]> git.mxchange.org Git - flightgear.git/blob - src/FDM/SP/BalloonSim.cpp
Merge branch 'maint' into next
[flightgear.git] / src / FDM / SP / BalloonSim.cpp
1 /*****************************************************************************
2
3  Module:       BalloonSim.cpp
4  Author:       Christian Mayer
5  Date started: 01.09.99
6  Called by:
7
8  -------- Copyright (C) 1999 Christian Mayer (fgfs@christianmayer.de) --------
9
10  This program is free software; you can redistribute it and/or modify it under
11  the terms of the GNU General Public License as published by the Free Software
12  Foundation; either version 2 of the License, or (at your option) any later
13  version.
14
15  This program is distributed in the hope that it will be useful, but WITHOUT
16  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17  FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
18  details.
19
20  You should have received a copy of the GNU General Public License
21  along with this program; if not, write to the Free Software
22  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
23
24  Further information about the GNU General Public License can also be found on
25  the world wide web at http://www.gnu.org.
26
27 FUNCTIONAL DESCRIPTION
28 ------------------------------------------------------------------------------
29 A hot air balloon simulator
30
31 HISTORY
32 ------------------------------------------------------------------------------
33 01.09.1999 Christian Mayer      Created
34 03.10.1999 Christian Mayer      cleaned  the code  by moveing  WeatherDatabase 
35                                 calls inside the update()
36 *****************************************************************************/
37
38 /****************************************************************************/
39 /* INCLUDES                                                                 */
40 /****************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #  include "config.h"
44 #endif
45
46 #include <stdio.h>
47 #include <math.h>
48
49 #include <simgear/constants.h>
50
51 #include <Aircraft/aircraft.hxx>
52
53 #include "BalloonSim.h"
54
55 /****************************************************************************/
56 /********************************** CODE ************************************/
57 /****************************************************************************/
58
59 /****************************************************************************/
60 /*                                                                          */
61 /*  Constructor:                                                            */
62 /*  Set the balloon model to some values that seem reasonable as I haven't  */
63 /*  got much original values                                                */
64 /*                                                                          */
65 /****************************************************************************/
66 balloon::balloon()
67 {
68     dt = 0.1;
69     ground_level = 3400.0;
70
71     gravity_vector = SGVec3f(0.0, 0.0, -9.81);
72     velocity = SGVec3f(0.0, 0.0, 0.0);
73     position = SGVec3f(0.0, 0.0, 0.0);
74     hpr = SGVec3f(0.0, 0.0, 0.0);
75
76     /************************************************************************/
77     /* My balloon  has a  radius of  8.8 metres  as that  gives a  envelope */
78     /* volume of about 2854 m^3  which is  about 77000 ft^3,  a very common */
79     /* size for hot air balloons                                            */
80     /************************************************************************/
81
82     balloon_envelope_area = 4.0 * (8.8 * 8.8) * SGD_PI; 
83     balloon_envelope_volume = (4.0/3.0) * (8.8 * 8.8 * 8.8) * SGD_PI;
84
85     wind_facing_area_of_balloon = SGD_PI * (8.8 * 8.8);
86     wind_facing_area_of_basket = 2.0;   //guessed: 2 m^2
87     
88     cw_envelope=0.45;                   //a sphere in this case
89     cw_basket=0.8;
90
91     weight_of_total_fuel = 40.0;        //big guess
92     weight_of_envelope = 200.0;         //big guess
93     weight_of_basket = 40.0;            //big guess
94     weight_of_cargo = 750.0;            //big guess
95
96     fuel_left=1.0;
97     max_flow_of_fuel_per_second=10.0*1.0/3600.0; //assuming 10% of one hour of total burn time
98     current_burner_strength = 0.0;      //the throttle
99
100     lambda = 0.15;                      //for plasic
101     l_of_the_envelope = 1.0/1000.0;     //the thickness of the envelope (in m): 1mm
102
103     T = 273.16 + 130.6;                 //Temperature in the envelope => still at ground level
104 }
105
106 void balloon::update()
107 {
108     /************************************************************************/
109     /* I'm  simplifying  the  balloon by  reducing the  simulation  to  two */
110     /* points:                                                              */  
111     /* the center of the basket (CB) and the center of the envelope (CE)    */
112     /*                                                                      */
113     /*                                 ce                                   */
114     /*                                 I                                    */
115     /*                                 I                                    */
116     /*                                 cg (=center of gravity)              */
