]> git.mxchange.org Git - flightgear.git/blob - src/FDM/LaRCsim/ls_aux.c
source tree reorganization prior to flightgear 0.7
[flightgear.git] / src / FDM / LaRCsim / ls_aux.c
1 /***************************************************************************
2
3     TITLE:              ls_aux
4                 
5 ----------------------------------------------------------------------------
6
7     FUNCTION:   Atmospheric and auxilary relationships for LaRCSim EOM
8
9 ----------------------------------------------------------------------------
10
11     MODULE STATUS:      developmental
12
13 ----------------------------------------------------------------------------
14
15     GENEALOGY:  Created 9208026 as part of C-castle simulation project.
16
17 ----------------------------------------------------------------------------
18
19     DESIGNED BY:        B. Jackson
20     
21     CODED BY:           B. Jackson
22     
23     MAINTAINED BY:      B. Jackson
24
25 ----------------------------------------------------------------------------
26
27     MODIFICATION HISTORY:
28     
29     DATE    PURPOSE     
30     
31     931006  Moved calculations of auxiliary accelerations from here
32             to ls_accel.c and corrected minus sign in front of A_Y_Pilot
33             contribution from Q_body*P_body*D_X_pilot term.         EBJ
34     931014  Changed calculation of Alpha from atan to atan2 so sign is correct.
35                                                                     EBJ
36     931220  Added calculations for static and total temperatures & pressures,
37             as well as dynamic and impact pressures and calibrated airspeed.
38                                                                     EBJ
39     940111  Changed #included header files from old "ls_eom.h" to newer
40             "ls_types.h", "ls_constants.h" and "ls_generic.h".      EBJ
41
42     950207  Changed use of "abs" to "fabs" in calculation of signU. EBJ
43     
44     950228  Fixed bug in calculation of beta_dot.                   EBJ
45
46     CURRENT RCS HEADER INFO:
47
48 $Header$
49 $Log$
50 Revision 1.1  1999/04/05 21:32:45  curt
51 Initial revision
52
53 Revision 1.4  1998/08/24 20:09:26  curt
54 Code optimization tweaks from Norman Vine.
55
56 Revision 1.3  1998/08/06 12:46:38  curt
57 Header change.
58
59 Revision 1.2  1998/01/19 18:40:24  curt
60 Tons of little changes to clean up the code and to remove fatal errors
61 when building with the c++ compiler.
62
63 Revision 1.1  1997/05/29 00:09:54  curt
64 Initial Flight Gear revision.
65
66  * Revision 1.12  1995/02/28  17:57:16  bjax
67  * Corrected calculation of beta_dot. EBJ
68  *
69  * Revision 1.11  1995/02/07  21:09:47  bjax
70  * Corrected calculation of "signU"; was using divide by
71  * abs(), which returns an integer; now using fabs(), which
72  * returns a double.  EBJ
73  *
74  * Revision 1.10  1994/05/10  20:09:42  bjax
75  * Fixed a major problem with dx_pilot_from_cg, etc. not being calculated locally.
76  *
77  * Revision 1.9  1994/01/11  18:44:33  bjax
78  * Changed header files to use ls_types, ls_constants, and ls_generic.
79  *
80  * Revision 1.8  1993/12/21  14:36:33  bjax
81  * Added calcs of pressures, temps and calibrated airspeeds.
82  *
83  * Revision 1.7  1993/10/14  11:25:38  bjax
84  * Changed calculation of Alpha to use 'atan2' instead of 'atan' so alphas
85  * larger than +/- 90 degrees are calculated correctly.                 EBJ
86  *
87  * Revision 1.6  1993/10/07  18:45:56  bjax
88  * A little cleanup; no significant changes. EBJ
89  *
90  * Revision 1.5  1993/10/07  18:42:22  bjax
91  * Moved calculations of auxiliary accelerations here from ls_aux, and
92  * corrected sign on Q_body*P_body*d_x_pilot term of A_Y_pilot calc.  EBJ
93  *
94  * Revision 1.4  1993/07/16  18:28:58  bjax
95  * Changed call from atmos_62 to ls_atmos. EBJ
96  *
97  * Revision 1.3  1993/06/02  15:02:42  bjax
98  * Changed call to geodesy calcs from ls_geodesy to ls_geoc_to_geod.
