]> git.mxchange.org Git - flightgear.git/blob - src/FDM/LaRCsim/c172_gear.c
Updated for both JSBsim and Tony Peden's c172 flight model.
[flightgear.git] / src / FDM / LaRCsim / c172_gear.c
1 /***************************************************************************
2
3         TITLE:  gear
4         
5 ----------------------------------------------------------------------------
6
7         FUNCTION:       Landing gear model for example simulation
8
9 ----------------------------------------------------------------------------
10
11         MODULE STATUS:  developmental
12
13 ----------------------------------------------------------------------------
14
15         GENEALOGY:  Renamed navion_gear.c originally created 931012 by E. B. Jackson    
16         
17
18 ----------------------------------------------------------------------------
19
20         DESIGNED BY:    E. B. Jackson
21         
22         CODED BY:       E. B. Jackson
23         
24         MAINTAINED BY:  E. B. Jackson
25
26 ----------------------------------------------------------------------------
27
28         MODIFICATION HISTORY:
29         
30         DATE    PURPOSE                                         BY
31
32         931218  Added navion.h header to allow connection with
33                 aileron displacement for nosewheel steering.    EBJ
34         940511  Connected nosewheel to rudder pedal; adjusted gain.
35         
36         CURRENT RCS HEADER:
37
38 $Header$
39 $Log$
40 Revision 1.2  1999/06/21 03:01:47  curt
41 Updated for both JSBsim and Tony Peden's c172 flight model.
42
43 Revision 1.1.1.1  1999/04/05 21:32:45  curt
44 Start of 0.6.x branch.
45
46 Revision 1.6  1998/10/17 01:34:16  curt
47 C++ ifying ...
48
49 Revision 1.5  1998/09/29 02:03:00  curt
50 Added a brake + autopilot mods.
51
52 Revision 1.4  1998/08/06 12:46:40  curt
53 Header change.
54
55 Revision 1.3  1998/02/03 23:20:18  curt
56 Lots of little tweaks to fix various consistency problems discovered by
57 Solaris' CC.  Fixed a bug in fg_debug.c with how the fgPrintf() wrapper
58 passed arguments along to the real printf().  Also incorporated HUD changes
59 by Michele America.
60
61 Revision 1.2  1998/01/19 18:40:29  curt
62 Tons of little changes to clean up the code and to remove fatal errors
63 when building with the c++ compiler.
64
65 Revision 1.1  1997/05/29 00:10:02  curt
66 Initial Flight Gear revision.
67
68
69 ----------------------------------------------------------------------------
70
71         REFERENCES:
72
73 ----------------------------------------------------------------------------
74
75         CALLED BY:
76
77 ----------------------------------------------------------------------------
78
79         CALLS TO:
80
81 ----------------------------------------------------------------------------
82
83         INPUTS:
84
85 ----------------------------------------------------------------------------
86
87         OUTPUTS:
88
89 --------------------------------------------------------------------------*/
90 #include <math.h>
91 #include "ls_types.h"
92 #include "ls_constants.h"
93 #include "ls_generic.h"
94 #include "ls_cockpit.h"
95
96
97 void sub3( DATA v1[],  DATA v2[], DATA result[] )
98 {
99     result[0] = v1[0] - v2[0];
100     result[1] = v1[1] - v2[1];
101     result[2] = v1[2] - v2[2];
102 }
103
104 void add3( DATA v1[],  DATA v2[], DATA result[] )
105 {
106     result[0] = v1[0] + v2[0];
107     result[1] = v1[1] + v2[1];
108     result[2] = v1[2] + v2[2];
109 }
110
111 void cross3( DATA v1[],  DATA v2[], DATA result[] )
112 {
113     result[0] = v1[1]*v2[2] - v1[2]*v2[1];
114     result[1] = v1[2]*v2[0] - v1[0]*v2[2];
115     result[2] = v1[0]*v2[1] - v1[1]*v2[0];
116 }
117
118 void multtrans3x3by3( DATA m[][3], DATA v[], DATA result[] )
119 {
120     result[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
121     result[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
122     result[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
123 }
124
125 void mult3x3by3( DATA m[][3], DATA v[], DATA result[] )
126 {
127     result[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
128     result[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
129     result[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
130 }
131
132 void clear3( DATA v[] )
133 {
134     v[0] = 0.; v[1] = 0.; v[2] = 0.;
135 }
136
