]> git.mxchange.org Git - flightgear.git/blob - src/FDM/LaRCsim/basic_gear.c
Update VS2008 projects : use Boost 1.44.0 available in last 3rd Party archive
[flightgear.git] / src / FDM / LaRCsim / basic_gear.c
1 /***************************************************************************
2
3         TITLE:  gear
4         
5 ----------------------------------------------------------------------------
6
7         FUNCTION:       Landing gear model for example simulation
8
9 ----------------------------------------------------------------------------
10
11         MODULE STATUS:  developmental
12
13 ----------------------------------------------------------------------------
14
15         GENEALOGY:      Created 931012 by E. B. Jackson
16
17 ----------------------------------------------------------------------------
18
19         DESIGNED BY:    E. B. Jackson
20         
21         CODED BY:       E. B. Jackson
22         
23         MAINTAINED BY:  E. B. Jackson
24
25 ----------------------------------------------------------------------------
26
27         MODIFICATION HISTORY:
28         
29 ----------------------------------------------------------------------------
30
31         REFERENCES:
32
33 ----------------------------------------------------------------------------
34
35         CALLED BY:
36
37 ----------------------------------------------------------------------------
38
39         CALLS TO:
40
41 ----------------------------------------------------------------------------
42
43         INPUTS:
44
45 ----------------------------------------------------------------------------
46
47         OUTPUTS:
48
49 --------------------------------------------------------------------------*/
50 #include <math.h>
51 #include "ls_types.h"
52 #include "ls_constants.h"
53 #include "ls_generic.h"
54 #include "ls_cockpit.h"
55
56 #define HEIGHT_AGL_WHEEL d_wheel_rwy_local_v[2]
57
58
59 static void sub3( DATA v1[],  DATA v2[], DATA result[] )
60 {
61     result[0] = v1[0] - v2[0];
62     result[1] = v1[1] - v2[1];
63     result[2] = v1[2] - v2[2];
64 }
65
66 static void add3( DATA v1[],  DATA v2[], DATA result[] )
67 {
68     result[0] = v1[0] + v2[0];
69     result[1] = v1[1] + v2[1];
70     result[2] = v1[2] + v2[2];
71 }
72
73 static void cross3( DATA v1[],  DATA v2[], DATA result[] )
74 {
75     result[0] = v1[1]*v2[2] - v1[2]*v2[1];
76     result[1] = v1[2]*v2[0] - v1[0]*v2[2];
77     result[2] = v1[0]*v2[1] - v1[1]*v2[0];
78 }
79
80 static void multtrans3x3by3( DATA m[][3], DATA v[], DATA result[] )
81 {
82     result[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
83     result[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
84     result[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
85 }
86
87 static void mult3x3by3( DATA m[][3], DATA v[], DATA result[] )
88 {
89     result[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
90     result[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
91     result[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
92 }
93
94 static void clear3( DATA v[] )
95 {
96     v[0] = 0.; v[1] = 0.; v[2] = 0.;
97 }
98
99 void basic_gear()
100 {
101 char rcsid[] = "junk";
102 #define NUM_WHEELS 4
103
104 // char gear_strings[NUM_WHEELS][12]={"nose","right main", "left main", "tail skid"};
105   /*
106    * Aircraft specific initializations and data goes here
107    */
108    
109
110     static int num_wheels = NUM_WHEELS;             /* number of wheels  */
111     static DATA d_wheel_rp_body_v[NUM_WHEELS][3] =  /* X, Y, Z locations,full extension */
112     {
113         { .422,  0.,    .29 },             /*nose*/ /* in feet */
114         { 0.026, 0.006, .409 },        /*right main*/
115         { 0.026, -.006, .409 },        /*left main*/ 
116         { -1.32, 0, .17 }            /*tail skid */
117     };
118     // static DATA gear_travel[NUM_WHEELS] = /*in Z-axis*/
119            // { -0.5, 2.5, 2.5, 0};
120     static DATA spring_constant[NUM_WHEELS] =       /* springiness, lbs/ft */
121         { 2., .65, .65, 1. };
122     static DATA spring_damping[NUM_WHEELS] =        /* damping, lbs/ft/sec */
123         { 1.,  .3, .3, .5 };    
124     static DATA percent_brake[NUM_WHEELS] =         /* percent applied braking */
125         { 0.,  0.,  0., 0. };                       /* 0 = none, 1 = full */
126     static DATA caster_angle_rad[NUM_WHEELS] =      /* steerable tires - in */
127         { 0., 0., 0., 0};                                   /* radians, +CW */  
128   /*
129    * End of aircraft specific code
130    */
131     
132   /*
133    * Constants & coefficients for tyres on tarmac - ref [1]
134    */
135    
136     /* skid function looks like:
137      * 
138      *           mu  ^
139      *               |
140      *       max_mu  |       +          
141      *               |      /|          
142      *   sliding_mu  |     / +------    
