]> git.mxchange.org Git - flightgear.git/blob - src/FDM/YASim/FGFDM.cpp
change file mode to 644
[flightgear.git] / src / FDM / YASim / FGFDM.cpp
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #include <Main/fg_props.hxx>
5
6 #include "Math.hpp"
7 #include "Jet.hpp"
8 #include "SimpleJet.hpp"
9 #include "Gear.hpp"
10 #include "Hook.hpp"
11 #include "Launchbar.hpp"
12 #include "Atmosphere.hpp"
13 #include "PropEngine.hpp"
14 #include "Propeller.hpp"
15 #include "PistonEngine.hpp"
16 #include "TurbineEngine.hpp"
17 #include "Rotor.hpp"
18 #include "Rotorpart.hpp"
19 #include "Hitch.hpp"
20
21 #include "FGFDM.hpp"
22
23 namespace yasim {
24
25 // Some conversion factors
26 static const float KTS2MPS = 0.514444444444;
27 static const float FT2M = 0.3048;
28 static const float DEG2RAD = 0.0174532925199;
29 static const float RPM2RAD = 0.10471975512;
30 static const float LBS2N = 4.44822;
31 static const float LBS2KG = 0.45359237;
32 static const float KG2LBS = 2.2046225;
33 static const float CM2GALS = 264.172037284;
34 static const float HP2W = 745.700;
35 static const float INHG2PA = 3386.389;
36 static const float K2DEGF = 1.8;
37 static const float K2DEGFOFFSET = -459.4;
38 static const float CIN2CM = 1.6387064e-5;
39 static const float YASIM_PI = 3.14159265358979323846;
40
41 static const float NM2FTLB = (1/(LBS2N*FT2M));
42
43 // Stubs, so that this can be compiled without the FlightGear
44 // binary.  What's the best way to handle this?
45
46 //     float fgGetFloat(char* name, float def) { return 0; }
47 //     void fgSetFloat(char* name, float val) {}
48
49 FGFDM::FGFDM()
50 {
51     _vehicle_radius = 0.0f;
52
53     _nextEngine = 0;
54
55     // Map /controls/flight/elevator to the approach elevator control.  This
56     // should probably be settable, but there are very few aircraft
57     // who trim their approaches using things other than elevator.
58     _airplane.setElevatorControl(parseAxis("/controls/flight/elevator-trim"));
59
60     // FIXME: read seed from somewhere?
61     int seed = 0;
62     _turb = new Turbulence(10, seed);
63 }
64
65 FGFDM::~FGFDM()
66 {
67     int i;
68     for(i=0; i<_axes.size(); i++) {
69         AxisRec* a = (AxisRec*)_axes.get(i);
70         delete[] a->name;
71         delete a;
72     }
73     for(i=0; i<_thrusters.size(); i++) {
74         EngRec* er = (EngRec*)_thrusters.get(i);
75         delete[] er->prefix;
76         delete er->eng;
77         delete er;
78     }
79     for(i=0; i<_weights.size(); i++) {
80         WeightRec* wr = (WeightRec*)_weights.get(i);
81         delete[] wr->prop;
82         delete wr;
83     }
84     for(i=0; i<_controlProps.size(); i++)
85         delete (PropOut*)_controlProps.get(i);
86     delete _turb;
87 }
88
89 void FGFDM::iterate(float dt)
90 {
91     getExternalInput(dt);
92     _airplane.iterate(dt);
93
94     // Do fuel stuff (FIXME: should stash SGPropertyNode objects here)
95     char buf[256];
96     for(int i=0; i<_airplane.numThrusters(); i++) {
97         Thruster* t = _airplane.getThruster(i);
98
99         sprintf(buf, "/engines/engine[%d]/out-of-fuel", i);
100         t->setFuelState(!fgGetBool(buf));
101
102         sprintf(buf, "/engines/engine[%d]/fuel-consumed-lbs", i);
103         double consumed = fgGetDouble(buf) + dt * KG2LBS * t->getFuelFlow();
104         fgSetDouble(buf, consumed);
105     }
106     for(int i=0; i<_airplane.numTanks(); i++) {
107         sprintf(buf, "/consumables/fuel/tank[%d]/level-lbs", i);
108         _airplane.setFuel(i, LBS2KG * fgGetFloat(buf));
109     } 
110     _airplane.calcFuelWeights();
111     
112     setOutputProperties(dt);
113 }
114
115 Airplane* FGFDM::getAirplane()
116 {
117     return &_airplane;
118 }
119
120 void FGFDM::init()
121 {
122     // Allows the user to start with something other than full fuel
123     _airplane.setFuelFraction(fgGetFloat("/sim/fuel-fraction", 1));
124
125     // Read out the resulting fuel state
126     char buf[256];
127     for(int i=0; i<_airplane.numTanks(); i++) {
128         sprintf(buf, "/consumables/fuel/tank[%d]/level-lbs", i);
129         fgSetDouble(buf, _airplane.getFuel(i) * KG2LBS);
130
131         double density = _airplane.getFuelDensity(i);
132         sprintf(buf, "/consumables/fuel/tank[%d]/density-ppg", i);
133         fgSetDouble(buf, density * (KG2LBS/CM2GALS));
134
135 // set in TankProperties class
136 //        sprintf(buf, "/consumables/fuel/tank[%d]/level-gal_us", i);
137 //        fgSetDouble(buf, _airplane.getFuel(i) * CM2GALS / density);
138
139         sprintf(buf, "/consumables/fuel/tank[%d]/capacity-gal_us", i);
140         fgSetDouble(buf, CM2GALS * _airplane.getTankCapacity(i)/density);
141     }    
142
143     // This has a nasty habit of being false at startup.  That's not
144     // good.
