]> git.mxchange.org Git - flightgear.git/blob - src/FDM/LaRCsim/navion_gear.c
dd732bd2e3895d6cd0d623af35b27ce3680f194f
[flightgear.git] / src / FDM / LaRCsim / navion_gear.c
1 /***************************************************************************
2
3         TITLE:  gear
4         
5 ----------------------------------------------------------------------------
6
7         FUNCTION:       Landing gear model for example simulation
8
9 ----------------------------------------------------------------------------
10
11         MODULE STATUS:  developmental
12
13 ----------------------------------------------------------------------------
14
15         GENEALOGY:      Created 931012 by E. B. Jackson
16
17 ----------------------------------------------------------------------------
18
19         DESIGNED BY:    E. B. Jackson
20         
21         CODED BY:       E. B. Jackson
22         
23         MAINTAINED BY:  E. B. Jackson
24
25 ----------------------------------------------------------------------------
26
27         MODIFICATION HISTORY:
28         
29         DATE    PURPOSE                                         BY
30
31         931218  Added navion.h header to allow connection with
32                 aileron displacement for nosewheel steering.    EBJ
33         940511  Connected nosewheel to rudder pedal; adjusted gain.
34         
35         CURRENT RCS HEADER:
36
37 $Header$
38 $Log$
39 Revision 1.1  1999/04/05 21:32:45  curt
40 Initial revision
41
42 Revision 1.6  1998/10/17 01:34:16  curt
43 C++ ifying ...
44
45 Revision 1.5  1998/09/29 02:03:00  curt
46 Added a brake + autopilot mods.
47
48 Revision 1.4  1998/08/06 12:46:40  curt
49 Header change.
50
51 Revision 1.3  1998/02/03 23:20:18  curt
52 Lots of little tweaks to fix various consistency problems discovered by
53 Solaris' CC.  Fixed a bug in fg_debug.c with how the fgPrintf() wrapper
54 passed arguments along to the real printf().  Also incorporated HUD changes
55 by Michele America.
56
57 Revision 1.2  1998/01/19 18:40:29  curt
58 Tons of little changes to clean up the code and to remove fatal errors
59 when building with the c++ compiler.
60
61 Revision 1.1  1997/05/29 00:10:02  curt
62 Initial Flight Gear revision.
63
64
65 ----------------------------------------------------------------------------
66
67         REFERENCES:
68
69 ----------------------------------------------------------------------------
70
71         CALLED BY:
72
73 ----------------------------------------------------------------------------
74
75         CALLS TO:
76
77 ----------------------------------------------------------------------------
78
79         INPUTS:
80
81 ----------------------------------------------------------------------------
82
83         OUTPUTS:
84
85 --------------------------------------------------------------------------*/
86 #include <math.h>
87 #include "ls_types.h"
88 #include "ls_constants.h"
89 #include "ls_generic.h"
90 #include "ls_cockpit.h"
91
92
93 void sub3( DATA v1[],  DATA v2[], DATA result[] )
94 {
95     result[0] = v1[0] - v2[0];
96     result[1] = v1[1] - v2[1];
97     result[2] = v1[2] - v2[2];
98 }
99
100 void add3( DATA v1[],  DATA v2[], DATA result[] )
101 {
102     result[0] = v1[0] + v2[0];
103     result[1] = v1[1] + v2[1];
104     result[2] = v1[2] + v2[2];
105 }
106
107 void cross3( DATA v1[],  DATA v2[], DATA result[] )
108 {
109     result[0] = v1[1]*v2[2] - v1[2]*v2[1];
110     result[1] = v1[2]*v2[0] - v1[0]*v2[2];
111     result[2] = v1[0]*v2[1] - v1[1]*v2[0];
112 }
113
114 void multtrans3x3by3( DATA m[][3], DATA v[], DATA result[] )
115 {
116     result[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
117     result[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
118     result[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
119 }
120
121 void mult3x3by3( DATA m[][3], DATA v[], DATA result[] )
122 {
123     result[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
124     result[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
125     result[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
126 }
127
128 void clear3( DATA v[] )
129 {
130     v[0] = 0.; v[1] = 0.; v[2] = 0.;
131 }
132
133 void gear( SCALAR dt, int Initialize ) {
134 char rcsid[] = "$Id$";
135
136   /*
137    * Aircraft specific initializations and data goes here
