]> git.mxchange.org Git - flightgear.git/blob - src/FDM/JSBSim/models/FGAuxiliary.cpp
Sync. with JSBSim CVS
[flightgear.git] / src / FDM / JSBSim / models / FGAuxiliary.cpp
1 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
3  Module:       FGAuxiliary.cpp
4  Author:       Tony Peden, Jon Berndt
5  Date started: 01/26/99
6  Purpose:      Calculates additional parameters needed by the visual system, etc.
7  Called by:    FGSimExec
8
9  ------------- Copyright (C) 1999  Jon S. Berndt (jsb@hal-pc.org) -------------
10
11  This program is free software; you can redistribute it and/or modify it under
12  the terms of the GNU Lesser General Public License as published by the Free Software
13  Foundation; either version 2 of the License, or (at your option) any later
14  version.
15
16  This program is distributed in the hope that it will be useful, but WITHOUT
17  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18  FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
19  details.
20
21  You should have received a copy of the GNU Lesser General Public License along with
22  this program; if not, write to the Free Software Foundation, Inc., 59 Temple
23  Place - Suite 330, Boston, MA  02111-1307, USA.
24
25  Further information about the GNU Lesser General Public License can also be found on
26  the world wide web at http://www.gnu.org.
27
28 FUNCTIONAL DESCRIPTION
29 --------------------------------------------------------------------------------
30 This class calculates various auxiliary parameters.
31
32 REFERENCES
33   Anderson, John D. "Introduction to Flight", 3rd Edition, McGraw-Hill, 1989
34                     pgs. 112-126
35 HISTORY
36 --------------------------------------------------------------------------------
37 01/26/99   JSB   Created
38
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 INCLUDES
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
42
43 #include "FGAuxiliary.h"
44 #include "FGAerodynamics.h"
45 #include "FGPropagate.h"
46 #include "FGAtmosphere.h"
47 #include <FGFDMExec.h>
48 #include "FGAircraft.h"
49 #include "FGInertial.h"
50 #include "FGExternalReactions.h"
51 #include "FGBuoyantForces.h"
52 #include "FGGroundReactions.h"
53 #include "FGPropulsion.h"
54 #include <input_output/FGPropertyManager.h>
55
56 namespace JSBSim {
57
58 static const char *IdSrc = "$Id$";
59 static const char *IdHdr = ID_AUXILIARY;
60
61 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62 CLASS IMPLEMENTATION
63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
64
65
66 FGAuxiliary::FGAuxiliary(FGFDMExec* fdmex) : FGModel(fdmex)
67 {
68   Name = "FGAuxiliary";
69   vcas = veas = pt = tat = 0;
70   psl = rhosl = 1;
71   qbar = 0;
72   qbarUW = 0.0;
73   qbarUV = 0.0;
74   Mach = 0.0;
75   alpha = beta = 0.0;
76   adot = bdot = 0.0;
77   gamma = Vt = Vground = 0.0;
78   psigt = 0.0;
79   day_of_year = 1;
80   seconds_in_day = 0.0;
81   hoverbmac = hoverbcg = 0.0;
82
83   vPilotAccel.InitMatrix();
84   vPilotAccelN.InitMatrix();
85   vToEyePt.InitMatrix();
86   vAeroPQR.InitMatrix();
87   vEulerRates.InitMatrix();
88
89   bind();
90
91   Debug(0);
92 }
93
94 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
95
96 bool FGAuxiliary::InitModel(void)
97 {
98   if (!FGModel::InitModel()) return false;
99
100   vcas = veas = pt = tat = 0;
101   psl = rhosl = 1;
102   qbar = 0;
103   qbarUW = 0.0;
104   qbarUV = 0.0;
105   Mach = 0.0;
106   alpha = beta = 0.0;
107   adot = bdot = 0.0;
108   gamma = Vt = Vground = 0.0;
109   psigt = 0.0;
110   day_of_year = 1;
111   seconds_in_day = 0.0;
112   hoverbmac = hoverbcg = 0.0;
113
114   vPilotAccel.InitMatrix();
115   vPilotAccelN.InitMatrix();
116   vToEyePt.InitMatrix();
117   vAeroPQR.InitMatrix();
118   vEulerRates.InitMatrix();