145     fgSetBool("/controls/gear/gear-down", true);
146
147     _airplane.getModel()->setTurbulence(_turb);
148 }
149
150 // Not the worlds safest parser.  But it's short & sweet.
151 void FGFDM::startElement(const char* name, const XMLAttributes &atts)
152 {
153     XMLAttributes* a = (XMLAttributes*)&atts;
154     float v[3];
155     char buf[64];
156
157     if(eq(name, "airplane")) {
158         _airplane.setWeight(attrf(a, "mass") * LBS2KG);
159     } else if(eq(name, "approach")) {
160         float spd = attrf(a, "speed") * KTS2MPS;
161         float alt = attrf(a, "alt", 0) * FT2M;
162         float aoa = attrf(a, "aoa", 0) * DEG2RAD;
163         float gla = attrf(a, "glide-angle", 0) * DEG2RAD;
164         _airplane.setApproach(spd, alt, aoa, attrf(a, "fuel", 0.2),gla);
165         _cruiseCurr = false;
166     } else if(eq(name, "cruise")) {
167         float spd = attrf(a, "speed") * KTS2MPS;
168         float alt = attrf(a, "alt") * FT2M;
169         float gla = attrf(a, "glide-angle", 0) * DEG2RAD;
170         _airplane.setCruise(spd, alt, attrf(a, "fuel", 0.5),gla);
171         _cruiseCurr = true;
172     } else if(eq(name, "solve-weight")) {
173         int idx = attri(a, "idx");
174         float wgt = attrf(a, "weight") * LBS2KG;
175         _airplane.addSolutionWeight(!_cruiseCurr, idx, wgt);
176     } else if(eq(name, "cockpit")) {
177         v[0] = attrf(a, "x");
178         v[1] = attrf(a, "y");
179         v[2] = attrf(a, "z");
180         _airplane.setPilotPos(v);
181     } else if(eq(name, "rotor")) {
182         _airplane.getModel()->getRotorgear()->addRotor(parseRotor(a, name));
183     } else if(eq(name, "rotorgear")) {
184         Rotorgear* r = _airplane.getModel()->getRotorgear();
185         _currObj = r;
186         #define p(x) if (a->hasAttribute(#x)) r->setParameter((char *)#x,attrf(a,#x) );
187         #define p2(x,y) if (a->hasAttribute(y)) r->setParameter((char *)#x,attrf(a,y) );
188         p2(max_power_engine,"max-power-engine")
189         p2(engine_prop_factor,"engine-prop-factor")
190         p(yasimdragfactor)
191         p(yasimliftfactor)
192         p2(max_power_rotor_brake,"max-power-rotor-brake")
193         p2(rotorgear_friction,"rotorgear-friction")
194         p2(engine_accel_limit,"engine-accel-limit")
195         #undef p
196         #undef p2
197         r->setInUse();
198     } else if(eq(name, "wing")) {
199         _airplane.setWing(parseWing(a, name));
200     } else if(eq(name, "hstab")) {
201         _airplane.setTail(parseWing(a, name));
202     } else if(eq(name, "vstab") || eq(name, "mstab")) {
203         _airplane.addVStab(parseWing(a, name));
204     } else if(eq(name, "piston-engine")) {
205         parsePistonEngine(a);
206     } else if(eq(name, "turbine-engine")) {
207         parseTurbineEngine(a);
208     } else if(eq(name, "propeller")) {
209         parsePropeller(a);
210     } else if(eq(name, "thruster")) {
211         SimpleJet* j = new SimpleJet();
212         _currObj = j;
213         v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z");
214         j->setPosition(v);
215         _airplane.addThruster(j, 0, v);
216         v[0] = attrf(a, "vx"); v[1] = attrf(a, "vy"); v[2] = attrf(a, "vz");
217         j->setDirection(v);
218         j->setThrust(attrf(a, "thrust") * LBS2N);
219     } else if(eq(name, "jet")) {
220         Jet* j = new Jet();
221         _currObj = j;
222         v[0] = attrf(a, "x");
223         v[1] = attrf(a, "y");
224         v[2] = attrf(a, "z");
225         float mass = attrf(a, "mass") * LBS2KG;
226         j->setMaxThrust(attrf(a, "thrust") * LBS2N,
227                         attrf(a, "afterburner", 0) * LBS2N);
228         j->setVectorAngle(attrf(a, "rotate", 0) * DEG2RAD);
229         j->setReverseThrust(attrf(a, "reverse", 0.2));
230
231         float n1min = attrf(a, "n1-idle", 55);
232         float n1max = attrf(a, "n1-max", 102);
233         float n2min = attrf(a, "n2-idle", 73);
234         float n2max = attrf(a, "n2-max", 103);
235         j->setRPMs(n1min, n1max, n2min, n2max);
236
237         j->setTSFC(attrf(a, "tsfc", 0.8));
238         if(a->hasAttribute("egt"))  j->setEGT(attrf(a, "egt"));
239         if(a->hasAttribute("epr"))  j->setEPR(attrf(a, "epr"));
240         if(a->hasAttribute("exhaust-speed"))
241             j->setVMax(attrf(a, "exhaust-speed") * KTS2MPS);
242         if(a->hasAttribute("spool-time"))
243             j->setSpooling(attrf(a, "spool-time"));
244         
245         j->setPosition(v);
246         _airplane.addThruster(j, mass, v);
