]> git.mxchange.org Git - flightgear.git/blob - src/FDM/LaRCsim/c172_main.c
67e3944b5e561972193c73630185d7521241df78
[flightgear.git] / src / FDM / LaRCsim / c172_main.c
1 // LaRCsim.cxx -- interface to the LaRCsim flight model
2 //
3 // Written by Curtis Olson, started October 1998.
4 //
5 // Copyright (C) 1998  Curtis L. Olson  - curt@me.umn.edu
6 //
7 // This program is free software; you can redistribute it and/or
8 // modify it under the terms of the GNU General Public License as
9 // published by the Free Software Foundation; either version 2 of the
10 // License, or (at your option) any later version.
11 //
12 // This program is distributed in the hope that it will be useful, but
13 // WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 // General Public License for more details.
16 //
17 // You should have received a copy of the GNU General Public License
18 // along with this program; if not, write to the Free Software
19 // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 //
21 // $Id$
22
23
24
25
26
27 #include <FDM/LaRCsim/ls_cockpit.h>
28 #include <FDM/LaRCsim/ls_generic.h>
29 #include <FDM/LaRCsim/ls_interface.h>
30 #include <FDM/LaRCsim/ls_constants.h>
31 #include <FDM/LaRCsim/atmos_62.h>
32 /* #include <FDM/LaRCsim/ls_trim_fs.h> */
33 #include <FDM/LaRCsim/c172_aero.h>
34 #include <FDM/LaRCsim/ic.h>
35
36 #include <math.h>
37 #include <stdlib.h>
38 #include <stdio.h>
39 #include <string.h>
40
41 void do_trims(int kmax,FILE *out,InitialConditions IC)
42 {
43         int bad_trim=0,i,j;
44         double speed,elevator,cmcl,maxspeed;
45         out=fopen("trims.out","w");
46         speed=55;
47         
48         for(j=0;j<=0;j+=10)
49         {
50                 IC.flap_handle=j;
51                 for(i=4;i<=4;i++)
52                 {
53                         switch(i)
54                         {
55                                 case 1: IC.weight=1500;IC.cg=0.155;break;
56                                 case 2: IC.weight=1500;IC.cg=0.364;break;
57                                 case 3: IC.weight=1950;IC.cg=0.155;break;
58                                 case 4: IC.weight=2400;IC.cg=0.257;break;
59                                 case 5: IC.weight=2550;IC.cg=0.364;break;
60                         }
61
62                         speed=40;
63                         if(j > 0) { maxspeed = 90; }
64                         else { maxspeed = 170; }
65                         while(speed <= maxspeed)
66                         {
67                            IC.vc=speed;
68                            Long_control=0;Theta=0;Throttle_pct=0.0;
69
70                            bad_trim=trim_long(kmax,IC);
71                            if(Long_control <= 0)
72                                   elevator=Long_control*28;
73                            else
74                                  elevator=Long_control*23;      
75                            if(fabs(CL) > 1E-3)
76                            {
77                                         cmcl=cm / CL;
78                            }    
79                            if(!bad_trim)
80                            {
81                                         fprintf(out,"%g,%g,%g,%g,%g",V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control,Throttle_pct,Flap_Position);
82                                         fprintf(out,",%g,%g,%g,%g,%g\n",CL,cm,cmcl,Weight,Cg);
83         /*                              printf("%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n",V_calibrated_kts,Alpha*RAD_TO_DEG,elevator,CL,cm,Cmo,Cma,Cmde,Mass*32.174,Dx_cg);
84          */                }    
85                    else
86                            {
87                                  printf("kmax exceeded at: %g knots, %g lbs, %g %%MAC, Flaps: %g\n",V_true_kts,Weight,Cg,Flap_Position);
88                                  printf("wdot: %g, udot: %g, qdot: %g\n",W_dot_body,U_dot_body,Q_dot_body);
89                  printf("Alpha: %g, Throttle_pct: %g, Long_control: %g\n\n",Alpha*RAD_TO_DEG,Throttle_pct,Long_control);
90                            }
91                            speed+=10;     
92                         }
93         }
94         }       
95         fclose(out);
96 }
97
98 find_max_alt(int kmax,InitialConditions IC)
99 {
