]> git.mxchange.org Git - flightgear.git/blob - src/FDM/LaRCsim/c172_gear.c
0711b3b497c4fef24012f0b3aa7433688db459df
[flightgear.git] / src / FDM / LaRCsim / c172_gear.c
1 /***************************************************************************
2
3         TITLE:  gear
4         
5 ----------------------------------------------------------------------------
6
7         FUNCTION:       Landing gear model for example simulation
8
9 ----------------------------------------------------------------------------
10
11         MODULE STATUS:  developmental
12
13 ----------------------------------------------------------------------------
14
15         GENEALOGY:      Created 931012 by E. B. Jackson
16
17 ----------------------------------------------------------------------------
18
19         DESIGNED BY:    E. B. Jackson
20         
21         CODED BY:       E. B. Jackson
22         
23         MAINTAINED BY:  E. B. Jackson
24
25 ----------------------------------------------------------------------------
26
27         MODIFICATION HISTORY:
28         
29         DATE    PURPOSE                                         BY
30
31         931218  Added navion.h header to allow connection with
32                 aileron displacement for nosewheel steering.    EBJ
33         940511  Connected nosewheel to rudder pedal; adjusted gain.
34         
35         CURRENT RCS HEADER:
36
37 $Header$
38 $Log$
39 Revision 1.2  1999/08/19 21:24:03  curt
40 Updated Tony's c172 model code.
41
42
43 ----------------------------------------------------------------------------
44
45         REFERENCES:
46
47 ----------------------------------------------------------------------------
48
49         CALLED BY:
50
51 ----------------------------------------------------------------------------
52
53         CALLS TO:
54
55 ----------------------------------------------------------------------------
56
57         INPUTS:
58
59 ----------------------------------------------------------------------------
60
61         OUTPUTS:
62
63 --------------------------------------------------------------------------*/
64 #include <math.h>
65 #include "ls_types.h"
66 #include "ls_constants.h"
67 #include "ls_generic.h"
68 #include "ls_cockpit.h"
69
70
71 sub3( DATA v1[],  DATA v2[], DATA result[] )
72 {
73     result[0] = v1[0] - v2[0];
74     result[1] = v1[1] - v2[1];
75     result[2] = v1[2] - v2[2];
76 }
77
78 add3( DATA v1[],  DATA v2[], DATA result[] )
79 {
80     result[0] = v1[0] + v2[0];
81     result[1] = v1[1] + v2[1];
82     result[2] = v1[2] + v2[2];
83 }
84
85 cross3( DATA v1[],  DATA v2[], DATA result[] )
86 {
87     result[0] = v1[1]*v2[2] - v1[2]*v2[1];
88     result[1] = v1[2]*v2[0] - v1[0]*v2[2];
89     result[2] = v1[0]*v2[1] - v1[1]*v2[0];
90 }
91
92 multtrans3x3by3( DATA m[][3], DATA v[], DATA result[] )
93 {
94     result[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
95     result[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
96     result[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
97 }
98
99 mult3x3by3( DATA m[][3], DATA v[], DATA result[] )
100 {
101     result[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
102     result[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
103     result[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
104 }
105
106 clear3( DATA v[] )
107 {
108     v[0] = 0.; v[1] = 0.; v[2] = 0.;
109 }
110
111 gear()
112 {
113 char rcsid[] = "$Id$";
114
115   /*
116    * Aircraft specific initializations and data goes here
117    */
118    
119 #define NUM_WHEELS 3
120
121     static int num_wheels = NUM_WHEELS;             /* number of wheels  */
122     static DATA d_wheel_rp_body_v[NUM_WHEELS][3] =  /* X, Y, Z locations */
123     {
124         { 10.,  0., 4. },                               /* in feet */
125         { -1.,  3., 4. }, 
126         { -1., -3., 4. }
127     };
128     static DATA spring_constant[NUM_WHEELS] =       /* springiness, lbs/ft */
129         { 1500., 5000., 5000. };
130     static DATA spring_damping[NUM_WHEELS] =        /* damping, lbs/ft/sec */