117     /*                                 I                                    */
118     /*                                 cb                                   */
119     /*                                                                      */
120     /* On each center  are forces acting:  gravity and  wind resitance.  CE */
121     /* additionally got the lift  (=> I need to calculate the weight of the */
122     /* air inside, too)                                                     */
123     /*                                                                      */
124     /* The weight of the air  in the envelope is  dependant of the tempera- */
125     /* ture. This temperature is decreasing over the time that is dependant */
126     /* of the insulation  of the envelope  material (lambda),  the gas used */
127     /* (air) and the wind speed. For a plane surface it's for air:          */
128     /*                                                                      */
129     /*    alpha = 4.8 + 3.4*v   with v < 5.0 m/s                            */
130     /*                                                                      */
131     /* The value k that takes all of that into account is defined as:       */
132     /*                                                                      */
133     /*    1 / k = 1 / alpha1 + 1 / alpha2 + l / lambda                      */
134     /*                                                                      */
135     /* with 'l' beeing the 'length' i.e. thickness of the insulator, alpha1 */
136     /* the air inside and alpha2 the air outside of the envelope.  So our k */
137     /* is:                                                                  */
138     /*                                                                      */
139     /*    k = 1 / [1/4.8 + 1/(4.8+3.4v) + l/lambda]                         */
140     /*                                                                      */
141     /* The energy lost by this process is defined as:                       */
142     /*                                                                      */
143     /*    dQ = k * A * t * dT                                               */
144     /*                                                                      */
145     /* with Q being  the energy,  k that value  defined above,  A the total */
146     /* area of the envelope,  t the time (in hours)  and dT the temperature */
147     /* difference between the inside and the outside.                       */
148     /* To get the temperature of the air in the inside I need the formula:  */
149     /*                                                                      */
150     /*    dQ = cAir * m * dT                                                */
151     /*                                                                      */
152     /* with cAir being the specific heat capacity(?)  of air (= 1.00 kcal / */
153     /* kg * degree),  m the mass of the air and  dT the temperature change. */
154     /* As the envelope is open I'm  assuming that the  same air pressure is */
155     /* inside and  outside of  it  (practical there  should  be  a slightly */
156     /* higher air pressure  in the inside or the envelope  would collapse). */
157     /* So it's easy to calculate the density of the air inside:             */
158     /*                                                                      */
159     /*    rho = p / R * T                                                   */
160     /*                                                                      */
161     /* with p being  the pressure,  R the gas constant(?)  which is for air */
162     /* 287.14 N * m / kg * K and T the absolute temperature.                */
163     /*                                                                      */
164     /* The value returned by this function is the displacement of the CB    */
165     /************************************************************************/
166
167     /************************************************************************/
168     /* NOTE:  This is the simplified version:  I'm assuming that  the whole */
169     /* balloon consists only of the envelope.I will improove the simulation */
170     /* later, but currently was my main concern to get it going...          */
171     /************************************************************************/
172
173    // I realy don't think there is a solution for this without WeatherCM
174    // but this is a hack, and it's working -- EMH
175    double mAir = 1;
176    float Q = 0;
177
178     // gain of energy by heating:
179     if (fuel_left > 0.0)        //but only with some fuel left ;-)
180     {
181         float fuel_burning = current_burner_strength * max_flow_of_fuel_per_second * dt * weight_of_total_fuel; //in kg
182     
183         //convert to cubemetres (I'm wrongly assuming 'normal' conditions; but that's correct for my special case)
184         float cube_metres_burned = fuel_burning / 2.2;  //2.2 is the density for propane
185
186         fuel_left -= fuel_burning / weight_of_total_fuel;
187
188         // get energy through burning. 
189         Q += 22250.0 * cube_metres_burned;  //22250 for propan, 29500 would be butane and if you dare: 2580 would be hydrogen...
