1 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 (incorporated into C++ JSBSim class heirarchy, see model authors below)
7 Purpose: Models the MSIS-00 atmosphere
9 ------------- Copyright (C) 2003 David P. Culp (davidculp2@comcast.net) ------
11 This program is free software; you can redistribute it and/or modify it under
12 the terms of the GNU Lesser General Public License as published by the Free Software
13 Foundation; either version 2 of the License, or (at your option) any later
16 This program is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
21 You should have received a copy of the GNU Lesser General Public License along with
22 this program; if not, write to the Free Software Foundation, Inc., 59 Temple
23 Place - Suite 330, Boston, MA 02111-1307, USA.
25 Further information about the GNU Lesser General Public License can also be found on
26 the world wide web at http://www.gnu.org.
28 FUNCTIONAL DESCRIPTION
29 --------------------------------------------------------------------------------
30 Models the MSIS-00 atmosphere. Provides temperature and density to FGAtmosphere,
31 given day-of-year, time-of-day, altitude, latitude, longitude and local time.
34 --------------------------------------------------------------------------------
36 01/11/04 DPC Derived from FGAtmosphere
38 --------------------------------------------------------------------
39 --------- N R L M S I S E - 0 0 M O D E L 2 0 0 1 ----------
40 --------------------------------------------------------------------
42 This file is part of the NRLMSISE-00 C source code package - release
45 The NRLMSISE-00 model was developed by Mike Picone, Alan Hedin, and
46 Doug Drob. They also wrote a NRLMSISE-00 distribution package in
47 FORTRAN which is available at
48 http://uap-www.nrl.navy.mil/models_web/msis/msis_home.htm
50 Dominik Brodowski implemented and maintains this C version. You can
51 reach him at devel@brodo.de. See the file "DOCUMENTATION" for details,
52 and check http://www.brodo.de/english/pub/nrlmsise/index.html for
53 updated releases of this package.
56 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
61 #include "models/FGAuxiliary.h"
62 #include <cmath> /* maths functions */
63 #include <iostream> // for cout, endl
69 static const char *IdSrc = "$Id: FGMSIS.cpp,v 1.14 2010/11/18 12:38:06 jberndt Exp $";
70 static const char *IdHdr = ID_MSIS;
72 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
74 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
77 extern double pt[150];
78 extern double pd[9][150];
79 extern double ps[150];
80 extern double pdl[2][25];
81 extern double ptl[4][100];
82 extern double pma[10][100];
83 extern double sam[100];
86 extern double ptm[10];
87 extern double pdm[8][10];
88 extern double pavgm[10];
90 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
92 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
95 MSIS::MSIS(FGFDMExec* fdmex) : FGAtmosphere(fdmex)
102 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
109 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
111 bool MSIS::InitModel(void)
113 FGModel::InitModel();
117 flags.switches[0] = 0;
118 for (i=1;i<24;i++) flags.switches[i] = 1;
120 for (i=0;i<7;i++) aph.a[i] = 100.0;
122 // set some common magnetic flux values
127 SLtemperature = intTemperature = 518.0;
128 SLpressure = intPressure = 2116.7;
129 SLdensity = intDensity = 0.002378;
130 SLsoundspeed = sqrt(2403.0832 * SLtemperature);
131 rSLtemperature = 1.0/intTemperature;
132 rSLpressure = 1.0/intPressure;
133 rSLdensity = 1.0/intDensity;
134 rSLsoundspeed = 1.0/SLsoundspeed;
135 temperature = &intTemperature;
136 pressure = &intPressure;
137 density = &intDensity;
144 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
148 if (FGModel::Run()) return true;
149 if (FDMExec->Holding()) return false;
153 //do temp, pressure, and density first
155 // get sea-level values
156 Calculate(FDMExec->GetAuxiliary()->GetDayOfYear(),
157 FDMExec->GetAuxiliary()->GetSecondsInDay(),
159 FDMExec->GetPropagate()->GetLocation().GetLatitudeDeg(),
160 FDMExec->GetPropagate()->GetLocation().GetLongitudeDeg());
161 SLtemperature = output.t[1] * 1.8;
162 SLdensity = output.d[5] * 1.940321;
163 SLpressure = 1716.488 * SLdensity * SLtemperature;
164 SLsoundspeed = sqrt(2403.0832 * SLtemperature);
165 rSLtemperature = 1.0/SLtemperature;
166 rSLpressure = 1.0/SLpressure;
167 rSLdensity = 1.0/SLdensity;
168 rSLsoundspeed = 1.0/SLsoundspeed;
170 // get at-altitude values
171 Calculate(FDMExec->GetAuxiliary()->GetDayOfYear(),
172 FDMExec->GetAuxiliary()->GetSecondsInDay(),
173 FDMExec->GetPropagate()->GetAltitudeASL(),
174 FDMExec->GetPropagate()->GetLocation().GetLatitudeDeg(),
175 FDMExec->GetPropagate()->GetLocation().GetLongitudeDeg());
176 intTemperature = output.t[1] * 1.8;
177 intDensity = output.d[5] * 1.940321;
178 intPressure = 1716.488 * intDensity * intTemperature;
179 //cout << "T=" << intTemperature << " D=" << intDensity << " P=";
180 //cout << intPressure << " a=" << soundspeed << endl;
192 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
194 void MSIS::Calculate(int day, double sec, double alt, double lat, double lon)
199 input.alt = alt / 3281; //feet to kilometers
203 input.lst = (sec/3600) + (lon/15);
204 if (input.lst > 24.0) input.lst -= 24.0;
205 if (input.lst < 0.0) input.lst = 24 - input.lst;
207 gtd7d(&input, &flags, &output);
210 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
213 void MSIS::UseExternal(void){
214 // do nothing, external control not allowed
218 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
221 void MSIS::tselec(struct nrlmsise_flags *flags)
226 if (flags->switches[i]==1)
230 if (flags->switches[i]>0)
235 flags->sw[i]=flags->switches[i];
236 flags->swc[i]=flags->switches[i];
242 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
244 void MSIS::glatf(double lat, double *gv, double *reff)
246 double dgtr = 1.74533E-2;
248 c2 = cos(2.0*dgtr*lat);
249 *gv = 980.616 * (1.0 - 0.0026373 * c2);
250 *reff = 2.0 * (*gv) / (3.085462E-6 + 2.27E-9 * c2) * 1.0E-5;
253 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
255 double MSIS::ccor(double alt, double r, double h1, double zh)
257 /* CHEMISTRY/DISSOCIATION CORRECTION FOR MSIS MODELS
260 * H1 - transition scale length
261 * ZH - altitude of 1/2 R
275 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
277 double MSIS::ccor2(double alt, double r, double h1, double zh, double h2)
279 /* CHEMISTRY/DISSOCIATION CORRECTION FOR MSIS MODELS
282 * H1 - transition scale length
283 * ZH - altitude of 1/2 R
284 * H2 - transition scale length #2 ?