138    */
139    
140 #define NUM_WHEELS 3
141
142     static int num_wheels = NUM_WHEELS;             /* number of wheels  */
143     static DATA d_wheel_rp_body_v[NUM_WHEELS][3] =  /* X, Y, Z locations */
144     {
145         { 10.,  0., 4. },                               /* in feet */
146         { -1.,  3., 4. }, 
147         { -1., -3., 4. }
148     };
149     static DATA spring_constant[NUM_WHEELS] =       /* springiness, lbs/ft */
150         { 1500., 5000., 5000. };
151     static DATA spring_damping[NUM_WHEELS] =        /* damping, lbs/ft/sec */
152         { 100.,  150.,  150. };         
153     static DATA percent_brake[NUM_WHEELS] =         /* percent applied braking */
154         { 0.,  0.,  0. };                           /* 0 = none, 1 = full */
155     static DATA caster_angle_rad[NUM_WHEELS] =      /* steerable tires - in */
156         { 0., 0., 0.};                              /* radians, +CW */  
157   /*
158    * End of aircraft specific code
159    */
160     
161   /*
162    * Constants & coefficients for tyres on tarmac - ref [1]
163    */
164    
165     /* skid function looks like:
166      * 
167      *           mu  ^
168      *               |
169      *       max_mu  |       +          
170      *               |      /|          
171      *   sliding_mu  |     / +------    
172      *               |    /             
173      *               |   /              
174      *               +--+------------------------> 
175      *               |  |    |      sideward V
176      *               0 bkout skid
177      *                 V     V
178      */
179   
180   
181     static DATA sliding_mu   = 0.5;     
182     static DATA rolling_mu   = 0.01;    
183     static DATA max_brake_mu = 0.6;     
184     static DATA max_mu       = 0.8;     
185     static DATA bkout_v      = 0.1;
186     static DATA skid_v       = 1.0;
187   /*
188    * Local data variables
189    */
190    
191     DATA d_wheel_cg_body_v[3];          /* wheel offset from cg,  X-Y-Z */
192     DATA d_wheel_cg_local_v[3];         /* wheel offset from cg,  N-E-D */
193     DATA d_wheel_rwy_local_v[3];        /* wheel offset from rwy, N-E-U */
194     DATA v_wheel_body_v[3];             /* wheel velocity,        X-Y-Z */
195     DATA v_wheel_local_v[3];            /* wheel velocity,        N-E-D */
196     DATA f_wheel_local_v[3];            /* wheel reaction force,  N-E-D */
197     DATA temp3a[3], temp3b[3], tempF[3], tempM[3];      
198     DATA reaction_normal_force;         /* wheel normal (to rwy) force  */
199     DATA cos_wheel_hdg_angle, sin_wheel_hdg_angle;      /* temp storage */
200     DATA v_wheel_forward, v_wheel_sideward,  abs_v_wheel_sideward;
201     DATA forward_mu, sideward_mu;       /* friction coefficients        */
202     DATA beta_mu;                       /* breakout friction slope      */
203     DATA forward_wheel_force, sideward_wheel_force;
204
205     int i;                              /* per wheel loop counter */
206   
207   /*
208    * Execution starts here
209    */
210    
211     beta_mu = max_mu/(skid_v-bkout_v);
212     clear3( F_gear_v );         /* Initialize sum of forces...  */
213     clear3( M_gear_v );         /* ...and moments               */
214     
215   /*
216    * Put aircraft specific executable code here
217    */
218    
219     /* replace with cockpit brake handle connection code */
220     percent_brake[1] = Brake_pct;
221     percent_brake[2] = percent_brake[1];
222     
223     caster_angle_rad[0] = 0.03*Rudder_pedal;
224     
225     for (i=0;i<num_wheels;i++)      /* Loop for each wheel */
226     {
227         /*========================================*/
228         /* Calculate wheel position w.r.t. runway */
229         /*========================================*/
230         
231             /* First calculate wheel location w.r.t. cg in body (X-Y-Z) axes... */
232         
233         sub3( d_wheel_rp_body_v[i], D_cg_rp_body_v, d_wheel_cg_body_v );
234         
235             /* then converting to local (North-East-Down) axes... */
236         
237         multtrans3x3by3( T_local_to_body_m,  d_wheel_cg_body_v, d_wheel_cg_local_v );
238         
239             /* Runway axes correction - third element is Altitude, not (-)Z... */
240         
241         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* since altitude = -Z */
