]> git.mxchange.org Git - flightgear.git/blob - src/FDM/JSBSim/models/FGAuxiliary.cpp
Merge branch 'ehofman/version'
[flightgear.git] / src / FDM / JSBSim / models / FGAuxiliary.cpp
1 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
3  Module:       FGAuxiliary.cpp
4  Author:       Tony Peden, Jon Berndt
5  Date started: 01/26/99
6  Purpose:      Calculates additional parameters needed by the visual system, etc.
7  Called by:    FGSimExec
8
9  ------------- Copyright (C) 1999  Jon S. Berndt (jon@jsbsim.org) -------------
10
11  This program is free software; you can redistribute it and/or modify it under
12  the terms of the GNU Lesser General Public License as published by the Free Software
13  Foundation; either version 2 of the License, or (at your option) any later
14  version.
15
16  This program is distributed in the hope that it will be useful, but WITHOUT
17  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18  FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
19  details.
20
21  You should have received a copy of the GNU Lesser General Public License along with
22  this program; if not, write to the Free Software Foundation, Inc., 59 Temple
23  Place - Suite 330, Boston, MA  02111-1307, USA.
24
25  Further information about the GNU Lesser General Public License can also be found on
26  the world wide web at http://www.gnu.org.
27
28 FUNCTIONAL DESCRIPTION
29 --------------------------------------------------------------------------------
30 This class calculates various auxiliary parameters.
31
32 REFERENCES
33   Anderson, John D. "Introduction to Flight", 3rd Edition, McGraw-Hill, 1989
34                     pgs. 112-126
35 HISTORY
36 --------------------------------------------------------------------------------
37 01/26/99   JSB   Created
38
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 INCLUDES
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
42
43 #include "FGAuxiliary.h"
44 #include "FGAerodynamics.h"
45 #include "FGPropagate.h"
46 #include "FGAtmosphere.h"
47 #include "FGFDMExec.h"
48 #include "FGAircraft.h"
49 #include "FGInertial.h"
50 #include "FGExternalReactions.h"
51 #include "FGBuoyantForces.h"
52 #include "FGGroundReactions.h"
53 #include "FGPropulsion.h"
54 #include "FGMassBalance.h"
55 #include "input_output/FGPropertyManager.h"
56 #include <iostream>
57
58 using namespace std;
59
60 namespace JSBSim {
61
62 static const char *IdSrc = "$Id$";
63 static const char *IdHdr = ID_AUXILIARY;
64
65 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
66 CLASS IMPLEMENTATION
67 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
68
69
70 FGAuxiliary::FGAuxiliary(FGFDMExec* fdmex) : FGModel(fdmex)
71 {
72   Name = "FGAuxiliary";
73   vcas = veas = pt = tat = 0;
74   psl = rhosl = 1;
75   qbar = 0;
76   qbarUW = 0.0;
77   qbarUV = 0.0;
78   Re = 0.0;
79   Mach = 0.0;
80   alpha = beta = 0.0;
81   adot = bdot = 0.0;
82   gamma = Vt = Vground = 0.0;
83   psigt = 0.0;
84   day_of_year = 1;
85   seconds_in_day = 0.0;
86   hoverbmac = hoverbcg = 0.0;
87   tatc = RankineToCelsius(tat);
88
89   vPilotAccel.InitMatrix();
90   vPilotAccelN.InitMatrix();
91   vToEyePt.InitMatrix();
92   vAeroPQR.InitMatrix();
93   vEulerRates.InitMatrix();
94
95   bind();
96
97   Debug(0);
98 }
99
100 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
101
102 bool FGAuxiliary::InitModel(void)
103 {
104   if (!FGModel::InitModel()) return false;
105