119
120   return true;
121 }
122   
123 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
124
125 FGAuxiliary::~FGAuxiliary()
126 {
127   Debug(1);
128 }
129
130 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
131
132 bool FGAuxiliary::Run()
133 {
134   double A,B,D;
135
136   if (FGModel::Run()) return true; // return true if error returned from base class
137   if (FDMExec->Holding()) return false;
138
139   const FGColumnVector3& vPQR = Propagate->GetPQR();
140   const FGColumnVector3& vUVW = Propagate->GetUVW();
141   const FGColumnVector3& vUVWdot = Propagate->GetUVWdot();
142   const FGColumnVector3& vVel = Propagate->GetVel();
143
144   p = Atmosphere->GetPressure();
145   rhosl = Atmosphere->GetDensitySL();
146   psl = Atmosphere->GetPressureSL();
147   sat = Atmosphere->GetTemperature();
148
149 // Rotation
150
151   double cTht = Propagate->GetCosEuler(eTht);
152   double sTht = Propagate->GetSinEuler(eTht);
153   double cPhi = Propagate->GetCosEuler(ePhi);
154   double sPhi = Propagate->GetSinEuler(ePhi);
155
156   vEulerRates(eTht) = vPQR(eQ)*cPhi - vPQR(eR)*sPhi;
157   if (cTht != 0.0) {
158     vEulerRates(ePsi) = (vPQR(eQ)*sPhi + vPQR(eR)*cPhi)/cTht;
159     vEulerRates(ePhi) = vPQR(eP) + vEulerRates(ePsi)*sTht;
160   }
161
162 // 12/16/2005, JSB: For ground handling purposes, at this time, let's ramp
163 // in the effects of wind from 10 fps to 30 fps when there is weight on the
164 // landing gear wheels.
165
166   if (GroundReactions->GetWOW() && vUVW(eU) < 10) {
167     vAeroPQR = vPQR;
168     vAeroUVW = vUVW;
169   } else if (GroundReactions->GetWOW() && vUVW(eU) < 30) {
170     double factor = (vUVW(eU) - 10.0)/20.0;
171     vAeroPQR = vPQR + factor*Atmosphere->GetTurbPQR();
172     vAeroUVW = vUVW + factor*Propagate->GetTl2b()*Atmosphere->GetTotalWindNED();
173   } else {
174     vAeroPQR = vPQR + Atmosphere->GetTurbPQR();
175     vAeroUVW = vUVW + Propagate->GetTl2b()*Atmosphere->GetTotalWindNED();
176   }
177
178   Vt = vAeroUVW.Magnitude();
179   if ( Vt > 0.05) {
180     if (vAeroUVW(eW) != 0.0)
181       alpha = vAeroUVW(eU)*vAeroUVW(eU) > 0.0 ? atan2(vAeroUVW(eW), vAeroUVW(eU)) : 0.0;
182     if (vAeroUVW(eV) != 0.0)
183       beta = vAeroUVW(eU)*vAeroUVW(eU)+vAeroUVW(eW)*vAeroUVW(eW) > 0.0 ? atan2(vAeroUVW(eV),
184              sqrt(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW))) : 0.0;
185
186     double mUW = (vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW));
187     double signU=1;
188     if (vAeroUVW(eU) != 0.0)
189       signU = vAeroUVW(eU)/fabs(vAeroUVW(eU));
190
191     if ( (mUW == 0.0) || (Vt == 0.0) ) {
192       adot = 0.0;
193       bdot = 0.0;
194     } else {
195       adot = (vAeroUVW(eU)*vUVWdot(eW) - vAeroUVW(eW)*vUVWdot(eU))/mUW;
196       bdot = (signU*mUW*vUVWdot(eV) - vAeroUVW(eV)*(vAeroUVW(eU)*vUVWdot(eU)
197               + vAeroUVW(eW)*vUVWdot(eW)))/(Vt*Vt*sqrt(mUW));
198     }
199   } else {
200     alpha = beta = adot = bdot = 0;
201   }
202
203   qbar = 0.5*Atmosphere->GetDensity()*Vt*Vt;
204   qbarUW = 0.5*Atmosphere->GetDensity()*(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW));
205   qbarUV = 0.5*Atmosphere->GetDensity()*(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eV)*vAeroUVW(eV));
206   Mach = Vt / Atmosphere->GetSoundSpeed();
207   MachU = vMachUVW(eU) = vAeroUVW(eU) / Atmosphere->GetSoundSpeed();
208   vMachUVW(eV) = vAeroUVW(eV) / Atmosphere->GetSoundSpeed();
209   vMachUVW(eW) = vAeroUVW(eW) / Atmosphere->GetSoundSpeed();
210
211 // Position
212
213   Vground = sqrt( vVel(eNorth)*vVel(eNorth) + vVel(eEast)*vVel(eEast) );
214
215   psigt = atan2(vVel(eEast), vVel(eNorth));
216   if (psigt < 0.0) psigt += 2*M_PI;
217   gamma = atan2(-vVel(eDown), Vground);
