      // exert on the ground (which is just the total weight). This eliminates
255      // any jitter that could be introduced by the landing gear. Theoretically,
256      // this branch could be eliminated, with a penalty of having a short
257      // transient at startup (lasting only a fraction of a second).
258      vPilotAccel = Tl2b * FGColumnVector3( 0.0, 0.0, -SLgravity );
259      Nz = -vPilotAccel(eZ)/SLgravity;
260   }
261
262   vPilotAccelN = vPilotAccel/SLgravity;
263
264   // VRP computation
265   const FGLocation& vLocation = FDMExec->GetPropagate()->GetLocation();
266   const FGColumnVector3& vrpStructural = FDMExec->GetAircraft()->GetXYZvrp();
267   const FGColumnVector3 vrpBody = FDMExec->GetMassBalance()->StructuralToBody( vrpStructural );
268   const FGColumnVector3 vrpLocal = Tb2l * vrpBody;
269   vLocationVRP = vLocation.LocalToLocation( vrpLocal );
270
271   // Recompute some derived values now that we know the dependent parameters values ...
272   hoverbcg = DistanceAGL / wingspan;
273
274   FGColumnVector3 vMac = Tb2l*FDMExec->GetMassBalance()->StructuralToBody(FDMExec->GetAircraft()->GetXYZrp());
275   hoverbmac = (DistanceAGL + vMac(3)) / wingspan;
276
277   // when all model are executed, 
278   // please calculate the distance from the initial point
279
280   CalculateRelativePosition();
281
282   RunPostFunctions();
283
284   return false;
285 }
286
287 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
288 //
289 // A positive headwind is blowing with you, a negative headwind is blowing against you.
290 // psi is the direction the wind is blowing *towards*.
291 // ToDo: should this simply be in the atmosphere class? Same with Get Crosswind.
292
293 double FGAuxiliary::GetHeadWind(void) const
294 {
295   double psiw,vw;
296
297   psiw = FDMExec->GetAtmosphere()->GetWindPsi();
298   vw = FDMExec->GetAtmosphere()->GetTotalWindNED().Magnitude();
299
300   return vw*cos(psiw - FDMExec->GetPropagate()->GetEuler(ePsi));
301 }
302
303 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
304 //
305 // A positive crosswind is blowing towards the right (from teh perspective of the
306 // pilot). A negative crosswind is blowing towards the -Y direction (left).
307 // psi is the direction the wind is blowing *towards*.
308
309 double FGAuxiliary::GetCrossWind(void) const
310 {
311   double psiw,vw;
312
313   psiw = FDMExec->GetAtmosphere()->GetWindPsi();
314   vw = FDMExec->GetAtmosphere()->GetTotalWindNED().Magnitude();
315
316   return  vw*sin(psiw - FDMExec->GetPropagate()->GetEuler(ePsi));
317 }
318
319 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
320
321 double FGAuxiliary::GethVRP(void) const
322 {
323   return vLocationVRP.GetRadius() - FDMExec->GetPropagate()->GetSeaLevelRadius();
324 }
325
326 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
327
328 void FGAuxiliary::bind(void)
329 {
330   typedef double (FGAuxiliary::*PMF)(int) const;
331   typedef double (FGAuxiliary::*PF)(void) const;
332   PropertyManager->Tie("propulsion/tat-r", this, &FGAuxiliary::GetTotalTemperature);
333   PropertyManager->Tie("propulsion/tat-c", this, &FGAuxiliary::GetTAT_C);
334   PropertyManager->Tie("propulsion/pt-lbs_sqft", this, &FGAuxiliary::GetTotalPressure);
335   PropertyManager->Tie("velocities/vc-fps", this, &FGAuxiliary::GetVcalibratedFPS);
336   PropertyManager->Tie("velocities/vc-kts", this, &FGAuxiliary::GetVcalibratedKTS);
337   PropertyManager->Tie("velocities/ve-fps", this, &FGAuxiliary::GetVequivalentFPS);
338   PropertyManager->Tie("velocities/ve-kts", this, &FGAuxiliary::GetVequivalentKTS);
339   PropertyManager->Tie("velocities/machU", this, &FGAuxiliary::GetMachU);