289 e1 = (alt - zh) / h1;
290 e2 = (alt - zh) / h2;
291 if ((e1 > 70) || (e2 > 70))
293 if ((e1 < -70) && (e2 < -70))
297 ccor2v = r / (1.0 + 0.5 * (ex1 + ex2));
301 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
303 double MSIS::scalh(double alt, double xm, double temp)
307 g = gsurf / (pow((1.0 + alt/re),2.0));
308 g = rgas * temp / (g * xm);
312 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
314 double MSIS::dnet (double dd, double dm, double zhm, double xmm, double xm)
316 /* TURBOPAUSE CORRECTION FOR MSIS MODELS
318 * DD - diffusive density
319 * DM - full mixed density
320 * ZHM - transition scale length
321 * XMM - full mixed molecular weight
322 * XM - species molecular weight
323 * DNET - combined density
328 if (!((dm>0) && (dd>0))) {
329 cerr << "dnet log error " << dm << ' ' << dd << ' ' << xm << ' ' << endl;
330 if ((dd==0) && (dm==0))
337 ylog = a * log(dm/dd);
342 a = dd*pow((1.0 + exp(ylog)),(1.0/a));
346 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
348 void MSIS::splini (double *xa, double *ya, double *y2a, int n, double x, double *y)
350 /* INTEGRATE CUBIC SPLINE FUNCTION FROM XA(1) TO X
351 * XA,YA: ARRAYS OF TABULATED FUNCTION IN ASCENDING ORDER BY X
352 * Y2A: ARRAY OF SECOND DERIVATIVES
353 * N: SIZE OF ARRAYS XA,YA,Y2A
354 * X: ABSCISSA ENDPOINT FOR INTEGRATION
360 double xx, h, a, b, a2, b2;
361 while ((x>xa[klo]) && (khi<n)) {
369 h = xa[khi] - xa[klo];
370 a = (xa[khi] - xx)/h;
371 b = (xx - xa[klo])/h;
374 yi += ((1.0 - a2) * ya[klo] / 2.0 + b2 * ya[khi] / 2.0 + ((-(1.0+a2*a2)/4.0 + a2/2.0) * y2a[klo] + (b2*b2/4.0 - b2/2.0) * y2a[khi]) * h * h / 6.0) * h;
381 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
383 void MSIS::splint (double *xa, double *ya, double *y2a, int n, double x, double *y)
385 /* CALCULATE CUBIC SPLINE INTERP VALUE
386 * ADAPTED FROM NUMERICAL RECIPES BY PRESS ET AL.
387 * XA,YA: ARRAYS OF TABULATED FUNCTION IN ASCENDING ORDER BY X
388 * Y2A: ARRAY OF SECOND DERIVATIVES
389 * N: SIZE OF ARRAYS XA,YA,Y2A
390 * X: ABSCISSA FOR INTERPOLATION
398 while ((khi-klo)>1) {
405 h = xa[khi] - xa[klo];
407 cerr << "bad XA input to splint" << endl;
410 yi = a * ya[klo] + b * ya[khi] + ((a*a*a - a) * y2a[klo] + (b*b*b - b) * y2a[khi]) * h * h/6.0;
414 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
416 void MSIS::spline (double *x, double *y, int n, double yp1, double ypn, double *y2)
418 /* CALCULATE 2ND DERIVATIVES OF CUBIC SPLINE INTERP FUNCTION
419 * ADAPTED FROM NUMERICAL RECIPES BY PRESS ET AL
420 * X,Y: ARRAYS OF TABULATED FUNCTION IN ASCENDING ORDER BY X
421 * N: SIZE OF ARRAYS X,Y
422 * YP1,YPN: SPECIFIED DERIVATIVES AT X[0] AND X[N-1]; VALUES
423 * >= 1E30 SIGNAL SIGNAL SECOND DERIVATIVE ZERO
424 * Y2: OUTPUT ARRAY OF SECOND DERIVATIVES
427 double sig, p, qn, un;
431 cerr << "Out Of Memory in spline - ERROR" << endl;
439 u[0]=(3.0/(x[1]-x[0]))*((y[1]-y[0])/(x[1]-x[0])-yp1);
441 for (i=1;i<(n-1);i++) {
442 sig = (x[i]-x[i-1])/(x[i+1] - x[i-1]);
443 p = sig * y2[i-1] + 2.0;
444 y2[i] = (sig - 1.0) / p;
445 u[i] = (6.0 * ((y[i+1] - y[i])/(x[i+1] - x[i]) -(y[i] - y[i-1]) / (x[i] - x[i-1]))/(x[i+1] - x[i-1]) - sig * u[i-1])/p;
452 un = (3.0 / (x[n-1] - x[n-2])) * (ypn - (y[n-1] - y[n-2])/(x[n-1] - x[n-2]));
454 y2[n-1] = (un - qn * u[n-2]) / (qn * y2[n-2] + 1.0);
456 y2[k] = y2[k] * y2[k+1] + u[k];
461 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
463 double MSIS::zeta(double zz, double zl)
465 return ((zz-zl)*(re+zl)/(re+zz));
468 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
470 double MSIS::densm(double alt, double d0, double xm, double *tz, int mn3,
471 double *zn3, double *tn3, double *tgn3, int mn2, double *zn2,
472 double *tn2, double *tgn2)
474 /* Calculate Temperature and Density Profiles for lower atmos. */
475 double xs[10], ys[10], y2out[10];
477 double z, z1, z2, t1, t2, zg, zgdif;
480 double expl, gamm, glb;
492 /* STRATOSPHERE/MESOSPHERE TEMPERATURE */
503 zgdif = zeta(z2, z1);
505 /* set up spline nodes */
507 xs[k]=zeta(zn2[k],z1)/zgdif;
510 yd1=-tgn2[0] / (t1*t1) * zgdif;
511 yd2=-tgn2[1] / (t2*t2) * zgdif * (pow(((re+z2)/(re+z1)),2.0));
513 /* calculate spline coefficients */
514 spline (xs, ys, mn, yd1, yd2, y2out);
516 splint (xs, ys, y2out, mn, x, &y);
518 /* temperature at altitude */
521 /* calaculate stratosphere / mesospehere density */
522 glb = gsurf / (pow((1.0 + z1/re),2.0));
523 gamm = xm * glb * zgdif / rgas;
525 /* Integrate temperature profile */
526 splini(xs, ys, y2out, mn, x, &yi);
531 /* Density at altitude */
532 densm_tmp = densm_tmp * (t1 / *tz) * exp(-expl);
542 /* troposhere / stratosphere temperature */
552 /* set up spline nodes */
554 xs[k] = zeta(zn3[k],z1) / zgdif;
555 ys[k] = 1.0 / tn3[k];
557 yd1=-tgn3[0] / (t1*t1) * zgdif;
558 yd2=-tgn3[1] / (t2*t2) * zgdif * (pow(((re+z2)/(re+z1)),2.0));
560 /* calculate spline coefficients */
561 spline (xs, ys, mn, yd1, yd2, y2out);
563 splint (xs, ys, y2out, mn, x, &y);
565 /* temperature at altitude */
