]> git.mxchange.org Git - flightgear.git/blob - src/FDM/LaRCsim/navion_gear.c
Initial revision
[flightgear.git] / src / FDM / LaRCsim / navion_gear.c
1 /***************************************************************************
2
3         TITLE:  gear
4         
5 ----------------------------------------------------------------------------
6
7         FUNCTION:       Landing gear model for example simulation
8
9 ----------------------------------------------------------------------------
10
11         MODULE STATUS:  developmental
12
13 ----------------------------------------------------------------------------
14
15         GENEALOGY:      Created 931012 by E. B. Jackson
16
17 ----------------------------------------------------------------------------
18
19         DESIGNED BY:    E. B. Jackson
20         
21         CODED BY:       E. B. Jackson
22         
23         MAINTAINED BY:  E. B. Jackson
24
25 ----------------------------------------------------------------------------
26
27         MODIFICATION HISTORY:
28         
29         DATE    PURPOSE                                         BY
30
31         931218  Added navion.h header to allow connection with
32                 aileron displacement for nosewheel steering.    EBJ
33         940511  Connected nosewheel to rudder pedal; adjusted gain.
34         
35         CURRENT RCS HEADER:
36
37 $Header$
38 $Log$
39 Revision 1.1  1999/06/17 18:07:34  curt
40 Initial revision
41
42 Revision 1.1.1.1  1999/04/05 21:32:45  curt
43 Start of 0.6.x branch.
44
45 Revision 1.6  1998/10/17 01:34:16  curt
46 C++ ifying ...
47
48 Revision 1.5  1998/09/29 02:03:00  curt
49 Added a brake + autopilot mods.
50
51 Revision 1.4  1998/08/06 12:46:40  curt
52 Header change.
53
54 Revision 1.3  1998/02/03 23:20:18  curt
55 Lots of little tweaks to fix various consistency problems discovered by
56 Solaris' CC.  Fixed a bug in fg_debug.c with how the fgPrintf() wrapper
57 passed arguments along to the real printf().  Also incorporated HUD changes
58 by Michele America.
59
60 Revision 1.2  1998/01/19 18:40:29  curt
61 Tons of little changes to clean up the code and to remove fatal errors
62 when building with the c++ compiler.
63
64 Revision 1.1  1997/05/29 00:10:02  curt
65 Initial Flight Gear revision.
66
67
68 ----------------------------------------------------------------------------
69
70         REFERENCES:
71
72 ----------------------------------------------------------------------------
73
74         CALLED BY:
75
76 ----------------------------------------------------------------------------
77
78         CALLS TO:
79
80 ----------------------------------------------------------------------------
81
82         INPUTS:
83
84 ----------------------------------------------------------------------------
85
86         OUTPUTS:
87
88 --------------------------------------------------------------------------*/
89 #include <math.h>
90 #include "ls_types.h"
91 #include "ls_constants.h"
92 #include "ls_generic.h"
93 #include "ls_cockpit.h"
94
95
96 void sub3( DATA v1[],  DATA v2[], DATA result[] )
97 {
98     result[0] = v1[0] - v2[0];
99     result[1] = v1[1] - v2[1];
100     result[2] = v1[2] - v2[2];
101 }
102
103 void add3( DATA v1[],  DATA v2[], DATA result[] )
104 {
105     result[0] = v1[0] + v2[0];
106     result[1] = v1[1] + v2[1];
107     result[2] = v1[2] + v2[2];
108 }
109
110 void cross3( DATA v1[],  DATA v2[], DATA result[] )
111 {
112     result[0] = v1[1]*v2[2] - v1[2]*v2[1];
113     result[1] = v1[2]*v2[0] - v1[0]*v2[2];
114     result[2] = v1[0]*v2[1] - v1[1]*v2[0];
115 }
116
117 void multtrans3x3by3( DATA m[][3], DATA v[], DATA result[] )
118 {
119     result[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
120     result[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
121     result[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
122 }
123
124 void mult3x3by3( DATA m[][3], DATA v[], DATA result[] )
125 {
126     result[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
127     result[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
128     result[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
129 }
130
131 void clear3( DATA v[] )
132 {
133     v[0] = 0.; v[1] = 0.; v[2] = 0.;
134 }
135
136 void gear( SCALAR dt, int Initialize ) {
137 char rcsid[] = "$Id$";
138
139   /*