247         sprintf(buf, "/engines/engine[%d]", _nextEngine++);
248         EngRec* er = new EngRec();
249         er->eng = j;
250         er->prefix = dup(buf);
251         _thrusters.add(er);
252     } else if(eq(name, "hitch")) {
253         Hitch* h = new Hitch(a->getValue("name"));
254         _currObj = h;
255         v[0] = attrf(a, "x");
256         v[1] = attrf(a, "y");
257         v[2] = attrf(a, "z");
258         h->setPosition(v);
259         if(a->hasAttribute("force-is-calculated-by-other")) h->setForceIsCalculatedByOther(attrb(a,"force-is-calculated-by-other"));
260         _airplane.addHitch(h);
261     } else if(eq(name, "tow")) {
262         Hitch* h = (Hitch*)_currObj;
263         if(a->hasAttribute("length"))
264             h->setTowLength(attrf(a, "length"));
265         if(a->hasAttribute("elastic-constant"))
266             h->setTowElasticConstant(attrf(a, "elastic-constant"));
267         if(a->hasAttribute("break-force"))
268             h->setTowBreakForce(attrf(a, "break-force"));
269         if(a->hasAttribute("weight-per-meter"))
270             h->setTowWeightPerM(attrf(a, "weight-per-meter"));
271         if(a->hasAttribute("mp-auto-connect-period"))
272             h->setMpAutoConnectPeriod(attrf(a, "mp-auto-connect-period"));
273     } else if(eq(name, "winch")) {
274         Hitch* h = (Hitch*)_currObj;
275         double pos[3];
276         pos[0] = attrd(a, "x",0);
277         pos[1] = attrd(a, "y",0);
278         pos[2] = attrd(a, "z",0);
279         h->setWinchPosition(pos);
280         if(a->hasAttribute("max-speed"))
281             h->setWinchMaxSpeed(attrf(a, "max-speed"));
282         if(a->hasAttribute("power"))
283             h->setWinchPower(attrf(a, "power") * 1000);
284         if(a->hasAttribute("max-force"))
285             h->setWinchMaxForce(attrf(a, "max-force"));
286         if(a->hasAttribute("initial-tow-length"))
287             h->setWinchInitialTowLength(attrf(a, "initial-tow-length"));
288         if(a->hasAttribute("max-tow-length"))
289             h->setWinchMaxTowLength(attrf(a, "max-tow-length"));
290         if(a->hasAttribute("min-tow-length"))
291             h->setWinchMinTowLength(attrf(a, "min-tow-length"));
292     } else if(eq(name, "gear")) {
293         Gear* g = new Gear();
294         _currObj = g;
295         v[0] = attrf(a, "x");
296         v[1] = attrf(a, "y");
297         v[2] = attrf(a, "z");
298         g->setPosition(v);
299         float nrm = Math::mag3(v);
300         if (_vehicle_radius < nrm)
301             _vehicle_radius = nrm;
302         if(a->hasAttribute("upx")) {
303             v[0] = attrf(a, "upx");
304             v[1] = attrf(a, "upy");
305             v[2] = attrf(a, "upz");
306             Math::unit3(v, v);
307         } else {
308             v[0] = 0;
309             v[1] = 0;
310             v[2] = 1;
311         }
312         for(int i=0; i<3; i++)
313             v[i] *= attrf(a, "compression", 1);
314         g->setCompression(v);
315         g->setBrake(attrf(a, "skid", 0));
316         g->setInitialLoad(attrf(a, "initial-load", 0));
317         g->setStaticFriction(attrf(a, "sfric", 0.8));
318         g->setDynamicFriction(attrf(a, "dfric", 0.7));
319         g->setSpring(attrf(a, "spring", 1));
320         g->setDamping(attrf(a, "damp", 1));
321         if(a->hasAttribute("on-water")) g->setOnWater(attrb(a,"on-water"));
322         if(a->hasAttribute("on-solid")) g->setOnSolid(attrb(a,"on-solid"));
323         if(a->hasAttribute("ignored-by-solver")) g->setIgnoreWhileSolving(attrb(a,"ignored-by-solver"));
324         g->setSpringFactorNotPlaning(attrf(a, "spring-factor-not-planing", 1));
325         g->setSpeedPlaning(attrf(a, "speed-planing", 0) * KTS2MPS);
326         g->setReduceFrictionByExtension(attrf(a, "reduce-friction-by-extension", 0));
327         _airplane.addGear(g);
328     } else if(eq(name, "hook")) {
329         Hook* h = new Hook();
330         _currObj = h;
331         v[0] = attrf(a, "x");
332         v[1] = attrf(a, "y");
333         v[2] = attrf(a, "z");
334         h->setPosition(v);
335         float length = attrf(a, "length", 1.0);
336         h->setLength(length);
337         float nrm = length+Math::mag3(v);
338         if (_vehicle_radius < nrm)
339             _vehicle_radius = nrm;
340         h->setDownAngle(attrf(a, "down-angle", 70) * DEG2RAD);
341         h->setUpAngle(attrf(a, "up-angle", 0) * DEG2RAD);
342         _airplane.addHook(h);
343     } else if(eq(name, "launchbar")) {
344         Launchbar* l = new Launchbar();