568 /* calaculate tropospheric / stratosphere density */
569 glb = gsurf / (pow((1.0 + z1/re),2.0));
570 gamm = xm * glb * zgdif / rgas;
572 /* Integrate temperature profile */
573 splini(xs, ys, y2out, mn, x, &yi);
578 /* Density at altitude */
579 densm_tmp = densm_tmp * (t1 / *tz) * exp(-expl);
587 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
589 double MSIS::densu(double alt, double dlb, double tinf, double tlb, double xm,
590 double alpha, double *tz, double zlb, double s2, int mn1,
591 double *zn1, double *tn1, double *tgn1)
593 /* Calculate Temperature and Density Profiles for MSIS models
594 * New lower thermo polynomial
596 double yd2, yd1, x=0.0, y=0.0;
598 double densu_temp=1.0;
599 double za, z, zg2, tt, ta=0.0;
600 double dta, z1=0.0, z2, t1=0.0, t2, zg, zgdif=0.0;
608 double xs[5], ys[5], y2out[5];
609 /* joining altitudes of Bates and spline */
616 /* geopotential altitude difference from ZLB */
619 /* Bates temperature */
620 tt = tinf - (tinf - tlb) * exp(-s2*zg2);
626 /* calculate temperature below ZA
627 * temperature gradient at ZA from Bates profile */
628 dta = (tinf - ta) * s2 * pow(((re+zlb)/(re+za)),2.0);
640 /* geopotental difference from z1 */
642 zgdif = zeta(z2, z1);
643 /* set up spline nodes */
645 xs[k] = zeta(zn1[k], z1) / zgdif;
646 ys[k] = 1.0 / tn1[k];
648 /* end node derivatives */
649 yd1 = -tgn1[0] / (t1*t1) * zgdif;
650 yd2 = -tgn1[1] / (t2*t2) * zgdif * pow(((re+z2)/(re+z1)),2.0);
651 /* calculate spline coefficients */
652 spline (xs, ys, mn, yd1, yd2, y2out);
654 splint (xs, ys, y2out, mn, x, &y);
655 /* temperature at altitude */
662 /* calculate density above za */
663 glb = gsurf / pow((1.0 + zlb/re),2.0);
664 gamma = xm * glb / (s2 * rgas * tinf);
665 expl = exp(-s2 * gamma * zg2);
671 /* density at altitude */
672 densa = dlb * pow((tlb/tt),((1.0+alpha+gamma))) * expl;
677 /* calculate density below za */
678 glb = gsurf / pow((1.0 + z1/re),2.0);
679 gamm = xm * glb * zgdif / rgas;
681 /* integrate spline temperatures */
682 splini (xs, ys, y2out, mn, x, &yi);
689 /* density at altitude */
690 densu_temp = densu_temp * pow ((t1 / *tz),(1.0 + alpha)) * exp(-expl);
694 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
696 /* 3hr Magnetic activity functions */
698 double MSIS::g0(double a, double *p)
700 return (a - 4.0 + (p[25] - 1.0) * (a - 4.0 + (exp(-sqrt(p[24]*p[24]) *
701 (a - 4.0)) - 1.0) / sqrt(p[24]*p[24])));
704 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
707 double MSIS::sumex(double ex)
709 return (1.0 + (1.0 - pow(ex,19.0)) / (1.0 - ex) * pow(ex,0.5));
712 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
715 double MSIS::sg0(double ex, double *p, double *ap)
717 return (g0(ap[1],p) + (g0(ap[2],p)*ex + g0(ap[3],p)*ex*ex +
718 g0(ap[4],p)*pow(ex,3.0) + (g0(ap[5],p)*pow(ex,4.0) +
719 g0(ap[6],p)*pow(ex,12.0))*(1.0-pow(ex,8.0))/(1.0-ex)))/sumex(ex);
722 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
724 double MSIS::globe7(double *p, struct nrlmsise_input *input,
725 struct nrlmsise_flags *flags)
727 /* CALCULATE G(L) FUNCTION
728 * Upper Thermosphere Parameters */
735 double c, s, c2, c4, s2;
736 double sr = 7.2722E-5;
737 double dgtr = 1.74533E-2;
738 double dr = 1.72142E-2;
740 double cd32, cd18, cd14, cd39;
741 double p32, p18, p14, p39;
752 else if (flags->sw[9]<0)
754 xlong = input->g_long;
756 /* calculate legendre polynomials */
757 c = sin(input->g_lat * dgtr);
758 s = cos(input->g_lat * dgtr);
764 plg[0][2] = 0.5*(3.0*c2 -1.0);
765 plg[0][3] = 0.5*(5.0*c*c2-3.0*c);
766 plg[0][4] = (35.0*c4 - 30.0*c2 + 3.0)/8.0;
767 plg[0][5] = (63.0*c2*c2*c - 70.0*c2*c + 15.0*c)/8.0;
768 plg[0][6] = (11.0*c*plg[0][5] - 5.0*plg[0][4])/6.0;
769 /* plg[0][7] = (13.0*c*plg[0][6] - 6.0*plg[0][5])/7.0; */
772 plg[1][3] = 1.5*(5.0*c2-1.0)*s;
773 plg[1][4] = 2.5*(7.0*c2*c-3.0*c)*s;
774 plg[1][5] = 1.875*(21.0*c4 - 14.0*c2 +1.0)*s;
775 plg[1][6] = (11.0*c*plg[1][5]-6.0*plg[1][4])/5.0;
776 /* plg[1][7] = (13.0*c*plg[1][6]-7.0*plg[1][5])/6.0; */
777 /* plg[1][8] = (15.0*c*plg[1][7]-8.0*plg[1][6])/7.0; */
779 plg[2][3] = 15.0*s2*c;
780 plg[2][4] = 7.5*(7.0*c2 -1.0)*s2;
781 plg[2][5] = 3.0*c*plg[2][4]-2.0*plg[2][3];
782 plg[2][6] =(11.0*c*plg[2][5]-7.0*plg[2][4])/4.0;
783 plg[2][7] =(13.0*c*plg[2][6]-8.0*plg[2][5])/5.0;
784 plg[3][3] = 15.0*s2*s;
785 plg[3][4] = 105.0*s2*s*c;
786 plg[3][5] =(9.0*c*plg[3][4]-7.*plg[3][3])/2.0;
787 plg[3][6] =(11.0*c*plg[3][5]-8.*plg[3][4])/3.0;
789 if (!(((flags->sw[7]==0)&&(flags->sw[8]==0))&&(flags->sw[14]==0))) {
790 stloc = sin(hr*tloc);
791 ctloc = cos(hr*tloc);
792 s2tloc = sin(2.0*hr*tloc);
793 c2tloc = cos(2.0*hr*tloc);
794 s3tloc = sin(3.0*hr*tloc);
795 c3tloc = cos(3.0*hr*tloc);
798 cd32 = cos(dr*(input->doy-p[31]));
799 cd18 = cos(2.0*dr*(input->doy-p[17]));
800 cd14 = cos(dr*(input->doy-p[13]));
801 cd39 = cos(2.0*dr*(input->doy-p[38]));
808 df = input->f107 - input->f107A;
809 dfa = input->f107A - 150.0;
810 t[0] = p[19]*df*(1.0+p[59]*dfa) + p[20]*df*df + p[21]*dfa + p[29]*pow(dfa,2.0);