242         
243             /* Add wheel offset to cg location in local axes */
244         
245         add3( d_wheel_cg_local_v, D_cg_rwy_local_v, d_wheel_rwy_local_v );
246         
247             /* remove Runway axes correction so right hand rule applies */
248         
249         d_wheel_cg_local_v[2] = -d_wheel_cg_local_v[2]; /* now Z positive down */
250         
251         /*============================*/
252         /* Calculate wheel velocities */
253         /*============================*/
254         
255             /* contribution due to angular rates */
256             
257         cross3( Omega_body_v, d_wheel_cg_body_v, temp3a );
258         
259             /* transform into local axes */
260           
261         multtrans3x3by3( T_local_to_body_m, temp3a, temp3b );
262
263             /* plus contribution due to cg velocities */
264
265         add3( temp3b, V_local_rel_ground_v, v_wheel_local_v );
266         
267         
268         /*===========================================*/
269         /* Calculate forces & moments for this wheel */
270         /*===========================================*/
271         
272             /* Add any anticipation, or frame lead/prediction, here... */
273             
274                     /* no lead used at present */
275                 
276             /* Calculate sideward and forward velocities of the wheel 
277                     in the runway plane                                 */
278             
279         cos_wheel_hdg_angle = cos(caster_angle_rad[i] + Psi);
280         sin_wheel_hdg_angle = sin(caster_angle_rad[i] + Psi);
281         
282         v_wheel_forward  = v_wheel_local_v[0]*cos_wheel_hdg_angle
283                          + v_wheel_local_v[1]*sin_wheel_hdg_angle;
284         v_wheel_sideward = v_wheel_local_v[1]*cos_wheel_hdg_angle
285                          - v_wheel_local_v[0]*sin_wheel_hdg_angle;
286
287             /* Calculate normal load force (simple spring constant) */
288         
289         reaction_normal_force = 0.;
290         if( d_wheel_rwy_local_v[2] < 0. ) 
291         {
292             reaction_normal_force = spring_constant[i]*d_wheel_rwy_local_v[2]
293                                   - v_wheel_local_v[2]*spring_damping[i];
294             if (reaction_normal_force > 0.) reaction_normal_force = 0.;
295                 /* to prevent damping component from swamping spring component */
296         }
297         
298             /* Calculate friction coefficients */
299             
300         forward_mu = (max_brake_mu - rolling_mu)*percent_brake[i] + rolling_mu;
301         abs_v_wheel_sideward = sqrt(v_wheel_sideward*v_wheel_sideward);
302         sideward_mu = sliding_mu;
303         if (abs_v_wheel_sideward < skid_v) 
304             sideward_mu = (abs_v_wheel_sideward - bkout_v)*beta_mu;
305         if (abs_v_wheel_sideward < bkout_v) sideward_mu = 0.;
306
307             /* Calculate foreward and sideward reaction forces */
308             
309         forward_wheel_force  =   forward_mu*reaction_normal_force;
310         sideward_wheel_force =  sideward_mu*reaction_normal_force;
311         if(v_wheel_forward < 0.) forward_wheel_force = -forward_wheel_force;
312         if(v_wheel_sideward < 0.) sideward_wheel_force = -sideward_wheel_force;
313         
314             /* Rotate into local (N-E-D) axes */
315         
316         f_wheel_local_v[0] = forward_wheel_force*cos_wheel_hdg_angle
317                           - sideward_wheel_force*sin_wheel_hdg_angle;
318         f_wheel_local_v[1] = forward_wheel_force*sin_wheel_hdg_angle
319                           + sideward_wheel_force*cos_wheel_hdg_angle;
320         f_wheel_local_v[2] = reaction_normal_force;       
321            
322             /* Convert reaction force from local (N-E-D) axes to body (X-Y-Z) */
323         
324         mult3x3by3( T_local_to_body_m, f_wheel_local_v, tempF );
325         
326             /* Calculate moments from force and offsets in body axes */
327
328         cross3( d_wheel_cg_body_v, tempF, tempM );
329         
330         /* Sum forces and moments across all wheels */
331         
332         add3( tempF, F_gear_v, F_gear_v );
333         add3( tempM, M_gear_v, M_gear_v );
334         
335     }
336 }