218
219   tat = sat*(1 + 0.2*Mach*Mach); // Total Temperature, isentropic flow
220   tatc = RankineToCelsius(tat);
221
222   if (MachU < 1) {   // Calculate total pressure assuming isentropic flow
223     pt = p*pow((1 + 0.2*MachU*MachU),3.5);
224   } else {
225     // Use Rayleigh pitot tube formula for normal shock in front of pitot tube
226     B = 5.76*MachU*MachU/(5.6*MachU*MachU - 0.8);
227     D = (2.8*MachU*MachU-0.4)*0.4167;
228     pt = p*pow(B,3.5)*D;
229   }
230
231   A = pow(((pt-p)/psl+1),0.28571);
232   if (MachU > 0.0) {
233     vcas = sqrt(7*psl/rhosl*(A-1));
234     veas = sqrt(2*qbar/rhosl);
235   } else {
236     vcas = veas = 0.0;
237   }
238
239   vPilotAccel.InitMatrix();
240   if ( Vt > 1.0 ) {
241      vAircraftAccel = Aerodynamics->GetForces()
242                     + Propulsion->GetForces()
243                     + GroundReactions->GetForces()
244                     + ExternalReactions->GetForces()
245                     + BuoyantForces->GetForces();
246
247      vAircraftAccel /= MassBalance->GetMass();
248      // Nz is Acceleration in "g's", along normal axis (-Z body axis)
249      Nz = -vAircraftAccel(eZ)/Inertial->gravity();
250      vToEyePt = MassBalance->StructuralToBody(Aircraft->GetXYZep());
251      vPilotAccel = vAircraftAccel + Propagate->GetPQRdot() * vToEyePt;
252      vPilotAccel += vPQR * (vPQR * vToEyePt);
253   } else {
254      // The line below handles low velocity (and on-ground) cases, basically
255      // representing the opposite of the force that the landing gear would
256      // exert on the ground (which is just the total weight). This eliminates
257      // any jitter that could be introduced by the landing gear. Theoretically,
258      // this branch could be eliminated, with a penalty of having a short
259      // transient at startup (lasting only a fraction of a second).
260      vPilotAccel = Propagate->GetTl2b() * FGColumnVector3( 0.0, 0.0, -Inertial->gravity() );
261      Nz = -vPilotAccel(eZ)/Inertial->gravity();
262   }
263
264   vPilotAccelN = vPilotAccel/Inertial->gravity();
265
266   // VRP computation
267   const FGLocation& vLocation = Propagate->GetLocation();
268   FGColumnVector3 vrpStructural = Aircraft->GetXYZvrp();
269   FGColumnVector3 vrpBody = MassBalance->StructuralToBody( vrpStructural );
270   FGColumnVector3 vrpLocal = Propagate->GetTb2l() * vrpBody;
271   vLocationVRP = vLocation.LocalToLocation( vrpLocal );
272
273   // Recompute some derived values now that we know the dependent parameters values ...
274   hoverbcg = Propagate->GetDistanceAGL() / Aircraft->GetWingSpan();
275
276   FGColumnVector3 vMac = Propagate->GetTb2l()*MassBalance->StructuralToBody(Aircraft->GetXYZrp());
277   hoverbmac = (Propagate->GetDistanceAGL() + vMac(3)) / Aircraft->GetWingSpan();
278
279   // when all model are executed, 
280   // please calculate the distance from the initial point
281
282   CalculateRelativePosition();
283
284   return false;
285 }
286
287 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
288
289 double FGAuxiliary::GetHeadWind(void) const
290 {
291   double psiw,vw;
292
293   psiw = Atmosphere->GetWindPsi();
294   vw = Atmosphere->GetTotalWindNED().Magnitude();
295
296   return vw*cos(psiw - Propagate->GetEuler(ePsi));
297 }
298
299 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
300
301 double FGAuxiliary::GetCrossWind(void) const
302 {
303   double psiw,vw;
304
305   psiw = Atmosphere->GetWindPsi();
306   vw = Atmosphere->GetTotalWindNED().Magnitude();
307
308   return  vw*sin(psiw - Propagate->GetEuler(ePsi));
309 }
310
311 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
312
313 void FGAuxiliary::bind(void)
314 {
315   typedef double (FGAuxiliary::*PMF)(int) const;