99  *
100  * Revision 1.1  92/12/30  13:17:39  bjax
101  * Initial revision
102  * 
103
104
105 ----------------------------------------------------------------------------
106
107     REFERENCES: [ 1] Shapiro, Ascher H.: "The Dynamics and Thermodynamics
108                         of Compressible Fluid Flow", Volume I, The Ronald 
109                         Press, 1953.
110
111 ----------------------------------------------------------------------------
112
113                 CALLED BY:
114
115 ----------------------------------------------------------------------------
116
117                 CALLS TO:
118
119 ----------------------------------------------------------------------------
120
121                 INPUTS:
122
123 ----------------------------------------------------------------------------
124
125                 OUTPUTS:
126
127 --------------------------------------------------------------------------*/
128 #include "ls_types.h"
129 #include "ls_constants.h"
130 #include "ls_generic.h"
131
132 #include "ls_aux.h"
133
134 #include "atmos_62.h"
135 #include "ls_geodesy.h"
136 #include "ls_gravity.h"
137
138 #include <math.h>
139
140
141 void ls_aux( void ) {
142
143         SCALAR  dx_pilot_from_cg, dy_pilot_from_cg, dz_pilot_from_cg;
144         /* SCALAR inv_Mass; */
145         SCALAR  v_XZ_plane_2, signU, v_tangential;
146         /* SCALAR inv_radius_ratio; */
147         SCALAR  cos_rwy_hdg, sin_rwy_hdg;
148         SCALAR  mach2, temp_ratio, pres_ratio;
149         SCALAR  tmp;
150         
151     /* update geodetic position */
152
153         ls_geoc_to_geod( Lat_geocentric, Radius_to_vehicle, 
154                                 &Latitude, &Altitude, &Sea_level_radius );
155         Longitude = Lon_geocentric - Earth_position_angle;
156
157     /* Calculate body axis velocities */
158
159         /* Form relative velocity vector */
160
161         V_north_rel_ground = V_north;
162         V_east_rel_ground  = V_east 
163           - OMEGA_EARTH*Sea_level_radius*cos( Lat_geocentric );
164         V_down_rel_ground  = V_down;
165         
166         V_north_rel_airmass = V_north_rel_ground - V_north_airmass;
167         V_east_rel_airmass  = V_east_rel_ground  - V_east_airmass;
168         V_down_rel_airmass  = V_down_rel_ground  - V_down_airmass;
169         
170         U_body = T_local_to_body_11*V_north_rel_airmass 
171           + T_local_to_body_12*V_east_rel_airmass
172             + T_local_to_body_13*V_down_rel_airmass + U_gust;
173         V_body = T_local_to_body_21*V_north_rel_airmass 
174           + T_local_to_body_22*V_east_rel_airmass
175             + T_local_to_body_23*V_down_rel_airmass + V_gust;
176         W_body = T_local_to_body_31*V_north_rel_airmass 
177           + T_local_to_body_32*V_east_rel_airmass
178             + T_local_to_body_33*V_down_rel_airmass + W_gust;
179                                 
180         V_rel_wind = sqrt(U_body*U_body + V_body*V_body + W_body*W_body);
181
182
183     /* Calculate alpha and beta rates   */
184
185         v_XZ_plane_2 = (U_body*U_body + W_body*W_body);
186         
187         if (U_body == 0)
188                 signU = 1;
189         else
190                 signU = U_body/fabs(U_body);
191                 
192         if( (v_XZ_plane_2 == 0) || (V_rel_wind == 0) )
193         {
194                 Alpha_dot = 0;
195                 Beta_dot = 0;
196         }
197         else
198         {
199                 Alpha_dot = (U_body*W_dot_body - W_body*U_dot_body)/
200                   v_XZ_plane_2;
201                 Beta_dot = (signU*v_XZ_plane_2*V_dot_body 
202                   - V_body*(U_body*U_dot_body + W_body*W_dot_body))
203                     /(V_rel_wind*V_rel_wind*sqrt(v_XZ_plane_2));
204         }
205
206     /* Calculate flight path and other flight condition values */
207
208         if (U_body == 0) 
209                 Alpha = 0;
210         else
211                 Alpha = atan2( W_body, U_body );
212                 
213         Cos_alpha = cos(Alpha);
214         Sin_alpha = sin(Alpha);
215         
216         if (V_rel_wind == 0)
217                 Beta = 0;
218         else
219                 Beta = asin( V_body/ V_rel_wind );
220                 
221         Cos_beta = cos(Beta);
222         Sin_beta = sin(Beta);
223         
224         V_true_kts = V_rel_wind * V_TO_KNOTS;
225         
226         V_ground_speed = sqrt(V_north_rel_ground*V_north_rel_ground
227                               + V_east_rel_ground*V_east_rel_ground );
228
229         V_rel_ground = sqrt(V_ground_speed*V_ground_speed
230                             + V_down_rel_ground*V_down_rel_ground );
231         
232         v_tangential = sqrt(V_north*V_north + V_east*V_east);