345         _currObj = l;
346         v[0] = attrf(a, "x");
347         v[1] = attrf(a, "y");
348         v[2] = attrf(a, "z");
349         l->setLaunchbarMount(v);
350         v[0] = attrf(a, "holdback-x", v[0]);
351         v[1] = attrf(a, "holdback-y", v[1]);
352         v[2] = attrf(a, "holdback-z", v[2]);
353         l->setHoldbackMount(v);
354         float length = attrf(a, "length", 1.0);
355         l->setLength(length);
356         l->setDownAngle(attrf(a, "down-angle", 45) * DEG2RAD);
357         l->setUpAngle(attrf(a, "up-angle", -45) * DEG2RAD);
358         l->setHoldbackLength(attrf(a, "holdback-length", 2.0));
359         _airplane.addLaunchbar(l);
360     } else if(eq(name, "fuselage")) {
361         float b[3];
362         v[0] = attrf(a, "ax");
363         v[1] = attrf(a, "ay");
364         v[2] = attrf(a, "az");
365         b[0] = attrf(a, "bx");
366         b[1] = attrf(a, "by");
367         b[2] = attrf(a, "bz");
368         float taper = attrf(a, "taper", 1);
369         float mid = attrf(a, "midpoint", 0.5);
370         float cx = attrf(a, "cx", 1);
371         float cy = attrf(a, "cy", 1);
372         float cz = attrf(a, "cz", 1);
373         float idrag = attrf(a, "idrag", 1);
374         _airplane.addFuselage(v, b, attrf(a, "width"), taper, mid, 
375             cx, cy, cz, idrag);
376     } else if(eq(name, "tank")) {
377         v[0] = attrf(a, "x");
378         v[1] = attrf(a, "y");
379         v[2] = attrf(a, "z");
380         float density = 6.0; // gasoline, in lbs/gal
381         if(a->hasAttribute("jet")) density = 6.72; 
382         density *= LBS2KG*CM2GALS;
383         _airplane.addTank(v, attrf(a, "capacity") * LBS2KG, density);
384     } else if(eq(name, "ballast")) {
385         v[0] = attrf(a, "x");
386         v[1] = attrf(a, "y");
387         v[2] = attrf(a, "z");
388         _airplane.addBallast(v, attrf(a, "mass") * LBS2KG);
389     } else if(eq(name, "weight")) {
390         parseWeight(a);
391     } else if(eq(name, "stall")) {
392         Wing* w = (Wing*)_currObj;
393         w->setStall(attrf(a, "aoa") * DEG2RAD);
394         w->setStallWidth(attrf(a, "width", 2) * DEG2RAD);
395         w->setStallPeak(attrf(a, "peak", 1.5));
396     } else if(eq(name, "flap0")) {
397         ((Wing*)_currObj)->setFlap0(attrf(a, "start"), attrf(a, "end"),
398                                     attrf(a, "lift"), attrf(a, "drag"));
399     } else if(eq(name, "flap1")) {
400         ((Wing*)_currObj)->setFlap1(attrf(a, "start"), attrf(a, "end"),
401                                     attrf(a, "lift"), attrf(a, "drag"));
402     } else if(eq(name, "slat")) {
403         ((Wing*)_currObj)->setSlat(attrf(a, "start"), attrf(a, "end"),
404                                    attrf(a, "aoa"), attrf(a, "drag"));
405     } else if(eq(name, "spoiler")) {
406         ((Wing*)_currObj)->setSpoiler(attrf(a, "start"), attrf(a, "end"),
407                                       attrf(a, "lift"), attrf(a, "drag"));
408     /* } else if(eq(name, "collective")) {
409         ((Rotor*)_currObj)->setcollective(attrf(a, "min"), attrf(a, "max"));
410     } else if(eq(name, "cyclic")) {
411         ((Rotor*)_currObj)->setcyclic(attrf(a, "ail"), attrf(a, "ele"));
412     */                               
413     } else if(eq(name, "actionpt")) {
414         v[0] = attrf(a, "x");
415         v[1] = attrf(a, "y");
416         v[2] = attrf(a, "z");
417         ((Thruster*)_currObj)->setPosition(v);
418     } else if(eq(name, "dir")) {
419         v[0] = attrf(a, "x");
420         v[1] = attrf(a, "y");
421         v[2] = attrf(a, "z");
422         ((Thruster*)_currObj)->setDirection(v);
423     } else if(eq(name, "control-setting")) {
424         // A cruise or approach control setting
425         const char* axis = a->getValue("axis");
426         float value = attrf(a, "value", 0);
427         if(_cruiseCurr)
428             _airplane.addCruiseControl(parseAxis(axis), value);
429         else
430             _airplane.addApproachControl(parseAxis(axis), value);
431     } else if(eq(name, "control-input")) {
432
433         // A mapping of input property to a control
434         int axis = parseAxis(a->getValue("axis"));
435         int control = parseOutput(a->getValue("control"));
436         int opt = 0;
437         opt |= a->hasAttribute("split") ? ControlMap::OPT_SPLIT : 0;
438         opt |= a->hasAttribute("invert") ? ControlMap::OPT_INVERT : 0;
439         opt |= a->hasAttribute("square") ? ControlMap::OPT_SQUARE : 0;
440         