143      *               |    /             
144      *               |   /              
145      *               +--+------------------------> 
146      *               |  |    |      sideward V
147      *               0 bkout skid
148      *                 V     V
149      */
150   
151   
152     static int it_rolls[NUM_WHEELS] = { 1,1,1,0};       
153         static DATA sliding_mu[NUM_WHEELS] = { 0.5, 0.5, 0.5, 0.3};     
154     static DATA rolling_mu[NUM_WHEELS] = { 0.01, 0.01, 0.01, 0.0};      
155     static DATA max_brake_mu[NUM_WHEELS] ={ 0.0, 0.6, 0.6, 0.0};        
156     static DATA max_mu       = 0.8;     
157     static DATA bkout_v      = 0.1;
158     static DATA skid_v       = 1.0;
159   /*
160    * Local data variables
161    */
162    
163     DATA d_wheel_cg_body_v[3];          /* wheel offset from cg,  X-Y-Z */
164     DATA d_wheel_cg_local_v[3];         /* wheel offset from cg,  N-E-D */
165     DATA d_wheel_rwy_local_v[3];        /* wheel offset from rwy, N-E-U */
166         DATA v_wheel_cg_local_v[3];    /*wheel velocity rel to cg N-E-D*/
167     // DATA v_wheel_body_v[3];          /* wheel velocity,        X-Y-Z */
168     DATA v_wheel_local_v[3];            /* wheel velocity,        N-E-D */
169     DATA f_wheel_local_v[3];            /* wheel reaction force,  N-E-D */
170     // DATA altitude_local_v[3];       /*altitude vector in local (N-E-D) i.e. (0,0,h)*/
171     // DATA altitude_body_v[3];        /*altitude vector in body (X,Y,Z)*/
172     DATA temp3a[3];
173     // DATA temp3b[3];
174     DATA tempF[3];
175     DATA tempM[3];      
176     DATA reaction_normal_force;         /* wheel normal (to rwy) force  */
177     DATA cos_wheel_hdg_angle, sin_wheel_hdg_angle;      /* temp storage */
178     DATA v_wheel_forward, v_wheel_sideward,  abs_v_wheel_sideward;
179     DATA forward_mu, sideward_mu;       /* friction coefficients        */
180     DATA beta_mu;                       /* breakout friction slope      */
181     DATA forward_wheel_force, sideward_wheel_force;
182
183     int i;                              /* per wheel loop counter */
184   
185   /*
186    * Execution starts here
187    */
188    
189     beta_mu = max_mu/(skid_v-bkout_v);
190     clear3( F_gear_v );         /* Initialize sum of forces...  */
191     clear3( M_gear_v );         /* ...and moments               */
192     
193   /*
194    * Put aircraft specific executable code here
195    */
196    
197     percent_brake[1] = Brake_pct[0];
198     percent_brake[2] = Brake_pct[1];
199     
200     caster_angle_rad[0] =
201         (0.01 + 0.04 * (1 - V_calibrated_kts / 130)) * Rudder_pedal;
202     
203     
204         for (i=0;i<num_wheels;i++)          /* Loop for each wheel */
205     {
206                 /* printf("%s:\n",gear_strings[i]); */
207
208
209
210                 /*========================================*/
211                 /* Calculate wheel position w.r.t. runway */
212                 /*========================================*/
213
214                 
215                 /* printf("\thgcg: %g, theta: %g,phi: %g\n",D_cg_above_rwy,Theta*RAD_TO_DEG,Phi*RAD_TO_DEG); */
216
217                 
218                         /* First calculate wheel location w.r.t. cg in body (X-Y-Z) axes... */
219
220                 sub3( d_wheel_rp_body_v[i], D_cg_rp_body_v, d_wheel_cg_body_v );
221
222                 /* then converting to local (North-East-Down) axes... */
223
224                 multtrans3x3by3( T_local_to_body_m,  d_wheel_cg_body_v, d_wheel_cg_local_v );
225                 
226
227                 /* Runway axes correction - third element is Altitude, not (-)Z... */
228
229                 d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* since altitude = -Z */
230
231                 /* Add wheel offset to cg location in local axes */
232
233                 add3( d_wheel_cg_local_v, D_cg_rwy_local_v, d_wheel_rwy_local_v );
234
235                 /* remove Runway axes correction so right hand rule applies */
236
237                 d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* now Z positive down */
238
239                 /*============================*/
240                 /* Calculate wheel velocities */
241                 /*============================*/
242
243                 /* contribution due to angular rates */
244
245                 cross3( Omega_body_v, d_wheel_cg_body_v, temp3a );
246
247                 /* transform into local axes */
248
249                 multtrans3x3by3( T_local_to_body_m, temp3a,v_wheel_cg_local_v );
250
251                 /* plus contribution due to cg velocities */
252
253                 add3( v_wheel_cg_local_v, V_local_rel_ground_v, v_wheel_local_v );
254
255                 clear3(f_wheel_local_v);
256                 reaction_normal_force=0;
257                 if( HEIGHT_AGL_WHEEL < 0. ) 