233         
234         V_inertial = sqrt(v_tangential*v_tangential + V_down*V_down);
235         
236         if( (V_ground_speed == 0) && (V_down == 0) )
237           Gamma_vert_rad = 0;
238         else
239           Gamma_vert_rad = atan2( -V_down, V_ground_speed );
240                 
241         if( (V_north_rel_ground == 0) && (V_east_rel_ground == 0) )
242           Gamma_horiz_rad = 0;
243         else
244           Gamma_horiz_rad = atan2( V_east_rel_ground, V_north_rel_ground );
245         
246         if (Gamma_horiz_rad < 0) 
247           Gamma_horiz_rad = Gamma_horiz_rad + 2*PI;
248         
249     /* Calculate local gravity  */
250         
251         ls_gravity( Radius_to_vehicle, Lat_geocentric, &Gravity );
252         
253     /* call function for (smoothed) density ratio, sonic velocity, and
254            ambient pressure */
255
256         ls_atmos(Altitude, &Sigma, &V_sound, 
257                  &Static_temperature, &Static_pressure);
258         
259         Density = Sigma*SEA_LEVEL_DENSITY;
260         
261         Mach_number = V_rel_wind / V_sound;
262         
263         V_equiv = V_rel_wind*sqrt(Sigma);
264         
265         V_equiv_kts = V_equiv*V_TO_KNOTS;
266
267     /* calculate temperature and pressure ratios (from [1]) */
268
269         mach2 = Mach_number*Mach_number;
270         temp_ratio = 1.0 + 0.2*mach2; 
271         tmp = 3.5;
272         pres_ratio = pow( temp_ratio, tmp );
273
274         Total_temperature = temp_ratio*Static_temperature;
275         Total_pressure    = pres_ratio*Static_pressure;
276
277     /* calculate impact and dynamic pressures */
278         
279         Impact_pressure = Total_pressure - Static_pressure; 
280
281         Dynamic_pressure = 0.5*Density*V_rel_wind*V_rel_wind;
282
283     /* calculate calibrated airspeed indication */
284
285         V_calibrated = sqrt( 2.0*Dynamic_pressure / SEA_LEVEL_DENSITY );
286         V_calibrated_kts = V_calibrated*V_TO_KNOTS;
287         
288         Centrifugal_relief = 1 - v_tangential/(Radius_to_vehicle*Gravity);
289         
290 /* Determine location in runway coordinates */
291
292         Radius_to_rwy = Sea_level_radius + Runway_altitude;
293         cos_rwy_hdg = cos(Runway_heading*DEG_TO_RAD);
294         sin_rwy_hdg = sin(Runway_heading*DEG_TO_RAD);
295         
296         D_cg_north_of_rwy = Radius_to_rwy*(Latitude - Runway_latitude);
297         D_cg_east_of_rwy = Radius_to_rwy*cos(Runway_latitude)
298                 *(Longitude - Runway_longitude);
299         D_cg_above_rwy  = Radius_to_vehicle - Radius_to_rwy;
300         
301         X_cg_rwy = D_cg_north_of_rwy*cos_rwy_hdg 
302           + D_cg_east_of_rwy*sin_rwy_hdg;
303         Y_cg_rwy =-D_cg_north_of_rwy*sin_rwy_hdg 
304           + D_cg_east_of_rwy*cos_rwy_hdg;
305         H_cg_rwy = D_cg_above_rwy;
306         
307         dx_pilot_from_cg = Dx_pilot - Dx_cg;
308         dy_pilot_from_cg = Dy_pilot - Dy_cg;
309         dz_pilot_from_cg = Dz_pilot - Dz_cg;
310
311         D_pilot_north_of_rwy = D_cg_north_of_rwy 
312           + T_local_to_body_11*dx_pilot_from_cg 
313             + T_local_to_body_21*dy_pilot_from_cg
314               + T_local_to_body_31*dz_pilot_from_cg;
315         D_pilot_east_of_rwy  = D_cg_east_of_rwy 
316           + T_local_to_body_12*dx_pilot_from_cg 
317             + T_local_to_body_22*dy_pilot_from_cg
318               + T_local_to_body_32*dz_pilot_from_cg;
319         D_pilot_above_rwy    = D_cg_above_rwy 
320           - T_local_to_body_13*dx_pilot_from_cg 
321             - T_local_to_body_23*dy_pilot_from_cg
322               - T_local_to_body_33*dz_pilot_from_cg;
323                                                         
324         X_pilot_rwy =  D_pilot_north_of_rwy*cos_rwy_hdg
325           + D_pilot_east_of_rwy*sin_rwy_hdg;
326         Y_pilot_rwy = -D_pilot_north_of_rwy*sin_rwy_hdg
327           + D_pilot_east_of_rwy*cos_rwy_hdg;
328         H_pilot_rwy =  D_pilot_above_rwy;
329                                                                 
330 /* Calculate Euler rates */
331         
332         Sin_phi = sin(Phi);
333         Cos_phi = cos(Phi);
334         Sin_theta = sin(Theta);
335         Cos_theta = cos(Theta);
336         Sin_psi = sin(Psi);
337         Cos_psi = cos(Psi);
338         
339         if( Cos_theta == 0 )
340           Psi_dot = 0;
341         else
342           Psi_dot = (Q_total*Sin_phi + R_total*Cos_phi)/Cos_theta;
343         
344         Theta_dot = Q_total*Cos_phi - R_total*Sin_phi;
345         Phi_dot = P_total + Psi_dot*Sin_theta;
346         
347 /* end of ls_aux */
348
349 }
350 /*************************************************************************/