137 void gear( SCALAR dt, int Initialize ) {
138 char rcsid[] = "$Id$";
139
140   /*
141    * Aircraft specific initializations and data goes here
142    */
143    
144 #define NUM_WHEELS 3
145
146     static int num_wheels = NUM_WHEELS;             /* number of wheels  */
147     static DATA d_wheel_rp_body_v[NUM_WHEELS][3] =  /* X, Y, Z locations */
148     {
149         { 10.,  0., 4. },                               /* in feet */
150         { -1.,  3., 4. }, 
151         { -1., -3., 4. }
152     };
153     static DATA spring_constant[NUM_WHEELS] =       /* springiness, lbs/ft */
154         { 1500., 5000., 5000. };
155     static DATA spring_damping[NUM_WHEELS] =        /* damping, lbs/ft/sec */
156         { 100.,  150.,  150. };         
157     static DATA percent_brake[NUM_WHEELS] =         /* percent applied braking */
158         { 0.,  0.,  0. };                           /* 0 = none, 1 = full */
159     static DATA caster_angle_rad[NUM_WHEELS] =      /* steerable tires - in */
160         { 0., 0., 0.};                              /* radians, +CW */  
161   /*
162    * End of aircraft specific code
163    */
164     
165   /*
166    * Constants & coefficients for tyres on tarmac - ref [1]
167    */
168    
169     /* skid function looks like:
170      * 
171      *           mu  ^
172      *               |
173      *       max_mu  |       +          
174      *               |      /|          
175      *   sliding_mu  |     / +------    
176      *               |    /             
177      *               |   /              
178      *               +--+------------------------> 
179      *               |  |    |      sideward V
180      *               0 bkout skid
181      *                 V     V
182      */
183   
184   
185     static DATA sliding_mu   = 0.5;     
186     static DATA rolling_mu   = 0.01;    
187     static DATA max_brake_mu = 0.6;     
188     static DATA max_mu       = 0.8;     
189     static DATA bkout_v      = 0.1;
190     static DATA skid_v       = 1.0;
191   /*
192    * Local data variables
193    */
194    
195     DATA d_wheel_cg_body_v[3];          /* wheel offset from cg,  X-Y-Z */
196     DATA d_wheel_cg_local_v[3];         /* wheel offset from cg,  N-E-D */
197     DATA d_wheel_rwy_local_v[3];        /* wheel offset from rwy, N-E-U */
198     DATA v_wheel_body_v[3];             /* wheel velocity,        X-Y-Z */
199     DATA v_wheel_local_v[3];            /* wheel velocity,        N-E-D */
200     DATA f_wheel_local_v[3];            /* wheel reaction force,  N-E-D */
201     DATA temp3a[3], temp3b[3], tempF[3], tempM[3];      
202     DATA reaction_normal_force;         /* wheel normal (to rwy) force  */
203     DATA cos_wheel_hdg_angle, sin_wheel_hdg_angle;      /* temp storage */
204     DATA v_wheel_forward, v_wheel_sideward,  abs_v_wheel_sideward;
205     DATA forward_mu, sideward_mu;       /* friction coefficients        */
206     DATA beta_mu;                       /* breakout friction slope      */
207     DATA forward_wheel_force, sideward_wheel_force;
208
209     int i;                              /* per wheel loop counter */
210   
211   /*
212    * Execution starts here
213    */
214    
215     beta_mu = max_mu/(skid_v-bkout_v);
216     clear3( F_gear_v );         /* Initialize sum of forces...  */
217     clear3( M_gear_v );         /* ...and moments               */
218     
219   /*
220    * Put aircraft specific executable code here
221    */
222    
223     /* replace with cockpit brake handle connection code */
224     percent_brake[1] = Brake_pct;
225     percent_brake[2] = percent_brake[1];
226     
227     caster_angle_rad[0] = 0.03*Rudder_pedal;
228     
229     for (i=0;i<num_wheels;i++)      /* Loop for each wheel */
230     {
231         /*========================================*/
232         /* Calculate wheel position w.r.t. runway */
233         /*========================================*/
234         
235             /* First calculate wheel location w.r.t. cg in body (X-Y-Z) axes... */
236         
237         sub3( d_wheel_rp_body_v[i], D_cg_rp_body_v, d_wheel_cg_body_v );
238         
239             /* then converting to local (North-East-Down) axes... */
240         
241         multtrans3x3by3( T_local_to_body_m,  d_wheel_cg_body_v, d_wheel_cg_local_v );
242         
243             /* Runway axes correction - third element is Altitude, not (-)Z... */