340   PropertyManager->Tie("velocities/p-aero-rad_sec", this, eX, (PMF)&FGAuxiliary::GetAeroPQR);
341   PropertyManager->Tie("velocities/q-aero-rad_sec", this, eY, (PMF)&FGAuxiliary::GetAeroPQR);
342   PropertyManager->Tie("velocities/r-aero-rad_sec", this, eZ, (PMF)&FGAuxiliary::GetAeroPQR);
343   PropertyManager->Tie("velocities/phidot-rad_sec", this, ePhi, (PMF)&FGAuxiliary::GetEulerRates);
344   PropertyManager->Tie("velocities/thetadot-rad_sec", this, eTht, (PMF)&FGAuxiliary::GetEulerRates);
345   PropertyManager->Tie("velocities/psidot-rad_sec", this, ePsi, (PMF)&FGAuxiliary::GetEulerRates);
346   PropertyManager->Tie("velocities/u-aero-fps", this, eU, (PMF)&FGAuxiliary::GetAeroUVW);
347   PropertyManager->Tie("velocities/v-aero-fps", this, eV, (PMF)&FGAuxiliary::GetAeroUVW);
348   PropertyManager->Tie("velocities/w-aero-fps", this, eW, (PMF)&FGAuxiliary::GetAeroUVW);
349   PropertyManager->Tie("velocities/vt-fps", this, &FGAuxiliary::GetVt, &FGAuxiliary::SetVt, true);
350   PropertyManager->Tie("velocities/mach", this, &FGAuxiliary::GetMach, &FGAuxiliary::SetMach, true);
351   PropertyManager->Tie("velocities/vg-fps", this, &FGAuxiliary::GetVground);
352   PropertyManager->Tie("accelerations/a-pilot-x-ft_sec2", this, eX, (PMF)&FGAuxiliary::GetPilotAccel);
353   PropertyManager->Tie("accelerations/a-pilot-y-ft_sec2", this, eY, (PMF)&FGAuxiliary::GetPilotAccel);
354   PropertyManager->Tie("accelerations/a-pilot-z-ft_sec2", this, eZ, (PMF)&FGAuxiliary::GetPilotAccel);
355   PropertyManager->Tie("accelerations/n-pilot-x-norm", this, eX, (PMF)&FGAuxiliary::GetNpilot);
356   PropertyManager->Tie("accelerations/n-pilot-y-norm", this, eY, (PMF)&FGAuxiliary::GetNpilot);
357   PropertyManager->Tie("accelerations/n-pilot-z-norm", this, eZ, (PMF)&FGAuxiliary::GetNpilot);
358   PropertyManager->Tie("accelerations/Nz", this, &FGAuxiliary::GetNz);
359   /* PropertyManager->Tie("atmosphere/headwind-fps", this, &FGAuxiliary::GetHeadWind, true);
360   PropertyManager->Tie("atmosphere/crosswind-fps", this, &FGAuxiliary::GetCrossWind, true); */
361   PropertyManager->Tie("aero/alpha-rad", this, (PF)&FGAuxiliary::Getalpha, &FGAuxiliary::Setalpha, true);
362   PropertyManager->Tie("aero/beta-rad", this, (PF)&FGAuxiliary::Getbeta, &FGAuxiliary::Setbeta, true);
363   PropertyManager->Tie("aero/mag-beta-rad", this, (PF)&FGAuxiliary::GetMagBeta);
364   PropertyManager->Tie("aero/alpha-deg", this, inDegrees, (PMF)&FGAuxiliary::Getalpha);
365   PropertyManager->Tie("aero/beta-deg", this, inDegrees, (PMF)&FGAuxiliary::Getbeta);
366   PropertyManager->Tie("aero/mag-beta-deg", this, inDegrees, (PMF)&FGAuxiliary::GetMagBeta);
367   PropertyManager->Tie("aero/Re", this, &FGAuxiliary::GetReynoldsNumber);
368   PropertyManager->Tie("aero/qbar-psf", this, &FGAuxiliary::Getqbar, &FGAuxiliary::Setqbar, true);
369   PropertyManager->Tie("aero/qbarUW-psf", this, &FGAuxiliary::GetqbarUW, &FGAuxiliary::SetqbarUW, true);
370   PropertyManager->Tie("aero/qbarUV-psf", this, &FGAuxiliary::GetqbarUV, &FGAuxiliary::SetqbarUV, true);
371   PropertyManager->Tie("aero/alphadot-rad_sec", this, (PF)&FGAuxiliary::Getadot, &FGAuxiliary::Setadot, true);
372   PropertyManager->Tie("aero/betadot-rad_sec", this, (PF)&FGAuxiliary::Getbdot, &FGAuxiliary::Setbdot, true);
373   PropertyManager->Tie("aero/alphadot-deg_sec", this, inDegrees, (PMF)&FGAuxiliary::Getadot);
374   PropertyManager->Tie("aero/betadot-deg_sec", this, inDegrees, (PMF)&FGAuxiliary::Getbdot);
375   PropertyManager->Tie("aero/h_b-cg-ft", this, &FGAuxiliary::GetHOverBCG);
376   PropertyManager->Tie("aero/h_b-mac-ft", this, &FGAuxiliary::GetHOverBMAC);