100         int bad_trim=0,i=0;
101         float min=0,max=30000;
102         IC.use_gamma_tmg=1;
103         IC.gamma=0;
104         IC.vc=73;
105         IC.altitude==1000;
106         while(!bad_trim)
107         {
108                 bad_trim=trim_long(200,IC);
109                 IC.altitude+=1000;
110         }       
111         while((fabs(max-min) > 100) && (i < 50))
112         {
113             
114                 IC.altitude=(max-min)/2 + min;
115                 printf("\nIC.altitude: %g, max: %g, min: %g, bad_trim: %d\n",IC.altitude,max,min,bad_trim);
116                 printf("Alpha: %g, Throttle_pct: %g, Long_control: %g\n\n",Alpha*RAD_TO_DEG,Throttle_pct,Long_control);
117
118                 bad_trim=trim_long(200,IC);
119                 
120                 if(bad_trim == 1 )
121                         max=IC.altitude;
122                 else
123                         min=IC.altitude;
124                 i++;    
125         }
126 }                       
127                                 
128
129 void find_trim_stall(int kmax,FILE *out,InitialConditions IC)
130 {
131         int k=0,i,j;
132         int failf;
133         char axis[10];
134         double speed,elevator,cmcl,speed_inc,lastgood;
135         out=fopen("trim_stall.summary","w");
136         speed=90;
137         speed_inc=10;
138         //failf=malloc(sizeof(int));
139         
140         for(j=0;j<=30;j+=10)
141         {
142                 IC.flap_handle=j;
143                 for(i=1;i<=6;i++)
144                 {
145                         switch(i)
146                         {
147                                 case 1: IC.weight=1500;IC.cg=0.155;break;
148                                 case 2: IC.weight=1500;IC.cg=0.364;break;
149                                 case 3: IC.weight=2400;IC.cg=0.155;break;
150                                 case 4: IC.weight=2400;IC.cg=0.364;break;
151                                 case 5: IC.weight=2550;IC.cg=0.257;break;
152                                 case 6: IC.weight=2550;IC.cg=0.364;break;
153                         }
154
155                         speed=90;
156                         speed_inc=10;
157                         while(speed_inc >= 0.5)
158                         {
159                            IC.vc=speed;
160                            Long_control=0;Theta=0;Throttle_pct=0.0;
161                            failf=trim_longfr(kmax,IC);
162                            if(Long_control <= 0)
163                                   elevator=Long_control*28;
164                            else
165                                  elevator=Long_control*23;      
166                            if(fabs(CL) > 1E-3)
167                            {
168                                         cmcl=cm / CL;
169                            }    
170                            if(failf == 0)
171                            {
172                                         lastgood=speed;
173                                         axis[0]='\0';
174                                         //fprintf(out,"%g,%g,%g,%g,%g,%d",V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control,Throttle_pct,Flap_Position,k);
175                                         //fprintf(out,",%g,%g,%g,%g,%g\n",CL,cm,cmcl,Weight,Cg);
176         /*                              printf("%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n",V_calibrated_kts,Alpha*RAD_TO_DEG,elevator,CL,cm,Cmo,Cma,Cmde,Mass*32.174,Dx_cg);
177          */                }    
178                    else
179                            {
180                                  printf("trim failed at: %g knots, %g lbs, %g %%MAC, Flaps: %g\n",V_calibrated_kts,Weight,Cg,Flap_Position);
181                                  printf("wdot: %g, udot: %g, qdot: %g\n",W_dot_body,U_dot_body,Q_dot_body);
182                  printf("Alpha: %g, Throttle_pct: %g, Long_control: %g\n\n",Alpha*RAD_TO_DEG,Throttle_pct,Long_control);
183                                  printf("Speed increment: %g\n",speed_inc);
184                                  speed+=speed_inc;
185                                  speed_inc/=2;
186                            }
187                            speed-=speed_inc;
188                            