811 f1 = 1.0 + (p[47]*dfa +p[19]*df+p[20]*df*df)*flags->swc[1];
812 f2 = 1.0 + (p[49]*dfa+p[19]*df+p[20]*df*df)*flags->swc[1];
814 /* TIME INDEPENDENT */
815 t[1] = (p[1]*plg[0][2]+ p[2]*plg[0][4]+p[22]*plg[0][6]) +
816 (p[14]*plg[0][2])*dfa*flags->swc[1] +p[26]*plg[0][1];
818 /* SYMMETRICAL ANNUAL */
821 /* SYMMETRICAL SEMIANNUAL */
822 t[3] = (p[15]+p[16]*plg[0][2])*cd18;
824 /* ASYMMETRICAL ANNUAL */
825 t[4] = f1*(p[9]*plg[0][1]+p[10]*plg[0][3])*cd14;
827 /* ASYMMETRICAL SEMIANNUAL */
828 t[5] = p[37]*plg[0][1]*cd39;
833 t71 = (p[11]*plg[1][2])*cd14*flags->swc[5];
834 t72 = (p[12]*plg[1][2])*cd14*flags->swc[5];
835 t[6] = f2*((p[3]*plg[1][1] + p[4]*plg[1][3] + p[27]*plg[1][5] + t71) * \
836 ctloc + (p[6]*plg[1][1] + p[7]*plg[1][3] + p[28]*plg[1][5] \
843 t81 = (p[23]*plg[2][3]+p[35]*plg[2][5])*cd14*flags->swc[5];
844 t82 = (p[33]*plg[2][3]+p[36]*plg[2][5])*cd14*flags->swc[5];
845 t[7] = f2*((p[5]*plg[2][2]+ p[41]*plg[2][4] + t81)*c2tloc +(p[8]*plg[2][2] + p[42]*plg[2][4] + t82)*s2tloc);
850 t[13] = f2 * ((p[39]*plg[3][3]+(p[93]*plg[3][4]+p[46]*plg[3][6])*cd14*flags->swc[5])* s3tloc +(p[40]*plg[3][3]+(p[94]*plg[3][4]+p[48]*plg[3][6])*cd14*flags->swc[5])* c3tloc);
853 /* magnetic activity based on daily ap */
854 if (flags->sw[9]==-1) {
858 exp1 = exp(-10800.0*sqrt(p[51]*p[51])/(1.0+p[138]*(45.0-sqrt(input->g_lat*input->g_lat))));
863 apt[0]=sg0(exp1,p,ap->a);
864 /* apt[1]=sg2(exp1,p,ap->a);
865 apt[2]=sg0(exp2,p,ap->a);
866 apt[3]=sg2(exp2,p,ap->a);
869 t[8] = apt[0]*(p[50]+p[96]*plg[0][2]+p[54]*plg[0][4]+ \
870 (p[125]*plg[0][1]+p[126]*plg[0][3]+p[127]*plg[0][5])*cd14*flags->swc[5]+ \
871 (p[128]*plg[1][1]+p[129]*plg[1][3]+p[130]*plg[1][5])*flags->swc[7]* \
872 cos(hr*(tloc-p[131])));
882 apdf = apd + (p45-1.0)*(apd + (exp(-p44 * apd) - 1.0)/p44);
884 t[8]=apdf*(p[32]+p[45]*plg[0][2]+p[34]*plg[0][4]+ \
885 (p[100]*plg[0][1]+p[101]*plg[0][3]+p[102]*plg[0][5])*cd14*flags->swc[5]+
886 (p[121]*plg[1][1]+p[122]*plg[1][3]+p[123]*plg[1][5])*flags->swc[7]*
887 cos(hr*(tloc-p[124])));
891 if ((flags->sw[10])&&(input->g_long>-1000.0)) {
895 t[10] = (1.0 + p[80]*dfa*flags->swc[1])* \
896 ((p[64]*plg[1][2]+p[65]*plg[1][4]+p[66]*plg[1][6]\
897 +p[103]*plg[1][1]+p[104]*plg[1][3]+p[105]*plg[1][5]\
898 +flags->swc[5]*(p[109]*plg[1][1]+p[110]*plg[1][3]+p[111]*plg[1][5])*cd14)* \
899 cos(dgtr*input->g_long) \
900 +(p[90]*plg[1][2]+p[91]*plg[1][4]+p[92]*plg[1][6]\
901 +p[106]*plg[1][1]+p[107]*plg[1][3]+p[108]*plg[1][5]\
902 +flags->swc[5]*(p[112]*plg[1][1]+p[113]*plg[1][3]+p[114]*plg[1][5])*cd14)* \
903 sin(dgtr*input->g_long));
906 /* ut and mixed ut, longitude */
908 t[11]=(1.0+p[95]*plg[0][1])*(1.0+p[81]*dfa*flags->swc[1])*\
909 (1.0+p[119]*plg[0][1]*flags->swc[5]*cd14)*\
910 ((p[68]*plg[0][1]+p[69]*plg[0][3]+p[70]*plg[0][5])*\
911 cos(sr*(input->sec-p[71])));
912 t[11]+=flags->swc[11]*\
913 (p[76]*plg[2][3]+p[77]*plg[2][5]+p[78]*plg[2][7])*\
914 cos(sr*(input->sec-p[79])+2.0*dgtr*input->g_long)*(1.0+p[137]*dfa*flags->swc[1]);
917 /* ut, longitude magnetic activity */
919 if (flags->sw[9]==-1) {
921 t[12]=apt[0]*flags->swc[11]*(1.+p[132]*plg[0][1])*\
922 ((p[52]*plg[1][2]+p[98]*plg[1][4]+p[67]*plg[1][6])*\
923 cos(dgtr*(input->g_long-p[97])))\
924 +apt[0]*flags->swc[11]*flags->swc[5]*\
925 (p[133]*plg[1][1]+p[134]*plg[1][3]+p[135]*plg[1][5])*\
926 cd14*cos(dgtr*(input->g_long-p[136])) \
927 +apt[0]*flags->swc[12]* \
928 (p[55]*plg[0][1]+p[56]*plg[0][3]+p[57]*plg[0][5])*\
929 cos(sr*(input->sec-p[58]));
932 t[12] = apdf*flags->swc[11]*(1.0+p[120]*plg[0][1])*\
933 ((p[60]*plg[1][2]+p[61]*plg[1][4]+p[62]*plg[1][6])*\
934 cos(dgtr*(input->g_long-p[63])))\
935 +apdf*flags->swc[11]*flags->swc[5]* \
936 (p[115]*plg[1][1]+p[116]*plg[1][3]+p[117]*plg[1][5])* \
937 cd14*cos(dgtr*(input->g_long-p[118])) \
938 + apdf*flags->swc[12]* \
939 (p[83]*plg[0][1]+p[84]*plg[0][3]+p[85]*plg[0][5])* \
940 cos(sr*(input->sec-p[75]));
945 /* parms not used: 82, 89, 99, 139-149 */
948 tinf = tinf + fabs(flags->sw[i+1])*t[i];
952 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
954 double MSIS::glob7s(double *p, struct nrlmsise_input *input,
955 struct nrlmsise_flags *flags)
957 /* VERSION OF GLOBE FOR LOWER ATMOSPHERE 10/26/99
962 double cd32, cd18, cd14, cd39;
963 double p32, p18, p14, p39;
965 double dr=1.72142E-2;
966 double dgtr=1.74533E-2;
967 /* confirm parameter set */
971 cerr << "Wrong parameter set for glob7s" << endl;
976 cd32 = cos(dr*(input->doy-p[31]));
977 cd18 = cos(2.0*dr*(input->doy-p[17]));
978 cd14 = cos(dr*(input->doy-p[13]));
979 cd39 = cos(2.0*dr*(input->doy-p[38]));
988 /* time independent */
989 t[1]=p[1]*plg[0][2] + p[2]*plg[0][4] + p[22]*plg[0][6] + p[26]*plg[0][1] + p[14]*plg[0][3] + p[59]*plg[0][5];
991 /* SYMMETRICAL ANNUAL */
992 t[2]=(p[18]+p[47]*plg[0][2]+p[29]*plg[0][4])*cd32;
994 /* SYMMETRICAL SEMIANNUAL */
995 t[3]=(p[15]+p[16]*plg[0][2]+p[30]*plg[0][4])*cd18;
997 /* ASYMMETRICAL ANNUAL */
998 t[4]=(p[9]*plg[0][1]+p[10]*plg[0][3]+p[20]*plg[0][5])*cd14;
1000 /* ASYMMETRICAL SEMIANNUAL */
1001 t[5]=(p[37]*plg[0][1])*cd39;