441         ControlMap* cm = _airplane.getControlMap();
442         if(a->hasAttribute("src0")) {
443                            cm->addMapping(axis, control, _currObj, opt,
444                            attrf(a, "src0"), attrf(a, "src1"), 
445                            attrf(a, "dst0"), attrf(a, "dst1"));
446         } else {
447             cm->addMapping(axis, control, _currObj, opt);
448         }
449     } else if(eq(name, "control-output")) {
450         // A property output for a control on the current object
451         ControlMap* cm = _airplane.getControlMap();
452         int type = parseOutput(a->getValue("control"));
453         int handle = cm->getOutputHandle(_currObj, type);
454
455         PropOut* p = new PropOut();
456         p->prop = fgGetNode(a->getValue("prop"), true);
457         p->handle = handle;
458         p->type = type;
459         p->left = !(a->hasAttribute("side") &&
460                         eq("right", a->getValue("side")));
461         p->min = attrf(a, "min", cm->rangeMin(type));
462         p->max = attrf(a, "max", cm->rangeMax(type));
463         _controlProps.add(p);
464
465     } else if(eq(name, "control-speed")) {
466         ControlMap* cm = _airplane.getControlMap();
467         int type = parseOutput(a->getValue("control"));
468         int handle = cm->getOutputHandle(_currObj, type);
469         float time = attrf(a, "transition-time", 0);
470         
471         cm->setTransitionTime(handle, time);
472     } else {
473         SG_LOG(SG_FLIGHT,SG_ALERT,"Unexpected tag '"
474                << name << "' found in YASim aircraft description");
475         exit(1);
476     }
477 }
478
479 void FGFDM::getExternalInput(float dt)
480 {
481     char buf[256];
482
483     _turb->setMagnitude(fgGetFloat("/environment/turbulence/magnitude-norm"));
484     _turb->update(dt, fgGetFloat("/environment/turbulence/rate-hz"));
485
486     // The control axes
487     ControlMap* cm = _airplane.getControlMap();
488     cm->reset();
489     int i;
490     for(i=0; i<_axes.size(); i++) {
491         AxisRec* a = (AxisRec*)_axes.get(i);
492         float val = fgGetFloat(a->name, 0);
493         cm->setInput(a->handle, val);
494     }
495     cm->applyControls(dt);
496
497     // Weights
498     for(i=0; i<_weights.size(); i++) {
499         WeightRec* wr = (WeightRec*)_weights.get(i);
500         _airplane.setWeight(wr->handle, LBS2KG * fgGetFloat(wr->prop));
501     }
502
503     for(i=0; i<_thrusters.size(); i++) {
504         EngRec* er = (EngRec*)_thrusters.get(i);
505         Thruster* t = er->eng;
506
507         if(t->getPropEngine()) {
508             PropEngine* p = t->getPropEngine();
509             sprintf(buf, "%s/rpm", er->prefix);
510             p->setOmega(fgGetFloat(buf, 500) * RPM2RAD);
511         }
512     }
513 }
514
515 // Linearly "seeks" a property by the specified fraction of the way to
516 // the target value.  Used to emulate "slowly changing" output values.
517 static void moveprop(SGPropertyNode* node, const char* prop,
518                     float target, float frac)
519 {
520     float val = node->getFloatValue(prop);
521     if(frac > 1) frac = 1;
522     if(frac < 0) frac = 0;
523     val += (target - val) * frac;
524     node->setFloatValue(prop, val);
525 }
526
527 void FGFDM::setOutputProperties(float dt)
528 {
529     // char buf[256];
530     int i;
531
532     float grossWgt = _airplane.getModel()->getBody()->getTotalMass() * KG2LBS;
533     fgSetFloat("/yasim/gross-weight-lbs", grossWgt);
534
535     ControlMap* cm = _airplane.getControlMap();
536     for(i=0; i<_controlProps.size(); i++) {
537         PropOut* p = (PropOut*)_controlProps.get(i);
538         float val = (p->left
539                      ? cm->getOutput(p->handle)
540                      : cm->getOutputR(p->handle));
541         float rmin = cm->rangeMin(p->type);
542         float rmax = cm->rangeMax(p->type);
543         float frac = (val - rmin) / (rmax - rmin);
544         val = frac*(p->max - p->min) + p->min;
545         p->prop->setFloatValue(val);
546     }
547
548     for(i=0; i<_airplane.getRotorgear()->getNumRotors(); i++) {
549         Rotor*r=(Rotor*)_airplane.getRotorgear()->getRotor(i);
550         int j = 0;
551         float f;
552         char b[256];
553         while((j = r->getValueforFGSet(j, b, &f)))
554             if(b[0]) fgSetFloat(b,f);
555         j=0;
556         while((j = _airplane.getRotorgear()->getValueforFGSet(j, b, &f)))
557             if(b[0]) fgSetFloat(b,f);
558         for(j=0; j < r->numRotorparts(); j+=r->numRotorparts()>>2) {