189                                   
190                         }
191                         printf("failf %d\n",failf); 
192                         if(failf == 1)
193                            strcpy(axis,"lift");
194                         else if(failf == 2)
195                            strcpy(axis,"thrust");
196                         else if(failf == 3)
197                            strcpy(axis,"pitch");                  
198                         fprintf(out,"Last good speed: %g, Flaps: %g, Weight: %g, CG: %g, failed axis: %s\n",lastgood,Flap_handle,Weight,Cg,axis);
199
200                         
201         }
202         }
203         fclose(out);
204         //free(failf);
205 }       
206
207
208 // Initialize the LaRCsim flight model, dt is the time increment for
209 // each subsequent iteration through the EOM
210 int fgLaRCsimInit(double dt) {
211     ls_toplevel_init(dt);
212
213     return(1);
214 }
215
216 int wave_stats(float *var,float *var_rate,int N,FILE *out)
217 {       
218         int Nc,i,Nmaxima;
219         float varmax,slope,intercept,time,ld,zeta,omegad,omegan;
220         float varmaxima[100],vm_times[100];
221         /*adjust N so that any constant slope region at the end is cut off */
222         i=N;
223         while((fabs(var_rate[N]-var_rate[i]) < 0.1) && (i >= 0))
224         { 
225        i--;
226         }
227         Nc=N-i;
228         slope=(var[N]-var[Nc])/(N*0.01 - Nc*0.01);
229         intercept=var[N]-slope*N*0.01;
230         printf("\tRotating constant decay out of data using:\n");
231         printf("\tslope: %g, intercept: %g\n",slope,intercept); 
232         printf("\tUsing first %d points for dynamic response analysis\n",Nc);
233         varmax=0;
234         Nmaxima=0;i=0;
235         while((i <= Nc) && (i <= 801))
236         {
237                 
238                 fprintf(out,"%g\t%g",i*0.01,var[i]);
239                 var[i]-=slope*i*0.01+intercept;
240                 /* printf("%g\n",var[i]); */
241         fprintf(out,"\t%g\n",var[i]);
242                 if(var[i] > varmax)
243             {
244                    varmax=var[i];
245                    time=i*0.01;
246                    
247                 }   
248             if((var[i-1]*var[i] < 0) && (var[i] > 0))
249                 {
250                    varmaxima[Nmaxima]=varmax;
251                    vm_times[Nmaxima]=time;
252                    printf("\t%6.2f: %8.4f\n",vm_times[Nmaxima],varmaxima[Nmaxima]);
253                    varmax=0;Nmaxima++;
254                    
255                 }   
256                 
257                 i++;
258     }                           
259         varmaxima[Nmaxima]=varmax;
260     vm_times[Nmaxima]=time;
261     Nmaxima++;
262         if(Nmaxima > 2)
263         {
264           ld=log(varmaxima[1]/varmaxima[2]);   //logarithmic decrement
265           zeta=ld/sqrt(4*PI*PI +ld*ld);        //damping ratio
266           omegad=1/(vm_times[2]-vm_times[1]);  //damped natural frequency Hz
267           if(zeta < 1)
268           {
269                 omegan=omegad/sqrt(1-zeta*zeta);   //natural frequency Hz
270           }     
271           printf("\tDamping Ratio: %g\n",zeta);
272           printf("\tDamped Freqency: %g Hz\n\tNatural Freqency: %g Hz\n",omegad,omegan);
273         }
274         else
275           printf("\tNot enough points to take log decrement\n");  
276 /*      printf("w: %g, u: %g, q: %g\n",W_body,U_body,Q_body);
277  */
278         return 1;
279 }       
280
281 // Run an iteration of the EOM (equations of motion)
282 int main(int argc, char *argv[]) {
283     
284         
285         double save_alt = 0.0;
286     int multiloop=1,k=0,i,j,touchdown,N;
287         double time=0,elev_trim,elev_trim_save,elevator,speed,cmcl;
288         FILE *out;
289         double hgain,hdiffgain,herr,herrprev,herr_diff,htarget;
290         double lastVt,vtdots,vtdott;
291         InitialConditions IC;
292     SCALAR *control[7];
293         SCALAR *state[7];
294         float old_state,effectiveness,tol,delta_state,lctrim;
295         float newcm,lastcm,cmalpha,td_vspeed,td_time,stop_time;
296         float h[801],hdot[801],altmin,lastAlt,theta[800],theta_dot[800];
297         
298     if(argc < 6)
299         {