316   typedef double (FGAuxiliary::*PF)(void) const;
317   PropertyManager->Tie("propulsion/tat-r", this, &FGAuxiliary::GetTotalTemperature);
318   PropertyManager->Tie("propulsion/tat-c", this, &FGAuxiliary::GetTAT_C);
319   PropertyManager->Tie("propulsion/pt-lbs_sqft", this, &FGAuxiliary::GetTotalPressure);
320   PropertyManager->Tie("velocities/vc-fps", this, &FGAuxiliary::GetVcalibratedFPS);
321   PropertyManager->Tie("velocities/vc-kts", this, &FGAuxiliary::GetVcalibratedKTS);
322   PropertyManager->Tie("velocities/ve-fps", this, &FGAuxiliary::GetVequivalentFPS);
323   PropertyManager->Tie("velocities/ve-kts", this, &FGAuxiliary::GetVequivalentKTS);
324   PropertyManager->Tie("velocities/machU", this, &FGAuxiliary::GetMachU);
325   PropertyManager->Tie("velocities/p-aero-rad_sec", this, eX, (PMF)&FGAuxiliary::GetAeroPQR);
326   PropertyManager->Tie("velocities/q-aero-rad_sec", this, eY, (PMF)&FGAuxiliary::GetAeroPQR);
327   PropertyManager->Tie("velocities/r-aero-rad_sec", this, eZ, (PMF)&FGAuxiliary::GetAeroPQR);
328   PropertyManager->Tie("velocities/phidot-rad_sec", this, ePhi, (PMF)&FGAuxiliary::GetEulerRates);
329   PropertyManager->Tie("velocities/thetadot-rad_sec", this, eTht, (PMF)&FGAuxiliary::GetEulerRates);
330   PropertyManager->Tie("velocities/psidot-rad_sec", this, ePsi, (PMF)&FGAuxiliary::GetEulerRates);
331   PropertyManager->Tie("velocities/u-aero-fps", this, eU, (PMF)&FGAuxiliary::GetAeroUVW);
332   PropertyManager->Tie("velocities/v-aero-fps", this, eV, (PMF)&FGAuxiliary::GetAeroUVW);
333   PropertyManager->Tie("velocities/w-aero-fps", this, eW, (PMF)&FGAuxiliary::GetAeroUVW);
334   PropertyManager->Tie("velocities/vt-fps", this, &FGAuxiliary::GetVt, &FGAuxiliary::SetVt, true);
335   PropertyManager->Tie("velocities/mach", this, &FGAuxiliary::GetMach, &FGAuxiliary::SetMach, true);
336   PropertyManager->Tie("velocities/vg-fps", this, &FGAuxiliary::GetVground);
337   PropertyManager->Tie("accelerations/a-pilot-x-ft_sec2", this, eX, (PMF)&FGAuxiliary::GetPilotAccel);
338   PropertyManager->Tie("accelerations/a-pilot-y-ft_sec2", this, eY, (PMF)&FGAuxiliary::GetPilotAccel);
339   PropertyManager->Tie("accelerations/a-pilot-z-ft_sec2", this, eZ, (PMF)&FGAuxiliary::GetPilotAccel);
340   PropertyManager->Tie("accelerations/n-pilot-x-norm", this, eX, (PMF)&FGAuxiliary::GetNpilot);
341   PropertyManager->Tie("accelerations/n-pilot-y-norm", this, eY, (PMF)&FGAuxiliary::GetNpilot);
342   PropertyManager->Tie("accelerations/n-pilot-z-norm", this, eZ, (PMF)&FGAuxiliary::GetNpilot);
343   PropertyManager->Tie("accelerations/Nz", this, &FGAuxiliary::GetNz);
344   /* PropertyManager->Tie("atmosphere/headwind-fps", this, &FGAuxiliary::GetHeadWind, true);
345   PropertyManager->Tie("atmosphere/crosswind-fps", this, &FGAuxiliary::GetCrossWind, true); */
346   PropertyManager->Tie("aero/alpha-rad", this, (PF)&FGAuxiliary::Getalpha, &FGAuxiliary::Setalpha, true);
347   PropertyManager->Tie("aero/beta-rad", this, (PF)&FGAuxiliary::Getbeta, &FGAuxiliary::Setbeta, true);
348   PropertyManager->Tie("aero/mag-beta-rad", this, (PF)&FGAuxiliary::GetMagBeta);
349   PropertyManager->Tie("aero/alpha-deg", this, inDegrees, (PMF)&FGAuxiliary::Getalpha);
350   PropertyManager->Tie("aero/beta-deg", this, inDegrees, (PMF)&FGAuxiliary::Getbeta);
351   PropertyManager->Tie("aero/mag-beta-deg", this, inDegrees, (PMF)&FGAuxiliary::GetMagBeta);
352   PropertyManager->Tie("aero/qbar-psf", this, &FGAuxiliary::Getqbar, &FGAuxiliary::Setqbar, true);
353   PropertyManager->Tie("aero/qbarUW-psf", this, &FGAuxiliary::GetqbarUW, &FGAuxiliary::SetqbarUW, true);
354   PropertyManager->Tie("aero/qbarUV-psf", this, &FGAuxiliary::GetqbarUV, &FGAuxiliary::SetqbarUV, true);