377   PropertyManager->Tie("flight-path/gamma-rad", this, &FGAuxiliary::GetGamma, &FGAuxiliary::SetGamma);
378   PropertyManager->Tie("flight-path/psi-gt-rad", this, &FGAuxiliary::GetGroundTrack);
379
380   PropertyManager->Tie("position/distance-from-start-lon-mt", this, &FGAuxiliary::GetLongitudeRelativePosition);
381   PropertyManager->Tie("position/distance-from-start-lat-mt", this, &FGAuxiliary::GetLatitudeRelativePosition);
382   PropertyManager->Tie("position/distance-from-start-mag-mt", this, &FGAuxiliary::GetDistanceRelativePosition);
383   PropertyManager->Tie("position/vrp-gc-latitude_deg", &vLocationVRP, &FGLocation::GetLatitudeDeg);
384   PropertyManager->Tie("position/vrp-longitude_deg", &vLocationVRP, &FGLocation::GetLongitudeDeg);
385   PropertyManager->Tie("position/vrp-radius-ft", &vLocationVRP, &FGLocation::GetRadius);
386 }
387
388 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
389
390 void FGAuxiliary::CalculateRelativePosition(void)
391
392   const double earth_radius_mt = FDMExec->GetInertial()->GetRefRadius()*fttom;
393   lat_relative_position=(FDMExec->GetPropagate()->GetLatitude()  - FDMExec->GetIC()->GetLatitudeDegIC() *degtorad)*earth_radius_mt;
394   lon_relative_position=(FDMExec->GetPropagate()->GetLongitude() - FDMExec->GetIC()->GetLongitudeDegIC()*degtorad)*earth_radius_mt;
395   relative_position = sqrt(lat_relative_position*lat_relative_position + lon_relative_position*lon_relative_position);
396 };
397
398 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
399
400 double FGAuxiliary::BadUnits(void) const
401 {
402   cerr << "Bad units" << endl; return 0.0;
403 }
404
405 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
406 //    The bitmasked value choices are as follows:
407 //    unset: In this case (the default) JSBSim would only print
408 //       out the normally expected messages, essentially echoing
409 //       the config files as they are read. If the environment
410 //       variable is not set, debug_lvl is set to 1 internally
411 //    0: This requests JSBSim not to output any messages
412 //       whatsoever.
413 //    1: This value explicity requests the normal JSBSim
414 //       startup messages
415 //    2: This value asks for a message to be printed out when
416 //       a class is instantiated
417 //    4: When this value is set, a message is displayed when a
418 //       FGModel object executes its Run() method
419 //    8: When this value is set, various runtime state variables
420 //       are printed out periodically
421 //    16: When set various parameters are sanity checked and
422 //       a message is printed out when they go out of bounds
423
424 void FGAuxiliary::Debug(int from)
425 {
426   if (debug_lvl <= 0) return;
427
428   if (debug_lvl & 1) { // Standard console startup message output
429     if (from == 0) { // Constructor
430
431     }
432   }
433   if (debug_lvl & 2 ) { // Instantiation/Destruction notification
434     if (from == 0) cout << "Instantiated: FGAuxiliary" << endl;
435     if (from == 1) cout << "Destroyed:    FGAuxiliary" << endl;
436   }
437   if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
438   }
439   if (debug_lvl & 8 ) { // Runtime state variables
440   }
441   if (debug_lvl & 16) { // Sanity checking
442     if (Mach > 100 || Mach < 0.00)
443       cout << "FGPropagate::Mach is out of bounds: " << Mach << endl;
444     if (qbar > 1e6 || qbar < 0.00)
445       cout << "FGPropagate::qbar is out of bounds: " << qbar << endl;
446   }
447   if (debug_lvl & 64) {
448     if (from == 0) { // Constructor
449       cout << IdSrc << endl;
450       cout << IdHdr << endl;
451     }
452   }
453 }
454
455 } // namespace JSBSim