1006 t71 = p[11]*plg[1][2]*cd14*flags->swc[5];
1007 t72 = p[12]*plg[1][2]*cd14*flags->swc[5];
1008 t[6] = ((p[3]*plg[1][1] + p[4]*plg[1][3] + t71) * ctloc + (p[6]*plg[1][1] + p[7]*plg[1][3] + t72) * stloc) ;
1014 t81 = (p[23]*plg[2][3]+p[35]*plg[2][5])*cd14*flags->swc[5];
1015 t82 = (p[33]*plg[2][3]+p[36]*plg[2][5])*cd14*flags->swc[5];
1016 t[7] = ((p[5]*plg[2][2] + p[41]*plg[2][4] + t81) * c2tloc + (p[8]*plg[2][2] + p[42]*plg[2][4] + t82) * s2tloc);
1020 if (flags->sw[14]) {
1021 t[13] = p[39] * plg[3][3] * s3tloc + p[40] * plg[3][3] * c3tloc;
1024 /* MAGNETIC ACTIVITY */
1026 if (flags->sw[9]==1)
1027 t[8] = apdf * (p[32] + p[45] * plg[0][2] * flags->swc[2]);
1028 if (flags->sw[9]==-1)
1029 t[8]=(p[50]*apt[0] + p[96]*plg[0][2] * apt[0]*flags->swc[2]);
1033 if (!((flags->sw[10]==0) || (flags->sw[11]==0) || (input->g_long<=-1000.0))) {
1034 t[10] = (1.0 + plg[0][1]*(p[80]*flags->swc[5]*cos(dr*(input->doy-p[81]))\
1035 +p[85]*flags->swc[6]*cos(2.0*dr*(input->doy-p[86])))\
1036 +p[83]*flags->swc[3]*cos(dr*(input->doy-p[84]))\
1037 +p[87]*flags->swc[4]*cos(2.0*dr*(input->doy-p[88])))\
1038 *((p[64]*plg[1][2]+p[65]*plg[1][4]+p[66]*plg[1][6]\
1039 +p[74]*plg[1][1]+p[75]*plg[1][3]+p[76]*plg[1][5]\
1040 )*cos(dgtr*input->g_long)\
1041 +(p[90]*plg[1][2]+p[91]*plg[1][4]+p[92]*plg[1][6]\
1042 +p[77]*plg[1][1]+p[78]*plg[1][3]+p[79]*plg[1][5]\
1043 )*sin(dgtr*input->g_long));
1047 tt+=fabs(flags->sw[i+1])*t[i];
1051 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1053 void MSIS::gtd7(struct nrlmsise_input *input, struct nrlmsise_flags *flags,
1054 struct nrlmsise_output *output)
1059 double zn3[5]={32.5,20.0,15.0,10.0,0.0};
1061 double zn2[4]={72.5,55.0,45.0,32.5};
1070 struct nrlmsise_output soutput;
1075 /* Latitude variation of gravity (none for sw[2]=0) */
1077 if (flags->sw[2]==0)
1079 glatf(xlat, &gsurf, &re);
1083 /* THERMOSPHERE / MESOSPHERE (above zn2[0]) */
1084 if (input->alt>zn2[0])
1091 gts7(input, flags, &soutput);
1094 if (flags->sw[0]) /* metric adjustment */
1098 output->t[0]=soutput.t[0];
1099 output->t[1]=soutput.t[1];
1100 if (input->alt>=zn2[0]) {
1102 output->d[i]=soutput.d[i];
1106 /* LOWER MESOSPHERE/UPPER STRATOSPHERE (between zn3[0] and zn2[0])
1107 * Temperature at nodes and gradients at end nodes
1108 * Inverse temperature a linear function of spherical harmonics
1110 meso_tgn2[0]=meso_tgn1[1];
1111 meso_tn2[0]=meso_tn1[4];
1112 meso_tn2[1]=pma[0][0]*pavgm[0]/(1.0-flags->sw[20]*glob7s(pma[0], input, flags));
1113 meso_tn2[2]=pma[1][0]*pavgm[1]/(1.0-flags->sw[20]*glob7s(pma[1], input, flags));
1114 meso_tn2[3]=pma[2][0]*pavgm[2]/(1.0-flags->sw[20]*flags->sw[22]*glob7s(pma[2], input, flags));
1115 meso_tgn2[1]=pavgm[8]*pma[9][0]*(1.0+flags->sw[20]*flags->sw[22]*glob7s(pma[9], input, flags))*meso_tn2[3]*meso_tn2[3]/(pow((pma[2][0]*pavgm[2]),2.0));
1116 meso_tn3[0]=meso_tn2[3];
1118 if (input->alt<zn3[0]) {
1119 /* LOWER STRATOSPHERE AND TROPOSPHERE (below zn3[0])
1120 * Temperature at nodes and gradients at end nodes
1121 * Inverse temperature a linear function of spherical harmonics
1123 meso_tgn3[0]=meso_tgn2[1];
1124 meso_tn3[1]=pma[3][0]*pavgm[3]/(1.0-flags->sw[22]*glob7s(pma[3], input, flags));
1125 meso_tn3[2]=pma[4][0]*pavgm[4]/(1.0-flags->sw[22]*glob7s(pma[4], input, flags));
1126 meso_tn3[3]=pma[5][0]*pavgm[5]/(1.0-flags->sw[22]*glob7s(pma[5], input, flags));
1127 meso_tn3[4]=pma[6][0]*pavgm[6]/(1.0-flags->sw[22]*glob7s(pma[6], input, flags));
1128 meso_tgn3[1]=pma[7][0]*pavgm[7]*(1.0+flags->sw[22]*glob7s(pma[7], input, flags)) *meso_tn3[4]*meso_tn3[4]/(pow((pma[6][0]*pavgm[6]),2.0));
1131 /* LINEAR TRANSITION TO FULL MIXING BELOW zn2[0] */
1134 if (input->alt>zmix)
1135 dmc = 1.0 - (zn2[0]-input->alt)/(zn2[0] - zmix);
1138 /**** N2 density ****/
1139 dmr=soutput.d[2] / dm28m - 1.0;
1140 output->d[2]=densm(input->alt,dm28m,xmm, &tz, mn3, zn3, meso_tn3, meso_tgn3, mn2, zn2, meso_tn2, meso_tgn2);
1141 output->d[2]=output->d[2] * (1.0 + dmr*dmc);
1143 /**** HE density ****/
1144 dmr = soutput.d[0] / (dz28 * pdm[0][1]) - 1.0;
1145 output->d[0] = output->d[2] * pdm[0][1] * (1.0 + dmr*dmc);
1147 /**** O density ****/
1151 /**** O2 density ****/
1152 dmr = soutput.d[3] / (dz28 * pdm[3][1]) - 1.0;
1153 output->d[3] = output->d[2] * pdm[3][1] * (1.0 + dmr*dmc);
1155 /**** AR density ***/
1156 dmr = soutput.d[4] / (dz28 * pdm[4][1]) - 1.0;
1157 output->d[4] = output->d[2] * pdm[4][1] * (1.0 + dmr*dmc);
1159 /**** Hydrogen density ****/
1162 /**** Atomic nitrogen density ****/
1165 /**** Total mass density */
1166 output->d[5] = 1.66E-24 * (4.0 * output->d[0] + 16.0 * output->d[1] +
1167 28.0 * output->d[2] + 32.0 * output->d[3] + 40.0 * output->d[4]
1168 + output->d[6] + 14.0 * output->d[7]);
1171 output->d[5]=output->d[5]/1000;
1173 /**** temperature at altitude ****/
1174 dd = densm(input->alt, 1.0, 0, &tz, mn3, zn3, meso_tn3, meso_tgn3,
1175 mn2, zn2, meso_tn2, meso_tgn2);
1180 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1182 void MSIS::gtd7d(struct nrlmsise_input *input, struct nrlmsise_flags *flags,