258                         /*the wheel is underground -- which implies ground contact 
259                           so calculate reaction forces */ 
260                         {
261                         /*===========================================*/
262                         /* Calculate forces & moments for this wheel */
263                         /*===========================================*/
264
265                         /* Add any anticipation, or frame lead/prediction, here... */
266
267                                 /* no lead used at present */
268
269                         /* Calculate sideward and forward velocities of the wheel 
270                                 in the runway plane                                     */
271
272                         cos_wheel_hdg_angle = cos(caster_angle_rad[i] + Psi);
273                         sin_wheel_hdg_angle = sin(caster_angle_rad[i] + Psi);
274
275                         v_wheel_forward  = v_wheel_local_v[0]*cos_wheel_hdg_angle
276                                          + v_wheel_local_v[1]*sin_wheel_hdg_angle;
277                         v_wheel_sideward = v_wheel_local_v[1]*cos_wheel_hdg_angle
278                                          - v_wheel_local_v[0]*sin_wheel_hdg_angle;
279                         
280                     
281                 /* Calculate normal load force (simple spring constant) */
282
283                 reaction_normal_force = 0.;
284         
285                 reaction_normal_force = spring_constant[i]*d_wheel_rwy_local_v[2]
286                                           - v_wheel_local_v[2]*spring_damping[i];
287                         /* printf("\treaction_normal_force: %g\n",reaction_normal_force); */
288
289                 if (reaction_normal_force > 0.) reaction_normal_force = 0.;
290                         /* to prevent damping component from swamping spring component */
291
292
293                 /* Calculate friction coefficients */
294
295                         if(it_rolls[i])
296                         {
297                            forward_mu = (max_brake_mu[i] - rolling_mu[i])*percent_brake[i] + rolling_mu[i];
298                            abs_v_wheel_sideward = sqrt(v_wheel_sideward*v_wheel_sideward);
299                            sideward_mu = sliding_mu[i];
300                            if (abs_v_wheel_sideward < skid_v) 
301                            sideward_mu = (abs_v_wheel_sideward - bkout_v)*beta_mu;
302                            if (abs_v_wheel_sideward < bkout_v) sideward_mu = 0.;
303                         }
304                         else
305                         {
306                                 forward_mu=sliding_mu[i];
307                                 sideward_mu=sliding_mu[i];
308                         }          
309
310                         /* Calculate foreward and sideward reaction forces */
311
312                         forward_wheel_force  =   forward_mu*reaction_normal_force;
313                         sideward_wheel_force =  sideward_mu*reaction_normal_force;
314                         if(v_wheel_forward < 0.) forward_wheel_force = -forward_wheel_force;
315                         if(v_wheel_sideward < 0.) sideward_wheel_force = -sideward_wheel_force;
316 /*                      printf("\tFfwdgear: %g Fsidegear: %g\n",forward_wheel_force,sideward_wheel_force);
317  */
318                         /* Rotate into local (N-E-D) axes */
319
320                         f_wheel_local_v[0] = forward_wheel_force*cos_wheel_hdg_angle
321                                           - sideward_wheel_force*sin_wheel_hdg_angle;
322                         f_wheel_local_v[1] = forward_wheel_force*sin_wheel_hdg_angle
323                                           + sideward_wheel_force*cos_wheel_hdg_angle;
324                         f_wheel_local_v[2] = reaction_normal_force;       
325
326                          /* Convert reaction force from local (N-E-D) axes to body (X-Y-Z) */
327                         mult3x3by3( T_local_to_body_m, f_wheel_local_v, tempF );
328
329                         /* Calculate moments from force and offsets in body axes */
330
331                         cross3( d_wheel_cg_body_v, tempF, tempM );
332
333                         /* Sum forces and moments across all wheels */
334
335                         add3( tempF, F_gear_v, F_gear_v );
336                         add3( tempM, M_gear_v, M_gear_v );   
337
338
339                         }
340
341
342                 
343 /*                  printf("\tN: %g,dZrwy: %g dZdotrwy: %g\n",reaction_normal_force,HEIGHT_AGL_WHEEL,v_wheel_cg_local_v[2]);  */
344 /*                  printf("\tFxgear: %g Fygear: %g, Fzgear: %g\n",F_X_gear,F_Y_gear,F_Z_gear); */
345 /*                  printf("\tMgear: %g, Lgear: %g, Ngear: %g\n\n",M_m_gear,M_l_gear,M_n_gear); */
346                 
347                 
348     }
349 }