559             Rotorpart* s = (Rotorpart*)r->getRotorpart(j);
560             char *b;
561             int k;
562             for(k=0; k<2; k++) {
563                 b=s->getAlphaoutput(k);
564                 if(b[0]) fgSetFloat(b, s->getAlpha(k));
565             }
566         }
567     }
568
569     // Use the density of the first tank, or a dummy value if no tanks
570     float fuelDensity = 1.0;
571     if(_airplane.numTanks())
572         fuelDensity = _airplane.getFuelDensity(0);
573     for(i=0; i<_thrusters.size(); i++) {
574         EngRec* er = (EngRec*)_thrusters.get(i);
575         Thruster* t = er->eng;
576         SGPropertyNode * node = fgGetNode("engines/engine", i, true);
577
578         // Set: running, cranking, prop-thrust, max-hp, power-pct
579         node->setBoolValue("running", t->isRunning());
580         node->setBoolValue("cranking", t->isCranking());
581
582         float tmp[3];
583         t->getThrust(tmp);
584         float lbs = Math::mag3(tmp) * (KG2LBS/9.8);
585         node->setFloatValue("prop-thrust", lbs); // Deprecated name
586         node->setFloatValue("thrust-lbs", lbs);
587         node->setFloatValue("fuel-flow-gph",
588                             (t->getFuelFlow()/fuelDensity) * 3600 * CM2GALS);
589
590         if(t->getPropEngine()) {
591             PropEngine* p = t->getPropEngine();
592             node->setFloatValue("rpm", p->getOmega() * (1/RPM2RAD));
593             node->setFloatValue("torque-ftlb",
594                                 p->getEngine()->getTorque() * NM2FTLB);
595         
596             if(p->getEngine()->isPistonEngine()) {
597                 PistonEngine* pe = p->getEngine()->isPistonEngine();
598                 node->setFloatValue("mp-osi", pe->getMP() * (1/INHG2PA));
599                 node->setFloatValue("mp-inhg", pe->getMP() * (1/INHG2PA));
600                 node->setFloatValue("egt-degf",
601                                     pe->getEGT() * K2DEGF + K2DEGFOFFSET);
602                 node->setFloatValue("oil-temperature-degf",
603                                     pe->getOilTemp() * K2DEGF + K2DEGFOFFSET);
604                 node->setFloatValue("boost-gauge-inhg",
605                                     pe->getBoost() * (1/INHG2PA));
606             } else if(p->getEngine()->isTurbineEngine()) {
607                 TurbineEngine* te = p->getEngine()->isTurbineEngine();
608                 node->setFloatValue("n2", te->getN2());
609             }
610         }
611
612         if(t->getJet()) {
613             Jet* j = t->getJet();
614             node->setFloatValue("n1", j->getN1());
615             node->setFloatValue("n2", j->getN2());
616             node->setFloatValue("epr", j->getEPR());
617             node->setFloatValue("egt-degf",
618                                 j->getEGT() * K2DEGF + K2DEGFOFFSET);
619
620             // These are "unmodeled" values that are still needed for
621             // many cockpits.  Tie them all to the N1 speed, but
622             // normalize the numbers to the range [0:1] so the
623             // cockpit code can scale them to the right values.
624             float pnorm = j->getPerfNorm();
625             moveprop(node, "oilp-norm", pnorm, dt/3); // 3s seek time
626             moveprop(node, "oilt-norm", pnorm, dt/30); // 30s 
627             moveprop(node, "itt-norm", pnorm, dt/1); // 1s
628         }
629     }
630 }
631
632 Wing* FGFDM::parseWing(XMLAttributes* a, const char* type)
633 {
634     Wing* w = new Wing();
635
636     float defDihed = 0;
637     if(eq(type, "vstab"))
638         defDihed = 90;
639     else
640         w->setMirror(true);
641
642     float pos[3];
643     pos[0] = attrf(a, "x");
644     pos[1] = attrf(a, "y");
645     pos[2] = attrf(a, "z");
646     w->setBase(pos);
647
648     w->setLength(attrf(a, "length"));
649     w->setChord(attrf(a, "chord"));
650     w->setSweep(attrf(a, "sweep", 0) * DEG2RAD);
651     w->setTaper(attrf(a, "taper", 1));
652     w->setDihedral(attrf(a, "dihedral", defDihed) * DEG2RAD);
653     w->setCamber(attrf(a, "camber", 0));
654
655     // These come in with positive indicating positive AoA, but the
656     // internals expect a rotation about the left-pointing Y axis, so
657     // invert the sign.
658     w->setIncidence(attrf(a, "incidence", 0) * DEG2RAD * -1);
659     w->setTwist(attrf(a, "twist", 0) * DEG2RAD * -1);
660
661     // The 70% is a magic number that sorta kinda seems to match known
662     // throttle settings to approach speed.