106   vcas = veas = pt = tat = 0;
107   psl = rhosl = 1;
108   qbar = 0;
109   qbarUW = 0.0;
110   qbarUV = 0.0;
111   Mach = 0.0;
112   alpha = beta = 0.0;
113   adot = bdot = 0.0;
114   gamma = Vt = Vground = 0.0;
115   psigt = 0.0;
116   day_of_year = 1;
117   seconds_in_day = 0.0;
118   hoverbmac = hoverbcg = 0.0;
119
120   vPilotAccel.InitMatrix();
121   vPilotAccelN.InitMatrix();
122   vToEyePt.InitMatrix();
123   vAeroPQR.InitMatrix();
124   vEulerRates.InitMatrix();
125
126   return true;
127 }
128   
129 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
130
131 FGAuxiliary::~FGAuxiliary()
132 {
133   Debug(1);
134 }
135
136 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
137
138 bool FGAuxiliary::Run()
139 {
140   double A,B,D;
141
142   if (FGModel::Run()) return true; // return true if error returned from base class
143   if (FDMExec->Holding()) return false;
144
145   RunPreFunctions();
146
147   const FGColumnVector3& vPQR = Propagate->GetPQR();
148   const FGColumnVector3& vUVW = Propagate->GetUVW();
149   const FGColumnVector3& vUVWdot = Propagate->GetUVWdot();
150   const FGColumnVector3& vVel = Propagate->GetVel();
151
152   p = Atmosphere->GetPressure();
153   rhosl = Atmosphere->GetDensitySL();
154   psl = Atmosphere->GetPressureSL();
155   sat = Atmosphere->GetTemperature();
156
157 // Rotation
158
159   double cTht = Propagate->GetCosEuler(eTht);
160   double sTht = Propagate->GetSinEuler(eTht);
161   double cPhi = Propagate->GetCosEuler(ePhi);
162   double sPhi = Propagate->GetSinEuler(ePhi);
163
164   vEulerRates(eTht) = vPQR(eQ)*cPhi - vPQR(eR)*sPhi;
165   if (cTht != 0.0) {
166     vEulerRates(ePsi) = (vPQR(eQ)*sPhi + vPQR(eR)*cPhi)/cTht;
167     vEulerRates(ePhi) = vPQR(eP) + vEulerRates(ePsi)*sTht;
168   }
169
170 // 12/16/2005, JSB: For ground handling purposes, at this time, let's ramp
171 // in the effects of wind from 10 fps to 30 fps when there is weight on the
172 // landing gear wheels.
173
174   if (GroundReactions->GetWOW() && vUVW(eU) < 10) {
175     vAeroPQR = vPQR;
176     vAeroUVW = vUVW;
177   } else if (GroundReactions->GetWOW() && vUVW(eU) < 30) {
178     double factor = (vUVW(eU) - 10.0)/20.0;
179     vAeroPQR = vPQR - factor*Atmosphere->GetTurbPQR();
180     vAeroUVW = vUVW - factor*Propagate->GetTl2b()*Atmosphere->GetTotalWindNED();
181   } else {
182     FGColumnVector3 wind = Propagate->GetTl2b()*Atmosphere->GetTotalWindNED();
183     vAeroPQR = vPQR - Atmosphere->GetTurbPQR();
184     vAeroUVW = vUVW - wind;
185   }
186
187   Vt = vAeroUVW.Magnitude();
188   if ( Vt > 0.05) {
189     if (vAeroUVW(eW) != 0.0)
190       alpha = vAeroUVW(eU)*vAeroUVW(eU) > 0.0 ? atan2(vAeroUVW(eW), vAeroUVW(eU)) : 0.0;
191     if (vAeroUVW(eV) != 0.0)
192       beta = vAeroUVW(eU)*vAeroUVW(eU)+vAeroUVW(eW)*vAeroUVW(eW) > 0.0 ? atan2(vAeroUVW(eV),
193              sqrt(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW))) : 0.0;
194
195     double mUW = (vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW));
196     double signU=1;
197     if (vAeroUVW(eU) != 0.0)
198       signU = vAeroUVW(eU)/fabs(vAeroUVW(eU));
199
200     if ( (mUW == 0.0) || (Vt == 0.0) ) {
201       adot = 0.0;
202       bdot = 0.0;
203     } else {
204       adot = (vAeroUVW(eU)*vUVWdot(eW) - vAeroUVW(eW)*vUVWdot(eU))/mUW;
205       bdot = (signU*mUW*vUVWdot(eV) - vAeroUVW(eV)*(vAeroUVW(eU)*vUVWdot(eU)
206               + vAeroUVW(eW)*vUVWdot(eW)))/(Vt*Vt*sqrt(mUW));