190     }
191
192     // calculate the new temperature in the inside:
193     T += Q / (1.00 * mAir);
194
195     //calculate the masses of the envelope and the basket
196     float mEnvelope = mAir + weight_of_envelope;
197     float mBasket   = weight_of_total_fuel*fuel_left + weight_of_basket + weight_of_cargo;
198
199     float mTotal = mEnvelope + mBasket;
200
201     //calulate the forces
202     SGVec3f fTotal, fFriction, fLift;
203
204     fTotal = mTotal*gravity_vector;
205    
206     // fTotal += fLift;     //FIXME: uninitialized fLift 
207     // fTotal += fFriction; //FIXME: uninitialized fFriction
208     
209     //claculate acceleration: a = F / m
210     SGVec3f aTotal, vTotal, dTotal;
211
212     aTotal = (1.0 / mTotal)*fTotal;
213
214     //integrate the displacement: d = 0.5 * a * dt**2 + v * dt + d
215     vTotal = dt*velocity; 
216     dTotal = (0.5*dt*dt)*aTotal; dTotal += vTotal;
217
218     //integrate the velocity to 'velocity': v = a * dt + v
219     vTotal = dt*aTotal; velocity += vTotal;
220
221     /************************************************************************/
222     /* VERY WRONG STUFF: it's just here to get some results to start with   */  
223     /************************************************************************/
224
225     // care for the ground
226     if (position[2] < (ground_level+0.001) )
227         position[2] = ground_level;
228
229     //return results
230     position += dTotal;
231
232     //cout << "BallonSim: T: " << (T-273.16) << " alt: " << position[2] << " ground: " << ground_level << " throttle: " << current_burner_strength << "\n";
233 }
234
235 void balloon::set_burner_strength(const float bs)
236 {
237     if ((bs>=0.0) && (bs<=1.0))
238     current_burner_strength = bs;
239 }
240
241 void balloon::getVelocity(SGVec3f& v) const
242 {
243     v = velocity;
244 }
245
246 void balloon::setVelocity(const SGVec3f& v)
247 {
248     velocity = v;
249 }
250
251 void balloon::getPosition(SGVec3f& v) const
252 {
253     v = position;
254 }
255
256 void balloon::setPosition(const SGVec3f& v)
257 {
258     position = v;
259 }
260
261 void balloon::getHPR(SGVec3f& angles) const //the balloon isn't allways exactly vertical
262 {
263     angles = hpr;
264 }
265
266 void balloon::setHPR(const SGVec3f& angles)  //the balloon isn't allways exactly vertical
267 {
268     hpr = angles;
269 }
270
271 void balloon::setGroundLevel(const float altitude)
272 {
273     ground_level = altitude;
274 }
275
276 float balloon::getTemperature(void) const
277 {
278     return T;
279 }
280
281 float balloon::getFuelLeft(void) const
282 {
283     return fuel_left;
284 }
285
286 /*
287 void main(void)
288 {
289     bool burner = true;
290     balloon bal;
291     bool exit = false;
292     sgVec3 pos={0.0, 0.0, 0.0};
293     char c;
294     float acc_dt = 0.0;
295     float alt;
296
297 bool hysteresis = false; // moving up
298     for (;!exit;)
299     {
300         for (int i=0; i<100; i++)
301         {
302             bal.update(0.1); acc_dt += 0.1;
303             bal.getPosition(pos);
304             alt = pos[2];
305
306             if (alt > 3010) 
307             {
308                 hysteresis = true;
309                 burner = false;
310             }
311             if ((alt < 2990) && (hysteresis == true))
312             {
313                 hysteresis = false;
314                 burner = true;
315             }
316             if ((bal.getTemperature()-273.16)>250.0)
317                 burner = false; //emergency
318         }
319
320         // toogle burner
321         c = getch();
322         if (c==' ')
323             burner=!burner;
324         //if (c=='s')
325         //    show=!show;
326
327         //printf("Position: (%f/%f/%f), dP: (%f/%f/%f), burner: ", pos[0], pos[1], pos[2], dp[0], dp[1], dp[2]);
328         printf("%f         \t%f         \t%f         \t%f\n", acc_dt/60.0, bal.getTemperature()-273.16, pos[2], bal.getFuelLeft());
329         if (burner==true)
330         {
331             //printf("on\n");
332             bal.set_burner_strength(1.0);
333         }
334         else
335         {
336             //printf("off\n");
337             bal.set_burner_strength(0.0);
338         }
339
340     }
341 }
342 */