663     w->setInducedDrag(0.7*attrf(a, "idrag", 1));
664
665     float effect = attrf(a, "effectiveness", 1);
666     w->setDragScale(w->getDragScale()*effect);
667
668     _currObj = w;
669     return w;
670 }
671
672 Rotor* FGFDM::parseRotor(XMLAttributes* a, const char* type)
673 {
674     Rotor* w = new Rotor();
675
676     // float defDihed = 0;
677
678     float pos[3];
679     pos[0] = attrf(a, "x");
680     pos[1] = attrf(a, "y");
681     pos[2] = attrf(a, "z");
682     w->setBase(pos);
683
684     float normal[3];
685     normal[0] = attrf(a, "nx");
686     normal[1] = attrf(a, "ny");
687     normal[2] = attrf(a, "nz");
688     w->setNormal(normal);
689
690     float forward[3];
691     forward[0] = attrf(a, "fx");
692     forward[1] = attrf(a, "fy");
693     forward[2] = attrf(a, "fz");
694     w->setForward(forward);
695
696     w->setMaxCyclicail(attrf(a, "maxcyclicail", 7.6));
697     w->setMaxCyclicele(attrf(a, "maxcyclicele", 4.94));
698     w->setMinCyclicail(attrf(a, "mincyclicail", -7.6));
699     w->setMinCyclicele(attrf(a, "mincyclicele", -4.94));
700     w->setMaxCollective(attrf(a, "maxcollective", 15.8));
701     w->setMinCollective(attrf(a, "mincollective", -0.2));
702     w->setDiameter(attrf(a, "diameter", 10.2));
703     w->setWeightPerBlade(attrf(a, "weightperblade", 44));
704     w->setNumberOfBlades(attrf(a, "numblades", 4));
705     w->setRelBladeCenter(attrf(a, "relbladecenter", 0.7));
706     w->setDynamic(attrf(a, "dynamic", 0.7));
707     w->setDelta3(attrf(a, "delta3", 0));
708     w->setDelta(attrf(a, "delta", 0));
709     w->setTranslift(attrf(a, "translift", 0.05));
710     w->setC2(attrf(a, "dragfactor", 1));
711     w->setStepspersecond(attrf(a, "stepspersecond", 120));
712     w->setPhiNull((attrf(a, "phi0", 0))*YASIM_PI/180);
713     w->setRPM(attrf(a, "rpm", 424));
714     w->setRelLenHinge(attrf(a, "rellenflaphinge", 0.07));
715     w->setAlpha0((attrf(a, "flap0", -5))*YASIM_PI/180);
716     w->setAlphamin((attrf(a, "flapmin", -15))/180*YASIM_PI);
717     w->setAlphamax((attrf(a, "flapmax",  15))*YASIM_PI/180);
718     w->setAlpha0factor(attrf(a, "flap0factor", 1));
719     w->setTeeterdamp(attrf(a,"teeterdamp",.0001));
720     w->setMaxteeterdamp(attrf(a,"maxteeterdamp",1000));
721     w->setRelLenTeeterHinge(attrf(a,"rellenteeterhinge",0.01));
722     w->setBalance(attrf(a,"balance",1.0));
723     w->setMinTiltYaw(attrf(a,"mintiltyaw",0.0));
724     w->setMinTiltPitch(attrf(a,"mintiltpitch",0.0));
725     w->setMinTiltRoll(attrf(a,"mintiltroll",0.0));
726     w->setMaxTiltYaw(attrf(a,"maxtiltyaw",0.0));
727     w->setMaxTiltPitch(attrf(a,"maxtiltpitch",0.0));
728     w->setMaxTiltRoll(attrf(a,"maxtiltroll",0.0));
729     w->setTiltCenterX(attrf(a,"tiltcenterx",0.0));
730     w->setTiltCenterY(attrf(a,"tiltcentery",0.0));
731     w->setTiltCenterZ(attrf(a,"tiltcenterz",0.0));
732     w->setDownwashFactor(attrf(a, "downwashfactor", 1));
733     if(attrb(a,"ccw"))
734        w->setCcw(1); 
735     if(attrb(a,"sharedflaphinge"))
736        w->setSharedFlapHinge(true); 
737
738     if(a->hasAttribute("name"))
739        w->setName(a->getValue("name") );
740     if(a->hasAttribute("alphaout0"))
741        w->setAlphaoutput(0,a->getValue("alphaout0") );
742     if(a->hasAttribute("alphaout1"))  w->setAlphaoutput(1,a->getValue("alphaout1") );
743     if(a->hasAttribute("alphaout2"))  w->setAlphaoutput(2,a->getValue("alphaout2") );
744     if(a->hasAttribute("alphaout3"))  w->setAlphaoutput(3,a->getValue("alphaout3") );
745     if(a->hasAttribute("coneout"))  w->setAlphaoutput(4,a->getValue("coneout") );
746     if(a->hasAttribute("yawout"))   w->setAlphaoutput(5,a->getValue("yawout") );
747     if(a->hasAttribute("rollout"))  w->setAlphaoutput(6,a->getValue("rollout") );
748
749     w->setPitchA(attrf(a, "pitch-a", 10));
750     w->setPitchB(attrf(a, "pitch-b", 10));
751     w->setForceAtPitchA(attrf(a, "forceatpitch-a", 3000));
752     w->setPowerAtPitch0(attrf(a, "poweratpitch-0", 300));
753     w->setPowerAtPitchB(attrf(a, "poweratpitch-b", 3000));
754     if(attrb(a,"notorque"))
755        w->setNotorque(1); 
756
757 #define p(x) if (a->hasAttribute(#x)) w->setParameter((char *)#x,attrf(a,#x) );
758 #define p2(x,y) if (a->hasAttribute(y)) w->setParameter((char *)#x,attrf(a,y) );
759     p2(translift_ve,"translift-ve")
760     p2(translift_maxfactor,"translift-maxfactor")
761     p2(ground_effect_constant,"ground-effect-constant")
762     p2(vortex_state_lift_factor,"vortex-state-lift-factor")
763     p2(vortex_state_c1,"vortex-state-c1")
764     p2(vortex_state_c2,"vortex-state-c2")
765     p2(vortex_state_c3,"vortex-state_c3")
766     p2(vortex_state_e1,"vortex-state-e1")
767     p2(vortex_state_e2,"vortex-state-e2")
768     p(twist)
769     p2(number_of_segments,"number-of-segments")
770     p2(number_of_parts,"number-of-parts")
771     p2(rel_len_where_incidence_is_measured,"rel-len-where-incidence-is-measured")
772     p(chord)