207     }
208   } else {
209     alpha = beta = adot = bdot = 0;
210   }
211
212   Re = Vt * Aircraft->Getcbar() / Atmosphere->GetKinematicViscosity();
213
214   qbar = 0.5*Atmosphere->GetDensity()*Vt*Vt;
215   qbarUW = 0.5*Atmosphere->GetDensity()*(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW));
216   qbarUV = 0.5*Atmosphere->GetDensity()*(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eV)*vAeroUVW(eV));
217   Mach = Vt / Atmosphere->GetSoundSpeed();
218   MachU = vMachUVW(eU) = vAeroUVW(eU) / Atmosphere->GetSoundSpeed();
219   vMachUVW(eV) = vAeroUVW(eV) / Atmosphere->GetSoundSpeed();
220   vMachUVW(eW) = vAeroUVW(eW) / Atmosphere->GetSoundSpeed();
221
222 // Position
223
224   Vground = sqrt( vVel(eNorth)*vVel(eNorth) + vVel(eEast)*vVel(eEast) );
225
226   psigt = atan2(vVel(eEast), vVel(eNorth));
227   if (psigt < 0.0) psigt += 2*M_PI;
228   gamma = atan2(-vVel(eDown), Vground);
229
230   tat = sat*(1 + 0.2*Mach*Mach); // Total Temperature, isentropic flow
231   tatc = RankineToCelsius(tat);
232
233   if (MachU < 1) {   // Calculate total pressure assuming isentropic flow
234     pt = p*pow((1 + 0.2*MachU*MachU),3.5);
235   } else {
236     // Use Rayleigh pitot tube formula for normal shock in front of pitot tube
237     B = 5.76*MachU*MachU/(5.6*MachU*MachU - 0.8);
238     D = (2.8*MachU*MachU-0.4)*0.4167;
239     pt = p*pow(B,3.5)*D;
240   }
241
242   A = pow(((pt-p)/psl+1),0.28571);
243   if (MachU > 0.0) {
244     vcas = sqrt(7*psl/rhosl*(A-1));
245     veas = sqrt(2*qbar/rhosl);
246   } else {
247     vcas = veas = 0.0;
248   }
249
250   vPilotAccel.InitMatrix();
251   if ( Vt > 1.0 ) {
252      vAircraftAccel = Aerodynamics->GetForces()
253                     + Propulsion->GetForces()
254                     + GroundReactions->GetForces()
255                     + ExternalReactions->GetForces()
256                     + BuoyantForces->GetForces();
257
258      vAircraftAccel /= MassBalance->GetMass();
259      // Nz is Acceleration in "g's", along normal axis (-Z body axis)
260      Nz = -vAircraftAccel(eZ)/Inertial->gravity();
261      vToEyePt = MassBalance->StructuralToBody(Aircraft->GetXYZep());
262      vPilotAccel = vAircraftAccel + Propagate->GetPQRdot() * vToEyePt;
263      vPilotAccel += vPQR * (vPQR * vToEyePt);
264   } else {
265      // The line below handles low velocity (and on-ground) cases, basically
266      // representing the opposite of the force that the landing gear would
267      // exert on the ground (which is just the total weight). This eliminates
268      // any jitter that could be introduced by the landing gear. Theoretically,
269      // this branch could be eliminated, with a penalty of having a short
270      // transient at startup (lasting only a fraction of a second).
271      vPilotAccel = Propagate->GetTl2b() * FGColumnVector3( 0.0, 0.0, -Inertial->gravity() );
272      Nz = -vPilotAccel(eZ)/Inertial->gravity();
273   }
274
275   vPilotAccelN = vPilotAccel/Inertial->gravity();
276
277   // VRP computation
278   const FGLocation& vLocation = Propagate->GetLocation();
279   FGColumnVector3 vrpStructural = Aircraft->GetXYZvrp();
280   FGColumnVector3 vrpBody = MassBalance->StructuralToBody( vrpStructural );
281   FGColumnVector3 vrpLocal = Propagate->GetTb2l() * vrpBody;
282   vLocationVRP = vLocation.LocalToLocation( vrpLocal );
283
284   // Recompute some derived values now that we know the dependent parameters values ...