140    * Aircraft specific initializations and data goes here
141    */
142    
143 #define NUM_WHEELS 3
144
145     static int num_wheels = NUM_WHEELS;             /* number of wheels  */
146     static DATA d_wheel_rp_body_v[NUM_WHEELS][3] =  /* X, Y, Z locations */
147     {
148         { 10.,  0., 4. },                               /* in feet */
149         { -1.,  3., 4. }, 
150         { -1., -3., 4. }
151     };
152     static DATA spring_constant[NUM_WHEELS] =       /* springiness, lbs/ft */
153         { 1500., 5000., 5000. };
154     static DATA spring_damping[NUM_WHEELS] =        /* damping, lbs/ft/sec */
155         { 100.,  150.,  150. };         
156     static DATA percent_brake[NUM_WHEELS] =         /* percent applied braking */
157         { 0.,  0.,  0. };                           /* 0 = none, 1 = full */
158     static DATA caster_angle_rad[NUM_WHEELS] =      /* steerable tires - in */
159         { 0., 0., 0.};                              /* radians, +CW */  
160   /*
161    * End of aircraft specific code
162    */
163     
164   /*
165    * Constants & coefficients for tyres on tarmac - ref [1]
166    */
167    
168     /* skid function looks like:
169      * 
170      *           mu  ^
171      *               |
172      *       max_mu  |       +          
173      *               |      /|          
174      *   sliding_mu  |     / +------    
175      *               |    /             
176      *               |   /              
177      *               +--+------------------------> 
178      *               |  |    |      sideward V
179      *               0 bkout skid
180      *                 V     V
181      */
182   
183   
184     static DATA sliding_mu   = 0.5;     
185     static DATA rolling_mu   = 0.01;    
186     static DATA max_brake_mu = 0.6;     
187     static DATA max_mu       = 0.8;     
188     static DATA bkout_v      = 0.1;
189     static DATA skid_v       = 1.0;
190   /*
191    * Local data variables
192    */
193    
194     DATA d_wheel_cg_body_v[3];          /* wheel offset from cg,  X-Y-Z */
195     DATA d_wheel_cg_local_v[3];         /* wheel offset from cg,  N-E-D */
196     DATA d_wheel_rwy_local_v[3];        /* wheel offset from rwy, N-E-U */
197     DATA v_wheel_body_v[3];             /* wheel velocity,        X-Y-Z */
198     DATA v_wheel_local_v[3];            /* wheel velocity,        N-E-D */
199     DATA f_wheel_local_v[3];            /* wheel reaction force,  N-E-D */
200     DATA temp3a[3], temp3b[3], tempF[3], tempM[3];      
201     DATA reaction_normal_force;         /* wheel normal (to rwy) force  */
202     DATA cos_wheel_hdg_angle, sin_wheel_hdg_angle;      /* temp storage */
203     DATA v_wheel_forward, v_wheel_sideward,  abs_v_wheel_sideward;
204     DATA forward_mu, sideward_mu;       /* friction coefficients        */
205     DATA beta_mu;                       /* breakout friction slope      */
206     DATA forward_wheel_force, sideward_wheel_force;
207
208     int i;                              /* per wheel loop counter */
209   
210   /*
211    * Execution starts here
212    */
213    
214     beta_mu = max_mu/(skid_v-bkout_v);
215     clear3( F_gear_v );         /* Initialize sum of forces...  */
216     clear3( M_gear_v );         /* ...and moments               */
217     
218   /*
219    * Put aircraft specific executable code here
220    */
221    
222     /* replace with cockpit brake handle connection code */
223     percent_brake[1] = Brake_pct;
224     percent_brake[2] = percent_brake[1];
225     
226     caster_angle_rad[0] = 0.03*Rudder_pedal;
227     
228     for (i=0;i<num_wheels;i++)      /* Loop for each wheel */
229     {
230         /*========================================*/
231         /* Calculate wheel position w.r.t. runway */
232         /*========================================*/
233         
234             /* First calculate wheel location w.r.t. cg in body (X-Y-Z) axes... */
235         
236         sub3( d_wheel_rp_body_v[i], D_cg_rp_body_v, d_wheel_cg_body_v );
237         
238             /* then converting to local (North-East-Down) axes... */
239         
240         multtrans3x3by3( T_local_to_body_m,  d_wheel_cg_body_v, d_wheel_cg_local_v );
241         
242             /* Runway axes correction - third element is Altitude, not (-)Z... */
243         