131         { 100.,  150.,  150. };         
132     static DATA percent_brake[NUM_WHEELS] =         /* percent applied braking */
133         { 0.,  0.,  0. };                           /* 0 = none, 1 = full */
134     static DATA caster_angle_rad[NUM_WHEELS] =      /* steerable tires - in */
135         { 0., 0., 0.};                              /* radians, +CW */  
136   /*
137    * End of aircraft specific code
138    */
139     
140   /*
141    * Constants & coefficients for tyres on tarmac - ref [1]
142    */
143    
144     /* skid function looks like:
145      * 
146      *           mu  ^
147      *               |
148      *       max_mu  |       +          
149      *               |      /|          
150      *   sliding_mu  |     / +------    
151      *               |    /             
152      *               |   /              
153      *               +--+------------------------> 
154      *               |  |    |      sideward V
155      *               0 bkout skid
156      *                 V     V
157      */
158   
159   
160     static DATA sliding_mu   = 0.5;     
161     static DATA rolling_mu   = 0.01;    
162     static DATA max_brake_mu = 0.6;     
163     static DATA max_mu       = 0.8;     
164     static DATA bkout_v      = 0.1;
165     static DATA skid_v       = 1.0;
166   /*
167    * Local data variables
168    */
169    
170     DATA d_wheel_cg_body_v[3];          /* wheel offset from cg,  X-Y-Z */
171     DATA d_wheel_cg_local_v[3];         /* wheel offset from cg,  N-E-D */
172     DATA d_wheel_rwy_local_v[3];        /* wheel offset from rwy, N-E-U */
173     DATA v_wheel_body_v[3];             /* wheel velocity,        X-Y-Z */
174     DATA v_wheel_local_v[3];            /* wheel velocity,        N-E-D */
175     DATA f_wheel_local_v[3];            /* wheel reaction force,  N-E-D */
176     DATA temp3a[3], temp3b[3], tempF[3], tempM[3];      
177     DATA reaction_normal_force;         /* wheel normal (to rwy) force  */
178     DATA cos_wheel_hdg_angle, sin_wheel_hdg_angle;      /* temp storage */
179     DATA v_wheel_forward, v_wheel_sideward,  abs_v_wheel_sideward;
180     DATA forward_mu, sideward_mu;       /* friction coefficients        */
181     DATA beta_mu;                       /* breakout friction slope      */
182     DATA forward_wheel_force, sideward_wheel_force;
183
184     int i;                              /* per wheel loop counter */
185   
186   /*
187    * Execution starts here
188    */
189    
190     beta_mu = max_mu/(skid_v-bkout_v);
191     clear3( F_gear_v );         /* Initialize sum of forces...  */
192     clear3( M_gear_v );         /* ...and moments               */
193     
194   /*
195    * Put aircraft specific executable code here
196    */
197    
198     percent_brake[1] = 0.; /* replace with cockpit brake handle connection code */
199     percent_brake[2] = percent_brake[1];
200     
201     caster_angle_rad[0] = 0.03*Rudder_pedal;
202     
203     for (i=0;i<num_wheels;i++)      /* Loop for each wheel */
204     {
205         /*========================================*/
206         /* Calculate wheel position w.r.t. runway */
207         /*========================================*/
208         
209             /* First calculate wheel location w.r.t. cg in body (X-Y-Z) axes... */
210         
211         sub3( d_wheel_rp_body_v[i], D_cg_rp_body_v, d_wheel_cg_body_v );
212         
213             /* then converting to local (North-East-Down) axes... */
214         
215         multtrans3x3by3( T_local_to_body_m,  d_wheel_cg_body_v, d_wheel_cg_local_v );
216         
217             /* Runway axes correction - third element is Altitude, not (-)Z... */
218         
219         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* since altitude = -Z */
220         
221             /* Add wheel offset to cg location in local axes */
222         
223         add3( d_wheel_cg_local_v, D_cg_rwy_local_v, d_wheel_rwy_local_v );
224         
225             /* remove Runway axes correction so right hand rule applies */