285   hoverbcg = Propagate->GetDistanceAGL() / Aircraft->GetWingSpan();
286
287   FGColumnVector3 vMac = Propagate->GetTb2l()*MassBalance->StructuralToBody(Aircraft->GetXYZrp());
288   hoverbmac = (Propagate->GetDistanceAGL() + vMac(3)) / Aircraft->GetWingSpan();
289
290   // when all model are executed, 
291   // please calculate the distance from the initial point
292
293   CalculateRelativePosition();
294
295   RunPostFunctions();
296
297   return false;
298 }
299
300 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
301 //
302 // A positive headwind is blowing with you, a negative headwind is blowing against you.
303 // psi is the direction the wind is blowing *towards*.
304
305 double FGAuxiliary::GetHeadWind(void) const
306 {
307   double psiw,vw;
308
309   psiw = Atmosphere->GetWindPsi();
310   vw = Atmosphere->GetTotalWindNED().Magnitude();
311
312   return vw*cos(psiw - Propagate->GetEuler(ePsi));
313 }
314
315 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
316 //
317 // A positive crosswind is blowing towards the right (from teh perspective of the
318 // pilot). A negative crosswind is blowing towards the -Y direction (left).
319 // psi is the direction the wind is blowing *towards*.
320
321 double FGAuxiliary::GetCrossWind(void) const
322 {
323   double psiw,vw;
324
325   psiw = Atmosphere->GetWindPsi();
326   vw = Atmosphere->GetTotalWindNED().Magnitude();
327
328   return  vw*sin(psiw - Propagate->GetEuler(ePsi));
329 }
330
331 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
332
333 void FGAuxiliary::bind(void)
334 {
335   typedef double (FGAuxiliary::*PMF)(int) const;
336   typedef double (FGAuxiliary::*PF)(void) const;
337   PropertyManager->Tie("propulsion/tat-r", this, &FGAuxiliary::GetTotalTemperature);
338   PropertyManager->Tie("propulsion/tat-c", this, &FGAuxiliary::GetTAT_C);
339   PropertyManager->Tie("propulsion/pt-lbs_sqft", this, &FGAuxiliary::GetTotalPressure);
340   PropertyManager->Tie("velocities/vc-fps", this, &FGAuxiliary::GetVcalibratedFPS);
341   PropertyManager->Tie("velocities/vc-kts", this, &FGAuxiliary::GetVcalibratedKTS);
342   PropertyManager->Tie("velocities/ve-fps", this, &FGAuxiliary::GetVequivalentFPS);
343   PropertyManager->Tie("velocities/ve-kts", this, &FGAuxiliary::GetVequivalentKTS);
344   PropertyManager->Tie("velocities/machU", this, &FGAuxiliary::GetMachU);
345   PropertyManager->Tie("velocities/p-aero-rad_sec", this, eX, (PMF)&FGAuxiliary::GetAeroPQR);
346   PropertyManager->Tie("velocities/q-aero-rad_sec", this, eY, (PMF)&FGAuxiliary::GetAeroPQR);
347   PropertyManager->Tie("velocities/r-aero-rad_sec", this, eZ, (PMF)&FGAuxiliary::GetAeroPQR);
348   PropertyManager->Tie("velocities/phidot-rad_sec", this, ePhi, (PMF)&FGAuxiliary::GetEulerRates);
349   PropertyManager->Tie("velocities/thetadot-rad_sec", this, eTht, (PMF)&FGAuxiliary::GetEulerRates);
350   PropertyManager->Tie("velocities/psidot-rad_sec", this, ePsi, (PMF)&FGAuxiliary::GetEulerRates);
351   PropertyManager->Tie("velocities/u-aero-fps", this, eU, (PMF)&FGAuxiliary::GetAeroUVW);
352   PropertyManager->Tie("velocities/v-aero-fps", this, eV, (PMF)&FGAuxiliary::GetAeroUVW);
353   PropertyManager->Tie("velocities/w-aero-fps", this, eW, (PMF)&FGAuxiliary::GetAeroUVW);