300             printf("Need args: $c172 speed alt alpha elev throttle\n");
301                 exit(1);
302         }       
303         initIC(&IC);
304         
305         IC.latitude=47.5299892; //BFI
306         IC.longitude=122.3019561;
307         Runway_altitude =   18.0;
308         
309         IC.altitude=strtod(argv[2],NULL); 
310         printf("h: %g, argv[2]: %s\n",IC.altitude,argv[2]);
311         IC.vc=strtod(argv[1],NULL);
312         IC.alpha=0;
313         IC.beta=0;
314         IC.theta=strtod(argv[3],NULL);
315         IC.use_gamma_tmg=0;
316         IC.phi=0;
317         IC.psi=0;
318         IC.weight=2400;
319         IC.cg=0.25;
320         IC.flap_handle=10;
321         IC.long_control=0;
322         IC.rudder_pedal=0;
323     
324         
325         ls_ForceAltitude(IC.altitude);  
326     fgLaRCsimInit(0.01);
327         setIC(IC);
328         printf("Dx_cg: %g\n",Dx_cg);
329         V_down=strtod(argv[4],NULL);;
330         ls_loop(0,-1);
331         i=0;time=0;
332         IC.long_control=0;
333         altmin=Altitude;
334     printf("\tAltitude: %g, Theta: %g, V_down: %g\n\n",Altitude,Theta*RAD_TO_DEG,V_down);
335     
336         while(time < 5.0)
337         {
338                 printf("Time: %g, Flap_handle: %g, Flap_position: %g, Transit: %d\n",time,Flap_handle,Flap_Position,Flaps_In_Transit);  
339                 if(time > 2.5)
340                   Flap_handle=20;
341                 else if (time > 0.5)
342                   Flap_handle=20;  
343                 ls_update(1);
344             time+=0.01;
345     }
346         
347         
348         
349         /*out=fopen("drop.out","w");
350         N=800;touchdown=0;
351         
352         while(i <= N) 
353         { 
354           ls_update(1);
355           printf("\tAltitude: %g, Theta: %g, V_down: %g\n\n",D_cg_above_rwy,Theta*RAD_TO_DEG,V_down);
356           fprintf(out,"%g\t%g\t%g\t%g\t%g\t%g\n",time,D_cg_above_rwy,Theta*RAD_TO_DEG,V_down,F_Z_gear/1000.0,V_rel_ground);
357           h[i]=D_cg_above_rwy;hdot[i]=V_down;
358           theta[i]=Theta; theta_dot[i]=Theta_dot;
359           if(D_cg_above_rwy < altmin)
360                 altmin=D_cg_above_rwy;
361           if((F_Z_gear < -10) && (! touchdown))
362           {
363                         touchdown=1;
364                         td_vspeed=V_down;
365                         td_time=time;
366           }
367           time+=0.01;   
368           i++; 
369         }
370         while(V_rel_ground > 1)
371         {
372                 if(Brake_pct < 1)
373                 {
374                    Brake_pct+=0.02;
375                 }   
376                 ls_update(1);
377                 time=i*0.01;
378             fprintf(out,"%g\t%g\t%g\t%g\t%g\t%g\n",time,D_cg_above_rwy,Theta*RAD_TO_DEG,V_down,F_Z_gear/1000.0,V_rel_ground);
379                 i++;
380     }
381         stop_time=time;
382     while((time-stop_time) < 5.0)
383         {
384                 ls_update(1);
385                 time=i*0.01;
386             fprintf(out,"%g\t%g\t%g\t%g\t%g\t%g\n",time,D_cg_above_rwy,Theta*RAD_TO_DEG,V_down,F_Z_gear/1000.0,V_rel_ground);
387                 i++;
388         }               
389         fclose(out);
390         
391         printf("Min Altitude: %g, Final Alitutde: %g, Delta: %g\n",altmin, h[N],  D_cg_above_rwy-altmin);
392         printf("Vertical Speed at touchdown: %g, Time at touchdown: %g\n",td_vspeed,td_time);
393     printf("\nAltitude response:\n");
394         out=fopen("alt.out","w");
395         wave_stats(h,hdot,N,out);
396         fclose(out);
397         out=fopen("theta.out","w");
398         printf("\nPitch Attitude response:\n");
399         wave_stats(theta,theta_dot,N,out);
400     fclose(out);*/
401
402
403
404         /*printf("Flap_handle: %g, Flap_Position: %g\n",Flap_handle,Flap_Position);
405         printf("k: %d, %g knots, %g lbs, %g %%MAC\n",k,V_calibrated_kts,Weight,Cg);
406         printf("wdot: %g, udot: %g, qdot: %g\n",W_dot_body,U_dot_body,Q_dot_body);
407     printf("Alpha: %g, Throttle_pct: %g, Long_control: %g\n\n",Alpha,Throttle_pct,Long_control);
408
409         printf("Cme: %g, elevator: %g, Cmde: %g\n",elevator*Cmde,elevator,Cmde);
410          */
411
412         
413         
414                                 