1183 struct nrlmsise_output *output)
1185 gtd7(input, flags, output);
1186 output->d[5] = 1.66E-24 * (4.0 * output->d[0] + 16.0 * output->d[1] +
1187 28.0 * output->d[2] + 32.0 * output->d[3] + 40.0 * output->d[4]
1188 + output->d[6] + 14.0 * output->d[7] + 16.0 * output->d[8]);
1191 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1193 void MSIS::ghp7(struct nrlmsise_input *input, struct nrlmsise_flags *flags,
1194 struct nrlmsise_output *output, double press)
1196 double bm = 1.3806E-19;
1197 double rgas = 831.4;
1198 double test = 0.00043;
1205 double xn, xm, diff;
1211 zi = 18.06 * (3.00 - pl);
1212 else if ((pl>0.075) && (pl<=2.5))
1213 zi = 14.98 * (3.08 - pl);
1214 else if ((pl>-1) && (pl<=0.075))
1215 zi = 17.80 * (2.72 - pl);
1216 else if ((pl>-2) && (pl<=-1))
1217 zi = 14.28 * (3.64 - pl);
1218 else if ((pl>-4) && (pl<=-2))
1219 zi = 12.72 * (4.32 -pl);
1221 zi = 25.3 * (0.11 - pl);
1222 cl = input->g_lat/90.0;
1225 cd = (1.0 - (double) input->doy) / 91.25;
1227 cd = ((double) input->doy) / 91.25 - 3.0;
1229 if ((pl > -1.11) && (pl<=-0.23))
1232 ca = (2.79 - pl) / (2.79 + 0.23);
1233 if ((pl <= -1.11) && (pl>-3))
1234 ca = (-2.93 - pl)/(-2.93 + 1.11);
1235 z = zi - 4.87 * cl * cd * ca - 1.64 * cl2 * ca + 0.31 * ca * cl;
1237 z = 22.0 * pow((pl + 4.0),2.0) + 110.0;
1239 /* iteration loop */
1244 gtd7(input, flags, output);
1246 xn = output->d[0] + output->d[1] + output->d[2] + output->d[3] + output->d[4] + output->d[6] + output->d[7];
1247 p = bm * xn * output->t[1];
1250 diff = pl - log10(p);
1251 if (sqrt(diff*diff)<test)
1254 cerr << "ERROR: ghp7 not converging for press " << press << ", diff " << diff << endl;
1257 xm = output->d[5] / xn / 1.66E-24;
1260 g = gsurf / (pow((1.0 + z/re),2.0));
1261 sh = rgas * output->t[1] / (xm * g);
1263 /* new altitude estimate using scale height */
1265 z = z - sh * diff * 2.302;
1271 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1273 void MSIS::gts7(struct nrlmsise_input *input, struct nrlmsise_flags *flags,
1274 struct nrlmsise_output *output)
1276 /* Thermospheric portion of NRLMSISE-00
1277 * See GTD7 for more extensive comments
1283 double zn1[5] = {120.0, 110.0, 100.0, 90.0, 72.5};
1288 double s, z0, t0, tr12;
1289 double db01, db04, db14, db16, db28, db32, db40, db48;
1290 double zh28, zh04, zh16, zh32, zh40, zh01, zh14;
1291 double zhm28, zhm04, zhm16, zhm32, zhm40, zhm01, zhm14;
1293 double b28, b04, b16, b32, b40, b01, b14;
1295 double g28, g4, g16, g32, g40, g1, g14;
1297 double zc04, zc16, zc32, zc40, zc01, zc14;
1298 double hc04, hc16, hc32, hc40, hc01, hc14;
1299 double hcc16, hcc32, hcc01, hcc14;
1300 double zcc16, zcc32, zcc01, zcc14;
1301 double rc16, rc32, rc01, rc14;
1303 double g16h, db16h, tho, zsht, zmho, zsho;
1304 double dgtr=1.74533E-2;
1305 double dr=1.72142E-2;
1306 double alpha[9]={-0.38, 0.0, 0.0, 0.0, 0.17, 0.0, -0.38, 0.0, 0.0};
1307 double altl[8]={200.0, 300.0, 160.0, 250.0, 240.0, 450.0, 320.0, 450.0};
1309 double hc216, hcc232;
1315 /* TINF VARIATIONS NOT IMPORTANT BELOW ZA OR ZN1(1) */
1316 if (input->alt>zn1[0])
1317 tinf = ptm[0]*pt[0] * \
1318 (1.0+flags->sw[16]*globe7(pt,input,flags));
1320 tinf = ptm[0]*pt[0];
1323 /* GRADIENT VARIATIONS NOT IMPORTANT BELOW ZN1(5) */
1324 if (input->alt>zn1[4])
1325 g0 = ptm[3]*ps[0] * \
1326 (1.0+flags->sw[19]*globe7(ps,input,flags));
1329 tlb = ptm[1] * (1.0 + flags->sw[17]*globe7(pd[3],input,flags))*pd[3][0];
1330 s = g0 / (tinf - tlb);
1332 /* Lower thermosphere temp variations not significant for
1333 * density above 300 km */
1334 if (input->alt<300.0) {
1335 meso_tn1[1]=ptm[6]*ptl[0][0]/(1.0-flags->sw[18]*glob7s(ptl[0], input, flags));
1336 meso_tn1[2]=ptm[2]*ptl[1][0]/(1.0-flags->sw[18]*glob7s(ptl[1], input, flags));
1337 meso_tn1[3]=ptm[7]*ptl[2][0]/(1.0-flags->sw[18]*glob7s(ptl[2], input, flags));
1338 meso_tn1[4]=ptm[4]*ptl[3][0]/(1.0-flags->sw[18]*flags->sw[20]*glob7s(ptl[3], input, flags));
1339 meso_tgn1[1]=ptm[8]*pma[8][0]*(1.0+flags->sw[18]*flags->sw[20]*glob7s(pma[8], input, flags))*meso_tn1[4]*meso_tn1[4]/(pow((ptm[4]*ptl[3][0]),2.0));
1341 meso_tn1[1]=ptm[6]*ptl[0][0];
1342 meso_tn1[2]=ptm[2]*ptl[1][0];
1343 meso_tn1[3]=ptm[7]*ptl[2][0];
1344 meso_tn1[4]=ptm[4]*ptl[3][0];
1345 meso_tgn1[1]=ptm[8]*pma[8][0]*meso_tn1[4]*meso_tn1[4]/(pow((ptm[4]*ptl[3][0]),2.0));
1352 /* N2 variation factor at Zlb */
1353 g28=flags->sw[21]*globe7(pd[2], input, flags);
1355 /* VARIATION OF TURBOPAUSE HEIGHT */
1356 zhf=pdl[1][24]*(1.0+flags->sw[5]*pdl[0][24]*sin(dgtr*input->g_lat)*cos(dr*(input->doy-pt[13])));
1362 /**** N2 DENSITY ****/
1364 /* Diffusive density at Zlb */
1365 db28 = pdm[2][0]*exp(g28)*pd[2][0];
1366 /* Diffusive density at Alt */
1367 output->d[2]=densu(z,db28,tinf,tlb,28.0,alpha[2],&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1371 zhm28=pdm[2][3]*pdl[1][5];
1373 /* Mixed density at Zlb */
1374 b28=densu(zh28,db28,tinf,tlb,xmd,(alpha[2]-1.0),&tz,ptm[5],s,mn1, zn1,meso_tn1,meso_tgn1);
1375 if ((flags->sw[15])&&(z<=altl[2])) {