354   PropertyManager->Tie("velocities/vt-fps", this, &FGAuxiliary::GetVt, &FGAuxiliary::SetVt, true);
355   PropertyManager->Tie("velocities/mach", this, &FGAuxiliary::GetMach, &FGAuxiliary::SetMach, true);
356   PropertyManager->Tie("velocities/vg-fps", this, &FGAuxiliary::GetVground);
357   PropertyManager->Tie("accelerations/a-pilot-x-ft_sec2", this, eX, (PMF)&FGAuxiliary::GetPilotAccel);
358   PropertyManager->Tie("accelerations/a-pilot-y-ft_sec2", this, eY, (PMF)&FGAuxiliary::GetPilotAccel);
359   PropertyManager->Tie("accelerations/a-pilot-z-ft_sec2", this, eZ, (PMF)&FGAuxiliary::GetPilotAccel);
360   PropertyManager->Tie("accelerations/n-pilot-x-norm", this, eX, (PMF)&FGAuxiliary::GetNpilot);
361   PropertyManager->Tie("accelerations/n-pilot-y-norm", this, eY, (PMF)&FGAuxiliary::GetNpilot);
362   PropertyManager->Tie("accelerations/n-pilot-z-norm", this, eZ, (PMF)&FGAuxiliary::GetNpilot);
363   PropertyManager->Tie("accelerations/Nz", this, &FGAuxiliary::GetNz);
364   /* PropertyManager->Tie("atmosphere/headwind-fps", this, &FGAuxiliary::GetHeadWind, true);
365   PropertyManager->Tie("atmosphere/crosswind-fps", this, &FGAuxiliary::GetCrossWind, true); */
366   PropertyManager->Tie("aero/alpha-rad", this, (PF)&FGAuxiliary::Getalpha, &FGAuxiliary::Setalpha, true);
367   PropertyManager->Tie("aero/beta-rad", this, (PF)&FGAuxiliary::Getbeta, &FGAuxiliary::Setbeta, true);
368   PropertyManager->Tie("aero/mag-beta-rad", this, (PF)&FGAuxiliary::GetMagBeta);
369   PropertyManager->Tie("aero/alpha-deg", this, inDegrees, (PMF)&FGAuxiliary::Getalpha);
370   PropertyManager->Tie("aero/beta-deg", this, inDegrees, (PMF)&FGAuxiliary::Getbeta);
371   PropertyManager->Tie("aero/mag-beta-deg", this, inDegrees, (PMF)&FGAuxiliary::GetMagBeta);
372   PropertyManager->Tie("aero/Re", this, &FGAuxiliary::GetReynoldsNumber);
373   PropertyManager->Tie("aero/qbar-psf", this, &FGAuxiliary::Getqbar, &FGAuxiliary::Setqbar, true);
374   PropertyManager->Tie("aero/qbarUW-psf", this, &FGAuxiliary::GetqbarUW, &FGAuxiliary::SetqbarUW, true);
375   PropertyManager->Tie("aero/qbarUV-psf", this, &FGAuxiliary::GetqbarUV, &FGAuxiliary::SetqbarUV, true);
376   PropertyManager->Tie("aero/alphadot-rad_sec", this, (PF)&FGAuxiliary::Getadot, &FGAuxiliary::Setadot, true);
377   PropertyManager->Tie("aero/betadot-rad_sec", this, (PF)&FGAuxiliary::Getbdot, &FGAuxiliary::Setbdot, true);
378   PropertyManager->Tie("aero/alphadot-deg_sec", this, inDegrees, (PMF)&FGAuxiliary::Getadot);
379   PropertyManager->Tie("aero/betadot-deg_sec", this, inDegrees, (PMF)&FGAuxiliary::Getbdot);
380   PropertyManager->Tie("aero/h_b-cg-ft", this, &FGAuxiliary::GetHOverBCG);
381   PropertyManager->Tie("aero/h_b-mac-ft", this, &FGAuxiliary::GetHOverBMAC);
382   PropertyManager->Tie("flight-path/gamma-rad", this, &FGAuxiliary::GetGamma, &FGAuxiliary::SetGamma);
383   PropertyManager->Tie("flight-path/psi-gt-rad", this, &FGAuxiliary::GetGroundTrack);
384
385   PropertyManager->Tie("position/distance-from-start-lon-mt", this, &FGAuxiliary::GetLongitudeRelativePosition);
386   PropertyManager->Tie("position/distance-from-start-lat-mt", this, &FGAuxiliary::GetLatitudeRelativePosition);