226         
227         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* now Z positive down */
228         
229         /*============================*/
230         /* Calculate wheel velocities */
231         /*============================*/
232         
233             /* contribution due to angular rates */
234             
235         cross3( Omega_body_v, d_wheel_cg_body_v, temp3a );
236         
237             /* transform into local axes */
238           
239         multtrans3x3by3( T_local_to_body_m, temp3a, temp3b );
240
241             /* plus contribution due to cg velocities */
242
243         add3( temp3b, V_local_rel_ground_v, v_wheel_local_v );
244         
245         
246         /*===========================================*/
247         /* Calculate forces & moments for this wheel */
248         /*===========================================*/
249         
250             /* Add any anticipation, or frame lead/prediction, here... */
251             
252                     /* no lead used at present */
253                 
254             /* Calculate sideward and forward velocities of the wheel 
255                     in the runway plane                                 */
256             
257         cos_wheel_hdg_angle = cos(caster_angle_rad[i] + Psi);
258         sin_wheel_hdg_angle = sin(caster_angle_rad[i] + Psi);
259         
260         v_wheel_forward  = v_wheel_local_v[0]*cos_wheel_hdg_angle
261                          + v_wheel_local_v[1]*sin_wheel_hdg_angle;
262         v_wheel_sideward = v_wheel_local_v[1]*cos_wheel_hdg_angle
263                          - v_wheel_local_v[0]*sin_wheel_hdg_angle;
264
265             /* Calculate normal load force (simple spring constant) */
266         
267         reaction_normal_force = 0.;
268         if( d_wheel_rwy_local_v[2] < 0. ) 
269         {
270             reaction_normal_force = spring_constant[i]*d_wheel_rwy_local_v[2]
271                                   - v_wheel_local_v[2]*spring_damping[i];
272             if (reaction_normal_force > 0.) reaction_normal_force = 0.;
273                 /* to prevent damping component from swamping spring component */
274         }
275         
276             /* Calculate friction coefficients */
277             
278         forward_mu = (max_brake_mu - rolling_mu)*percent_brake[i] + rolling_mu;
279         abs_v_wheel_sideward = sqrt(v_wheel_sideward*v_wheel_sideward);
280         sideward_mu = sliding_mu;
281         if (abs_v_wheel_sideward < skid_v) 
282             sideward_mu = (abs_v_wheel_sideward - bkout_v)*beta_mu;
283         if (abs_v_wheel_sideward < bkout_v) sideward_mu = 0.;
284
285             /* Calculate foreward and sideward reaction forces */
286             
287         forward_wheel_force  =   forward_mu*reaction_normal_force;
288         sideward_wheel_force =  sideward_mu*reaction_normal_force;
289         if(v_wheel_forward < 0.) forward_wheel_force = -forward_wheel_force;
290         if(v_wheel_sideward < 0.) sideward_wheel_force = -sideward_wheel_force;
291         
292             /* Rotate into local (N-E-D) axes */
293         
294         f_wheel_local_v[0] = forward_wheel_force*cos_wheel_hdg_angle
295                           - sideward_wheel_force*sin_wheel_hdg_angle;
296         f_wheel_local_v[1] = forward_wheel_force*sin_wheel_hdg_angle
297                           + sideward_wheel_force*cos_wheel_hdg_angle;
298         f_wheel_local_v[2] = reaction_normal_force;       
299            
300             /* Convert reaction force from local (N-E-D) axes to body (X-Y-Z) */
301         
302         mult3x3by3( T_local_to_body_m, f_wheel_local_v, tempF );
303         
304             /* Calculate moments from force and offsets in body axes */
305
306         cross3( d_wheel_cg_body_v, tempF, tempM );
307         
308         /* Sum forces and moments across all wheels */
309         
310         add3( tempF, F_gear_v, F_gear_v );
311         add3( tempM, M_gear_v, M_gear_v );
312         
313     }
314 }