415         
416         
417         
418         /* ls_loop(0.0,-1);
419         
420         control[1]=&IC.long_control;
421         control[2]=&IC.throttle;
422         control[3]=&IC.alpha;
423         control[4]=&IC.beta;
424         control[5]=&IC.phi;
425         control[6]=&IC.lat_control;
426         
427         state[1]=&Q_dot_body;state[2]=&U_dot_body;state[3]=&W_dot_body;
428         state[4]=&R_dot_body;state[5]=&V_dot_body;state[6]=&P_dot_body;
429         
430         
431         for(i=1;i<=6;i++)
432         {
433                 old_state=*state[i];
434             tol=1E-4;
435                 for(j=1;j<=6;j++)
436                 {
437                         *control[j]+=0.1;
438                         setIC(IC);
439                         ls_loop(0.0,-1);
440                         delta_state=*state[i]-old_state;
441                         effectiveness=(delta_state)/ 0.1;
442                         if(delta_state < tol)
443                                 effectiveness = 0;
444                         printf("%8.4f,",delta_state);
445                         *control[j]-=0.1;
446                         
447                 }
448                 printf("\n");
449                 setIC(IC);
450                 ls_loop(0.0,-1);
451         }                */
452         
453             return 1;
454 }
455
456 /*
457 void do_stick_pull(int kmax, SCALAR tmax,FILE *out,InitialConditions IC)
458 {
459         
460         SCALAR htarget,hgain,hdiffgain,herr,herr_diff,herrprev;
461         SCALAR theta_trim,elev_trim,time;
462         int k;
463         k=trim_long(kmax,IC);
464         printf("Trim:\n\tAlpha: %10.6f, elev: %10.6f, Throttle: %10.6f\n\twdot: %10.6f, qdot: %10.6f, udot: %10.6f\n",Alpha*RAD_TO_DEG,Long_control,Throttle_pct,W_dot_body,U_dot_body,Q_dot_body);
465
466         
467         htarget=0;
468         
469         hgain=1;
470         hdiffgain=1;
471         elev_trim=Long_control;
472         out=fopen("stick_pull.out","w");
473         herr=Q_body-htarget;
474                 
475         //fly steady-level for 2 seconds, well, zero pitch rate anyway
476         while(time < 2.0)
477         {
478                  herrprev=herr;
479                  ls_update(1);
480                  herr=Q_body-htarget;
481                  herr_diff=herr-herrprev;
482                  Long_control=elev_trim+(hgain*herr + hdiffgain*herr_diff);
483                  time+=0.01;  
484                  //printf("Time: %7.4f, Alt: %7.4f, Alpha: %7.4f, pelev: %7.4f, qdot: %7.4f, udot: %7.4f, Phi: %7.4f, Psi: %7.4f\n",time,Altitude,Alpha*RAD_TO_DEG,Long_control*100,Q_body*RAD_TO_DEG,U_dot_body,Phi,Psi);
485          //printf("Mcg: %7.4f, Mrp: %7.4f, Maero: %7.4f, Meng: %7.4f, Mgear: %7.4f, Dx_cg: %7.4f, Dz_cg: %7.4f\n\n",M_m_cg,M_m_rp,M_m_aero,M_m_engine,M_m_gear,Dx_cg,Dz_cg);
486                  fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_true_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG);
487                  fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude);
488         }
489
490         //begin untrimmed climb at theta_trim + 2 degrees
491         hgain=4;
492         hdiffgain=2;
493         theta_trim=Theta;
494         htarget=theta_trim;
495         herr=Theta-htarget;
496         while(time < tmax)
497         {
498                 //ramp in the target theta
499                 if(htarget < (theta_trim + 2*DEG_TO_RAD))
500                 {
501                         htarget+= 0.01*DEG_TO_RAD;
502                 }       
503                 herrprev=herr;
504                  ls_update(1);
505                  herr=Theta-htarget;
506                  herr_diff=herr-herrprev;
507                  Long_control=elev_trim+(hgain*herr + hdiffgain*herr_diff);
508                  time+=0.01;  
509                  //printf("Time: %7.4f, Alt: %7.4f, Alpha: %7.4f, pelev: %7.4f, qdot: %7.4f, udot: %7.4f, Phi: %7.4f, Psi: %7.4f\n",time,Altitude,Alpha*RAD_TO_DEG,Long_control*100,Q_body*RAD_TO_DEG,U_dot_body,Phi,Psi);
510          //printf("Mcg: %7.4f, Mrp: %7.4f, Maero: %7.4f, Meng: %7.4f, Mgear: %7.4f, Dx_cg: %7.4f, Dz_cg: %7.4f\n\n",M_m_cg,M_m_rp,M_m_aero,M_m_engine,M_m_gear,Dx_cg,Dz_cg);
511                  fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_true_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG);