387   PropertyManager->Tie("position/distance-from-start-mag-mt", this, &FGAuxiliary::GetDistanceRelativePosition);
388   PropertyManager->Tie("position/vrp-gc-latitude_deg", &vLocationVRP, &FGLocation::GetLatitudeDeg);
389   PropertyManager->Tie("position/vrp-longitude_deg", &vLocationVRP, &FGLocation::GetLongitudeDeg);
390   PropertyManager->Tie("position/vrp-radius-ft", &vLocationVRP, &FGLocation::GetRadius);
391 }
392
393 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
394
395 void FGAuxiliary::CalculateRelativePosition(void)
396
397   const double earth_radius_mt = Inertial->GetRefRadius()*fttom;
398   lat_relative_position=(FDMExec->GetPropagate()->GetLatitude()  - FDMExec->GetIC()->GetLatitudeDegIC() *degtorad)*earth_radius_mt;
399   lon_relative_position=(FDMExec->GetPropagate()->GetLongitude() - FDMExec->GetIC()->GetLongitudeDegIC()*degtorad)*earth_radius_mt;
400   relative_position = sqrt(lat_relative_position*lat_relative_position + lon_relative_position*lon_relative_position);
401 };
402
403 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
404
405 double FGAuxiliary::BadUnits(void) const
406 {
407   cerr << "Bad units" << endl; return 0.0;
408 }
409
410 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
411 //    The bitmasked value choices are as follows:
412 //    unset: In this case (the default) JSBSim would only print
413 //       out the normally expected messages, essentially echoing
414 //       the config files as they are read. If the environment
415 //       variable is not set, debug_lvl is set to 1 internally
416 //    0: This requests JSBSim not to output any messages
417 //       whatsoever.
418 //    1: This value explicity requests the normal JSBSim
419 //       startup messages
420 //    2: This value asks for a message to be printed out when
421 //       a class is instantiated
422 //    4: When this value is set, a message is displayed when a
423 //       FGModel object executes its Run() method
424 //    8: When this value is set, various runtime state variables
425 //       are printed out periodically
426 //    16: When set various parameters are sanity checked and
427 //       a message is printed out when they go out of bounds
428
429 void FGAuxiliary::Debug(int from)
430 {
431   if (debug_lvl <= 0) return;
432
433   if (debug_lvl & 1) { // Standard console startup message output
434     if (from == 0) { // Constructor
435
436     }
437   }
438   if (debug_lvl & 2 ) { // Instantiation/Destruction notification
439     if (from == 0) cout << "Instantiated: FGAuxiliary" << endl;
440     if (from == 1) cout << "Destroyed:    FGAuxiliary" << endl;
441   }
442   if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
443   }
444   if (debug_lvl & 8 ) { // Runtime state variables
445   }
446   if (debug_lvl & 16) { // Sanity checking
447     if (Mach > 100 || Mach < 0.00)
448       cout << "FGPropagate::Mach is out of bounds: " << Mach << endl;
449     if (qbar > 1e6 || qbar < 0.00)
450       cout << "FGPropagate::qbar is out of bounds: " << qbar << endl;
451   }
452   if (debug_lvl & 64) {
453     if (from == 0) { // Constructor
454       cout << IdSrc << endl;
455       cout << IdHdr << endl;
456     }
457   }
458 }
459
460 } // namespace JSBSim