1376 /* Mixed density at Alt */
1377 dm28=densu(z,b28,tinf,tlb,xmm,alpha[2],&tz,ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1378 /* Net density at Alt */
1379 output->d[2]=dnet(output->d[2],dm28,zhm28,xmm,28.0);
1383 /**** HE DENSITY ****/
1385 /* Density variation factor at Zlb */
1386 g4 = flags->sw[21]*globe7(pd[0], input, flags);
1387 /* Diffusive density at Zlb */
1388 db04 = pdm[0][0]*exp(g4)*pd[0][0];
1389 /* Diffusive density at Alt */
1390 output->d[0]=densu(z,db04,tinf,tlb, 4.,alpha[0],&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1392 if ((flags->sw[15]) && (z<altl[0])) {
1395 /* Mixed density at Zlb */
1396 b04=densu(zh04,db04,tinf,tlb,4.-xmm,alpha[0]-1.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1397 /* Mixed density at Alt */
1398 dm04=densu(z,b04,tinf,tlb,xmm,0.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1400 /* Net density at Alt */
1401 output->d[0]=dnet(output->d[0],dm04,zhm04,xmm,4.);
1402 /* Correction to specified mixing ratio at ground */
1403 rl=log(b28*pdm[0][1]/b04);
1404 zc04=pdm[0][4]*pdl[1][0];
1405 hc04=pdm[0][5]*pdl[1][1];
1406 /* Net density corrected at Alt */
1407 output->d[0]=output->d[0]*ccor(z,rl,hc04,zc04);
1411 /**** O DENSITY ****/
1413 /* Density variation factor at Zlb */
1414 g16= flags->sw[21]*globe7(pd[1],input,flags);
1415 /* Diffusive density at Zlb */
1416 db16 = pdm[1][0]*exp(g16)*pd[1][0];
1417 /* Diffusive density at Alt */
1418 output->d[1]=densu(z,db16,tinf,tlb, 16.,alpha[1],&output->t[1],ptm[5],s,mn1, zn1,meso_tn1,meso_tgn1);
1420 if ((flags->sw[15]) && (z<=altl[1])) {
1423 /* Mixed density at Zlb */
1424 b16=densu(zh16,db16,tinf,tlb,16.0-xmm,(alpha[1]-1.0), &output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1425 /* Mixed density at Alt */
1426 dm16=densu(z,b16,tinf,tlb,xmm,0.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1428 /* Net density at Alt */
1429 output->d[1]=dnet(output->d[1],dm16,zhm16,xmm,16.);
1430 rl=pdm[1][1]*pdl[1][16]*(1.0+flags->sw[1]*pdl[0][23]*(input->f107A-150.0));
1431 hc16=pdm[1][5]*pdl[1][3];
1432 zc16=pdm[1][4]*pdl[1][2];
1433 hc216=pdm[1][5]*pdl[1][4];
1434 output->d[1]=output->d[1]*ccor2(z,rl,hc16,zc16,hc216);
1435 /* Chemistry correction */
1436 hcc16=pdm[1][7]*pdl[1][13];
1437 zcc16=pdm[1][6]*pdl[1][12];
1438 rc16=pdm[1][3]*pdl[1][14];
1439 /* Net density corrected at Alt */
1440 output->d[1]=output->d[1]*ccor(z,rc16,hcc16,zcc16);
1444 /**** O2 DENSITY ****/
1446 /* Density variation factor at Zlb */
1447 g32= flags->sw[21]*globe7(pd[4], input, flags);
1448 /* Diffusive density at Zlb */
1449 db32 = pdm[3][0]*exp(g32)*pd[4][0];
1450 /* Diffusive density at Alt */
1451 output->d[3]=densu(z,db32,tinf,tlb, 32.,alpha[3],&output->t[1],ptm[5],s,mn1, zn1,meso_tn1,meso_tgn1);
1453 if (flags->sw[15]) {
1457 /* Mixed density at Zlb */
1458 b32=densu(zh32,db32,tinf,tlb,32.-xmm,alpha[3]-1., &output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1459 /* Mixed density at Alt */
1460 dm32=densu(z,b32,tinf,tlb,xmm,0.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1462 /* Net density at Alt */
1463 output->d[3]=dnet(output->d[3],dm32,zhm32,xmm,32.);
1464 /* Correction to specified mixing ratio at ground */
1465 rl=log(b28*pdm[3][1]/b32);
1466 hc32=pdm[3][5]*pdl[1][7];
1467 zc32=pdm[3][4]*pdl[1][6];
1468 output->d[3]=output->d[3]*ccor(z,rl,hc32,zc32);
1470 /* Correction for general departure from diffusive equilibrium above Zlb */
1471 hcc32=pdm[3][7]*pdl[1][22];
1472 hcc232=pdm[3][7]*pdl[0][22];
1473 zcc32=pdm[3][6]*pdl[1][21];
1474 rc32=pdm[3][3]*pdl[1][23]*(1.+flags->sw[1]*pdl[0][23]*(input->f107A-150.));
1475 /* Net density corrected at Alt */
1476 output->d[3]=output->d[3]*ccor2(z,rc32,hcc32,zcc32,hcc232);
1480 /**** AR DENSITY ****/
1482 /* Density variation factor at Zlb */
1483 g40= flags->sw[20]*globe7(pd[5],input,flags);
1484 /* Diffusive density at Zlb */
1485 db40 = pdm[4][0]*exp(g40)*pd[5][0];
1486 /* Diffusive density at Alt */
1487 output->d[4]=densu(z,db40,tinf,tlb, 40.,alpha[4],&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1489 if ((flags->sw[15]) && (z<=altl[4])) {
1492 /* Mixed density at Zlb */
1493 b40=densu(zh40,db40,tinf,tlb,40.-xmm,alpha[4]-1.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1494 /* Mixed density at Alt */
1495 dm40=densu(z,b40,tinf,tlb,xmm,0.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1497 /* Net density at Alt */
1498 output->d[4]=dnet(output->d[4],dm40,zhm40,xmm,40.);
1499 /* Correction to specified mixing ratio at ground */
1500 rl=log(b28*pdm[4][1]/b40);
1501 hc40=pdm[4][5]*pdl[1][9];
1502 zc40=pdm[4][4]*pdl[1][8];
1503 /* Net density corrected at Alt */
1504 output->d[4]=output->d[4]*ccor(z,rl,hc40,zc40);
1508 /**** HYDROGEN DENSITY ****/
1510 /* Density variation factor at Zlb */
1511 g1 = flags->sw[21]*globe7(pd[6], input, flags);
1512 /* Diffusive density at Zlb */
1513 db01 = pdm[5][0]*exp(g1)*pd[6][0];
1514 /* Diffusive density at Alt */