244         
245         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* since altitude = -Z */
246         
247             /* Add wheel offset to cg location in local axes */
248         
249         add3( d_wheel_cg_local_v, D_cg_rwy_local_v, d_wheel_rwy_local_v );
250         
251             /* remove Runway axes correction so right hand rule applies */
252         
253         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* now Z positive down */
254         
255         /*============================*/
256         /* Calculate wheel velocities */
257         /*============================*/
258         
259             /* contribution due to angular rates */
260             
261         cross3( Omega_body_v, d_wheel_cg_body_v, temp3a );
262         
263             /* transform into local axes */
264           
265         multtrans3x3by3( T_local_to_body_m, temp3a, temp3b );
266
267             /* plus contribution due to cg velocities */
268
269         add3( temp3b, V_local_rel_ground_v, v_wheel_local_v );
270         
271         
272         /*===========================================*/
273         /* Calculate forces & moments for this wheel */
274         /*===========================================*/
275         
276             /* Add any anticipation, or frame lead/prediction, here... */
277             
278                     /* no lead used at present */
279                 
280             /* Calculate sideward and forward velocities of the wheel 
281                     in the runway plane                                 */
282             
283         cos_wheel_hdg_angle = cos(caster_angle_rad[i] + Psi);
284         sin_wheel_hdg_angle = sin(caster_angle_rad[i] + Psi);
285         
286         v_wheel_forward  = v_wheel_local_v[0]*cos_wheel_hdg_angle
287                          + v_wheel_local_v[1]*sin_wheel_hdg_angle;
288         v_wheel_sideward = v_wheel_local_v[1]*cos_wheel_hdg_angle
289                          - v_wheel_local_v[0]*sin_wheel_hdg_angle;
290
291             /* Calculate normal load force (simple spring constant) */
292         
293         reaction_normal_force = 0.;
294         if( d_wheel_rwy_local_v[2] < 0. ) 
295         {
296             reaction_normal_force = spring_constant[i]*d_wheel_rwy_local_v[2]
297                                   - v_wheel_local_v[2]*spring_damping[i];
298             if (reaction_normal_force > 0.) reaction_normal_force = 0.;
299                 /* to prevent damping component from swamping spring component */
300         }
301         
302             /* Calculate friction coefficients */
303             
304         forward_mu = (max_brake_mu - rolling_mu)*percent_brake[i] + rolling_mu;
305         abs_v_wheel_sideward = sqrt(v_wheel_sideward*v_wheel_sideward);
306         sideward_mu = sliding_mu;
307         if (abs_v_wheel_sideward < skid_v) 
308             sideward_mu = (abs_v_wheel_sideward - bkout_v)*beta_mu;
309         if (abs_v_wheel_sideward < bkout_v) sideward_mu = 0.;
310
311             /* Calculate foreward and sideward reaction forces */
312             
313         forward_wheel_force  =   forward_mu*reaction_normal_force;
314         sideward_wheel_force =  sideward_mu*reaction_normal_force;
315         if(v_wheel_forward < 0.) forward_wheel_force = -forward_wheel_force;
316         if(v_wheel_sideward < 0.) sideward_wheel_force = -sideward_wheel_force;
317         
318             /* Rotate into local (N-E-D) axes */
319         
320         f_wheel_local_v[0] = forward_wheel_force*cos_wheel_hdg_angle
321                           - sideward_wheel_force*sin_wheel_hdg_angle;
322         f_wheel_local_v[1] = forward_wheel_force*sin_wheel_hdg_angle
323                           + sideward_wheel_force*cos_wheel_hdg_angle;
324         f_wheel_local_v[2] = reaction_normal_force;       
325            
326             /* Convert reaction force from local (N-E-D) axes to body (X-Y-Z) */
327         
328         mult3x3by3( T_local_to_body_m, f_wheel_local_v, tempF );
329         
330             /* Calculate moments from force and offsets in body axes */
331
332         cross3( d_wheel_cg_body_v, tempF, tempM );
333         
334         /* Sum forces and moments across all wheels */
335         
336         add3( tempF, F_gear_v, F_gear_v );
337         add3( tempM, M_gear_v, M_gear_v );
338         
339     }
340 }