244         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* since altitude = -Z */
245         
246             /* Add wheel offset to cg location in local axes */
247         
248         add3( d_wheel_cg_local_v, D_cg_rwy_local_v, d_wheel_rwy_local_v );
249         
250             /* remove Runway axes correction so right hand rule applies */
251         
252         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* now Z positive down */
253         
254         /*============================*/
255         /* Calculate wheel velocities */
256         /*============================*/
257         
258             /* contribution due to angular rates */
259             
260         cross3( Omega_body_v, d_wheel_cg_body_v, temp3a );
261         
262             /* transform into local axes */
263           
264         multtrans3x3by3( T_local_to_body_m, temp3a, temp3b );
265
266             /* plus contribution due to cg velocities */
267
268         add3( temp3b, V_local_rel_ground_v, v_wheel_local_v );
269         
270         
271         /*===========================================*/
272         /* Calculate forces & moments for this wheel */
273         /*===========================================*/
274         
275             /* Add any anticipation, or frame lead/prediction, here... */
276             
277                     /* no lead used at present */
278                 
279             /* Calculate sideward and forward velocities of the wheel 
280                     in the runway plane                                 */
281             
282         cos_wheel_hdg_angle = cos(caster_angle_rad[i] + Psi);
283         sin_wheel_hdg_angle = sin(caster_angle_rad[i] + Psi);
284         
285         v_wheel_forward  = v_wheel_local_v[0]*cos_wheel_hdg_angle
286                          + v_wheel_local_v[1]*sin_wheel_hdg_angle;
287         v_wheel_sideward = v_wheel_local_v[1]*cos_wheel_hdg_angle
288                          - v_wheel_local_v[0]*sin_wheel_hdg_angle;
289
290             /* Calculate normal load force (simple spring constant) */
291         
292         reaction_normal_force = 0.;
293         if( d_wheel_rwy_local_v[2] < 0. ) 
294         {
295             reaction_normal_force = spring_constant[i]*d_wheel_rwy_local_v[2]
296                                   - v_wheel_local_v[2]*spring_damping[i];
297             if (reaction_normal_force > 0.) reaction_normal_force = 0.;
298                 /* to prevent damping component from swamping spring component */
299         }
300         
301             /* Calculate friction coefficients */
302             
303         forward_mu = (max_brake_mu - rolling_mu)*percent_brake[i] + rolling_mu;
304         abs_v_wheel_sideward = sqrt(v_wheel_sideward*v_wheel_sideward);
305         sideward_mu = sliding_mu;
306         if (abs_v_wheel_sideward < skid_v) 
307             sideward_mu = (abs_v_wheel_sideward - bkout_v)*beta_mu;
308         if (abs_v_wheel_sideward < bkout_v) sideward_mu = 0.;
309
310             /* Calculate foreward and sideward reaction forces */
311             
312         forward_wheel_force  =   forward_mu*reaction_normal_force;
313         sideward_wheel_force =  sideward_mu*reaction_normal_force;
314         if(v_wheel_forward < 0.) forward_wheel_force = -forward_wheel_force;
315         if(v_wheel_sideward < 0.) sideward_wheel_force = -sideward_wheel_force;
316         
317             /* Rotate into local (N-E-D) axes */
318         
319         f_wheel_local_v[0] = forward_wheel_force*cos_wheel_hdg_angle
320                           - sideward_wheel_force*sin_wheel_hdg_angle;
321         f_wheel_local_v[1] = forward_wheel_force*sin_wheel_hdg_angle
322                           + sideward_wheel_force*cos_wheel_hdg_angle;
323         f_wheel_local_v[2] = reaction_normal_force;       
324            
325             /* Convert reaction force from local (N-E-D) axes to body (X-Y-Z) */
326         
327         mult3x3by3( T_local_to_body_m, f_wheel_local_v, tempF );
328         
329             /* Calculate moments from force and offsets in body axes */
330
331         cross3( d_wheel_cg_body_v, tempF, tempM );
332         
333         /* Sum forces and moments across all wheels */
334         
335         add3( tempF, F_gear_v, F_gear_v );
336         add3( tempM, M_gear_v, M_gear_v );
337         
338     }
339 }