1515 output->d[6]=densu(z,db01,tinf,tlb,1.,alpha[6],&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1517 if ((flags->sw[15]) && (z<=altl[6])) {
1520 /* Mixed density at Zlb */
1521 b01=densu(zh01,db01,tinf,tlb,1.-xmm,alpha[6]-1., &output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1522 /* Mixed density at Alt */
1523 dm01=densu(z,b01,tinf,tlb,xmm,0.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1525 /* Net density at Alt */
1526 output->d[6]=dnet(output->d[6],dm01,zhm01,xmm,1.);
1527 /* Correction to specified mixing ratio at ground */
1528 rl=log(b28*pdm[5][1]*sqrt(pdl[1][17]*pdl[1][17])/b01);
1529 hc01=pdm[5][5]*pdl[1][11];
1530 zc01=pdm[5][4]*pdl[1][10];
1531 output->d[6]=output->d[6]*ccor(z,rl,hc01,zc01);
1532 /* Chemistry correction */
1533 hcc01=pdm[5][7]*pdl[1][19];
1534 zcc01=pdm[5][6]*pdl[1][18];
1535 rc01=pdm[5][3]*pdl[1][20];
1536 /* Net density corrected at Alt */
1537 output->d[6]=output->d[6]*ccor(z,rc01,hcc01,zcc01);
1541 /**** ATOMIC NITROGEN DENSITY ****/
1543 /* Density variation factor at Zlb */
1544 g14 = flags->sw[21]*globe7(pd[7],input,flags);
1545 /* Diffusive density at Zlb */
1546 db14 = pdm[6][0]*exp(g14)*pd[7][0];
1547 /* Diffusive density at Alt */
1548 output->d[7]=densu(z,db14,tinf,tlb,14.,alpha[7],&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1550 if ((flags->sw[15]) && (z<=altl[7])) {
1553 /* Mixed density at Zlb */
1554 b14=densu(zh14,db14,tinf,tlb,14.-xmm,alpha[7]-1., &output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1555 /* Mixed density at Alt */
1556 dm14=densu(z,b14,tinf,tlb,xmm,0.,&output->t[1],ptm[5],s,mn1,zn1,meso_tn1,meso_tgn1);
1558 /* Net density at Alt */
1559 output->d[7]=dnet(output->d[7],dm14,zhm14,xmm,14.);
1560 /* Correction to specified mixing ratio at ground */
1561 rl=log(b28*pdm[6][1]*sqrt(pdl[0][2]*pdl[0][2])/b14);
1562 hc14=pdm[6][5]*pdl[0][1];
1563 zc14=pdm[6][4]*pdl[0][0];
1564 output->d[7]=output->d[7]*ccor(z,rl,hc14,zc14);
1565 /* Chemistry correction */
1566 hcc14=pdm[6][7]*pdl[0][4];
1567 zcc14=pdm[6][6]*pdl[0][3];
1568 rc14=pdm[6][3]*pdl[0][5];
1569 /* Net density corrected at Alt */
1570 output->d[7]=output->d[7]*ccor(z,rc14,hcc14,zcc14);
1574 /**** Anomalous OXYGEN DENSITY ****/
1576 g16h = flags->sw[21]*globe7(pd[8],input,flags);
1577 db16h = pdm[7][0]*exp(g16h)*pd[8][0];
1578 tho = pdm[7][9]*pdl[0][6];
1579 dd=densu(z,db16h,tho,tho,16.,alpha[8],&output->t[1],ptm[5],s,mn1, zn1,meso_tn1,meso_tgn1);
1582 zsho=scalh(zmho,16.0,tho);
1583 output->d[8]=dd*exp(-zsht/zsho*(exp(-(z-zmho)/zsht)-1.));
1586 /* total mass density */
1587 output->d[5] = 1.66E-24*(4.0*output->d[0]+16.0*output->d[1]+28.0*output->d[2]+32.0*output->d[3]+40.0*output->d[4]+ output->d[6]+14.0*output->d[7]);
1588 db48=1.66E-24*(4.0*db04+16.0*db16+28.0*db28+32.0*db32+40.0*db40+db01+14.0*db14);
1593 z = sqrt(input->alt*input->alt);
1594 ddum = densu(z,1.0, tinf, tlb, 0.0, 0.0, &output->t[1], ptm[5], s, mn1, zn1, meso_tn1, meso_tgn1);
1597 output->d[i]=output->d[i]*1.0E6;
1598 output->d[5]=output->d[5]/1000;
1603 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1604 // The bitmasked value choices are as follows:
1605 // unset: In this case (the default) JSBSim would only print
1606 // out the normally expected messages, essentially echoing
1607 // the config files as they are read. If the environment
1608 // variable is not set, debug_lvl is set to 1 internally
1609 // 0: This requests JSBSim not to output any messages
1611 // 1: This value explicity requests the normal JSBSim
1613 // 2: This value asks for a message to be printed out when
1614 // a class is instantiated
1615 // 4: When this value is set, a message is displayed when a
1616 // FGModel object executes its Run() method
1617 // 8: When this value is set, various runtime state variables
1618 // are printed out periodically
1619 // 16: When set various parameters are sanity checked and
1620 // a message is printed out when they go out of bounds
1622 void MSIS::Debug(int from)
1624 if (debug_lvl <= 0) return;
1626 if (debug_lvl & 1) { // Standard console startup message output
1627 if (from == 0) { // Constructor
1630 if (debug_lvl & 2 ) { // Instantiation/Destruction notification
1631 if (from == 0) cout << "Instantiated: MSIS" << endl;
1632 if (from == 1) cout << "Destroyed: MSIS" << endl;
1634 if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
1636 if (debug_lvl & 8 ) { // Runtime state variables
1638 if (debug_lvl & 16) { // Sanity checking
1640 if (debug_lvl & 32) { // Turbulence
1641 if (first_pass && from == 2) {
1642 cout << "vTurbulenceNED(X), vTurbulenceNED(Y), vTurbulenceNED(Z), "
1643 << "vTurbulenceGrad(X), vTurbulenceGrad(Y), vTurbulenceGrad(Z), "
1644 << "vDirection(X), vDirection(Y), vDirection(Z), "
1646 << "vTurbPQR(P), vTurbPQR(Q), vTurbPQR(R), " << endl;
1649 cout << vTurbulenceNED << ", " << vTurbulenceGrad << ", " << vDirection << ", " << Magnitude << ", " << vTurbPQR << endl;
1652 if (debug_lvl & 64) {
1653 if (from == 0) { // Constructor
1654 cout << IdSrc << endl;
1655 cout << IdHdr << endl;
1662 } // namespace JSBSim