512                  fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude);
513         }
514         printf("%g,%g\n",theta_trim*RAD_TO_DEG,htarget*RAD_TO_DEG);      
515         fclose(out);
516 }       
517
518 void do_takeoff(FILE *out)
519 {
520         SCALAR htarget,hgain,hdiffgain,elev_trim,elev_trim_save,herr;
521         SCALAR time,herrprev,herr_diff;
522         
523         htarget=0;
524         
525         hgain=1;
526         hdiffgain=1;
527         elev_trim=Long_control;
528         elev_trim_save=elev_trim;
529         
530         
531         out=fopen("takeoff.out","w");
532         herr=Q_body-htarget;
533                  
534                 // attempt to maintain zero pitch rate during the roll
535                 while((V_calibrated_kts < 61) && (time < 30.0))
536                 {
537                         // herrprev=herr
538                         ls_update(1);
539                         // herr=Q_body-htarget;
540                         // herr_diff=herr-herrprev;
541                         // Long_control=elev_trim+(hgain*herr + hdiffgain*herr_diff); 
542                         time+=0.01;  
543                         printf("Time: %7.4f, Vc: %7.4f, Alpha: %7.4f, pelev: %7.4f, qdot: %7.4f, udot: %7.4f, U: %7.4f, W: %7.4f\n",time,V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control*100,Q_body*RAD_TO_DEG,U_dot_body,U_body,W_body);
544 //              printf("Mcg: %7.4f, Mrp: %7.4f, Maero: %7.4f, Meng: %7.4f, Mgear: %7.4f, Dx_cg: %7.4f, Dz_cg: %7.4f\n\n",M_m_cg,M_m_rp,M_m_aero,M_m_engine,M_m_gear,Dx_cg,Dz_cg);
545 //                      fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_calibrated_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG);
546                         fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude);
547                         
548                 }
549                 //At Vr, ramp in 10% nose up elevator in 0.5 seconds
550                 elev_trim_save=0;
551                 printf("At Vr, rotate...\n");
552                 while((Q_body < 3.0*RAD_TO_DEG) && (time < 30.0))
553                 {
554                         Long_control-=0.01;
555                         ls_update(1);
556                         printf("Time: %7.4f, Vc: %7.4f, Alpha: %7.4f, pelev: %7.4f, q: %7.4f, cm: %7.4f, U: %7.4f, W: %7.4f\n",time,V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control*100,Q_body*RAD_TO_DEG,cm,U_body,W_body);
557
558                         fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_calibrated_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG);
559                         fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude);
560                         time +=0.01;
561
562                 }
563                 //Maintain 15 degrees theta for the climbout
564                 htarget=15*DEG_TO_RAD;
565                 herr=Theta-htarget;
566                 hgain=10;
567                 hdiffgain=1;
568                 elev_trim=Long_control;
569                 while(time < 30.0)
570                 {
571                         herrprev=herr;
572                         ls_update(1);
573                         herr=Theta-htarget;
574                         herr_diff=herr-herrprev;
575                         Long_control=elev_trim+(hgain*herr + hdiffgain*herr_diff);
576                         time+=0.01;  
577                         printf("Time: %7.4f, Alt: %7.4f, Speed: %7.4f, Theta: %7.4f\n",time,Altitude,V_calibrated_kts,Theta*RAD_TO_DEG);
578                         fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_calibrated_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG);
579                         fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude);
580                 }       
581                 fclose(out);    
582                 printf("Speed: %7.4f, Alt: %7.4f, Alpha: %7.4f, pelev: %7.4f, q: %7.4f, udot: %7.4f\n",V_true_kts,Altitude,Alpha*RAD_TO_DEG,Long_control,Q_body*RAD_TO_DEG,U_dot_body);
583                 printf("F_down_total: %7.4f, F_Z_aero: %7.4f, F_X: %7.4f, M_m_cg: %7.4f\n\n",F_down+Mass*Gravity,F_Z_aero,F_X,M_m_cg);
584
585    
586     
587     
588 }
589 */
590
591
592