355   PropertyManager->Tie("aero/alphadot-rad_sec", this, (PF)&FGAuxiliary::Getadot, &FGAuxiliary::Setadot, true);
356   PropertyManager->Tie("aero/betadot-rad_sec", this, (PF)&FGAuxiliary::Getbdot, &FGAuxiliary::Setbdot, true);
357   PropertyManager->Tie("aero/alphadot-deg_sec", this, inDegrees, (PMF)&FGAuxiliary::Getadot);
358   PropertyManager->Tie("aero/betadot-deg_sec", this, inDegrees, (PMF)&FGAuxiliary::Getbdot);
359   PropertyManager->Tie("aero/h_b-cg-ft", this, &FGAuxiliary::GetHOverBCG);
360   PropertyManager->Tie("aero/h_b-mac-ft", this, &FGAuxiliary::GetHOverBMAC);
361   PropertyManager->Tie("flight-path/gamma-rad", this, &FGAuxiliary::GetGamma, &FGAuxiliary::SetGamma);
362   PropertyManager->Tie("flight-path/psi-gt-rad", this, &FGAuxiliary::GetGroundTrack);
363
364   PropertyManager->Tie("position/distance-from-start-lon-mt", this, &FGAuxiliary::GetLongitudeRelativePosition);
365   PropertyManager->Tie("position/distance-from-start-lat-mt", this, &FGAuxiliary::GetLatitudeRelativePosition);
366   PropertyManager->Tie("position/distance-from-start-mag-mt", this, &FGAuxiliary::GetDistanceRelativePosition);
367 }
368
369 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
370
371 void FGAuxiliary::CalculateRelativePosition(void)
372
373   const double earth_radius_mt = Inertial->GetRefRadius()*fttom;
374   lat_relative_position=(FDMExec->GetPropagate()->GetLatitude()  - FDMExec->GetIC()->GetLatitudeDegIC() *degtorad)*earth_radius_mt;
375   lon_relative_position=(FDMExec->GetPropagate()->GetLongitude() - FDMExec->GetIC()->GetLongitudeDegIC()*degtorad)*earth_radius_mt;
376   relative_position = sqrt(lat_relative_position*lat_relative_position + lon_relative_position*lon_relative_position);
377 };
378
379 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
380 //    The bitmasked value choices are as follows:
381 //    unset: In this case (the default) JSBSim would only print
382 //       out the normally expected messages, essentially echoing
383 //       the config files as they are read. If the environment
384 //       variable is not set, debug_lvl is set to 1 internally
385 //    0: This requests JSBSim not to output any messages
386 //       whatsoever.
387 //    1: This value explicity requests the normal JSBSim
388 //       startup messages
389 //    2: This value asks for a message to be printed out when
390 //       a class is instantiated
391 //    4: When this value is set, a message is displayed when a
392 //       FGModel object executes its Run() method
393 //    8: When this value is set, various runtime state variables
394 //       are printed out periodically
395 //    16: When set various parameters are sanity checked and
396 //       a message is printed out when they go out of bounds
397
398 void FGAuxiliary::Debug(int from)
399 {
400   if (debug_lvl <= 0) return;
401
402   if (debug_lvl & 1) { // Standard console startup message output
403     if (from == 0) { // Constructor
404
405     }
406   }
407   if (debug_lvl & 2 ) { // Instantiation/Destruction notification
408     if (from == 0) cout << "Instantiated: FGAuxiliary" << endl;
409     if (from == 1) cout << "Destroyed:    FGAuxiliary" << endl;
410   }
411   if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
412   }
413   if (debug_lvl & 8 ) { // Runtime state variables
414   }
415   if (debug_lvl & 16) { // Sanity checking
416     if (Mach > 100 || Mach < 0.00)
417       cout << "FGPropagate::Mach is out of bounds: " << Mach << endl;
418     if (qbar > 1e6 || qbar < 0.00)
419       cout << "FGPropagate::qbar is out of bounds: " << qbar << endl;
420   }
421   if (debug_lvl & 64) {
422     if (from == 0) { // Constructor
423       cout << IdSrc << endl;
424       cout << IdHdr << endl;
425     }
426   }
427 }
428
429 } // namespace JSBSim