773     p(taper)
774     p2(airfoil_incidence_no_lift,"airfoil-incidence-no-lift")
775     p2(rel_len_blade_start,"rel-len-blade-start")
776     p2(incidence_stall_zero_speed,"incidence-stall-zero-speed")
777     p2(incidence_stall_half_sonic_speed,"incidence-stall-half-sonic-speed")
778     p2(lift_factor_stall,"lift-factor-stall")
779     p2(stall_change_over,"stall-change-over")
780     p2(drag_factor_stall,"drag-factor-stall")
781     p2(airfoil_lift_coefficient,"airfoil-lift-coefficient")
782     p2(airfoil_drag_coefficient0,"airfoil-drag-coefficient0")
783     p2(airfoil_drag_coefficient1,"airfoil-drag-coefficient1")
784     p2(cyclic_factor,"cyclic-factor")
785     p2(rotor_correction_factor,"rotor-correction-factor")
786 #undef p
787 #undef p2
788     _currObj = w;
789     return w;
790 }
791
792 void FGFDM::parsePistonEngine(XMLAttributes* a)
793 {
794     float engP = attrf(a, "eng-power") * HP2W;
795     float engS = attrf(a, "eng-rpm") * RPM2RAD;
796
797     PistonEngine* eng = new PistonEngine(engP, engS);
798
799     if(a->hasAttribute("displacement"))
800         eng->setDisplacement(attrf(a, "displacement") * CIN2CM);
801
802     if(a->hasAttribute("compression"))
803         eng->setCompression(attrf(a, "compression"));        
804
805     if(a->hasAttribute("min-throttle"))
806         eng->setMinThrottle(attrf(a, "min-throttle"));
807
808     if(a->hasAttribute("turbo-mul")) {
809         float mul = attrf(a, "turbo-mul");
810         float mp = attrf(a, "wastegate-mp", 1e6) * INHG2PA;
811         eng->setTurboParams(mul, mp);
812         eng->setTurboLag(attrf(a, "turbo-lag", 2));
813     }
814
815     if(a->hasAttribute("supercharger"))
816         eng->setSupercharger(attrb(a, "supercharger"));
817
818     ((PropEngine*)_currObj)->setEngine(eng);
819 }
820
821 void FGFDM::parseTurbineEngine(XMLAttributes* a)
822 {
823     float power = attrf(a, "eng-power") * HP2W;
824     float omega = attrf(a, "eng-rpm") * RPM2RAD;
825     float alt = attrf(a, "alt") * FT2M;
826     float flatRating = attrf(a, "flat-rating") * HP2W;
827     TurbineEngine* eng = new TurbineEngine(power, omega, alt, flatRating);
828
829     if(a->hasAttribute("n2-low-idle"))
830         eng->setN2Range(attrf(a, "n2-low-idle"), attrf(a, "n2-high-idle"),
831                         attrf(a, "n2-max"));
832
833     // Nasty units conversion: lbs/hr per hp -> kg/s per watt
834     if(a->hasAttribute("bsfc"))
835         eng->setFuelConsumption(attrf(a, "bsfc") * (LBS2KG/(3600*HP2W)));
836
837     ((PropEngine*)_currObj)->setEngine(eng);
838 }
839
840 void FGFDM::parsePropeller(XMLAttributes* a)
841 {
842     // Legacy Handling for the old engines syntax:
843     PistonEngine* eng = 0;
844     if(a->hasAttribute("eng-power")) {
845         SG_LOG(SG_FLIGHT,SG_ALERT, "WARNING: "
846                << "Legacy engine definition in YASim configuration file.  "
847                << "Please fix.");
848         float engP = attrf(a, "eng-power") * HP2W;
849         float engS = attrf(a, "eng-rpm") * RPM2RAD;
850         eng = new PistonEngine(engP, engS);
851         if(a->hasAttribute("displacement"))
852             eng->setDisplacement(attrf(a, "displacement") * CIN2CM);
853         if(a->hasAttribute("compression"))
854             eng->setCompression(attrf(a, "compression"));        
855         if(a->hasAttribute("turbo-mul")) {
856             float mul = attrf(a, "turbo-mul");
857             float mp = attrf(a, "wastegate-mp", 1e6) * INHG2PA;
858             eng->setTurboParams(mul, mp);
859         }
860     }
861
862     // Now parse the actual propeller definition:
863     float cg[3];
864     cg[0] = attrf(a, "x");
865     cg[1] = attrf(a, "y");
866     cg[2] = attrf(a, "z");
867     float mass = attrf(a, "mass") * LBS2KG;
868     float moment = attrf(a, "moment");
869     float radius = attrf(a, "radius");
870     float speed = attrf(a, "cruise-speed") * KTS2MPS;
871     float omega = attrf(a, "cruise-rpm") * RPM2RAD;
872     float power = attrf(a, "cruise-power") * HP2W;
873     float rho = Atmosphere::getStdDensity(attrf(a, "cruise-alt") * FT2M);
874
875     Propeller* prop = new Propeller(radius, speed, omega, rho, power);
876     PropEngine* thruster = new PropEngine(prop, eng, moment);
877     _airplane.addThruster(thruster, mass, cg);
878
879     // Set the stops (fine = minimum pitch, coarse = maximum pitch)
880     float fine_stop = attrf(a, "fine-stop", 0.25f);
881     float coarse_stop = attrf(a, "coarse-stop", 4.0f);
882     prop->setStops(fine_stop, coarse_stop);
883
884     if(a->hasAttribute("takeoff-power")) {
885         float power0 = attrf(a, "takeoff-power") * HP2W;
886         float omega0 = attrf(a, "takeoff-rpm") * RPM2RAD;
887         prop->setTakeoff(omega0, power0);
888     }
889
890     if(a->hasAttribute("max-rpm")) {
891         float max = attrf(a, "max-rpm") * RPM2RAD;
892         float min = attrf(a, "min-rpm") * RPM2RAD;
893         thruster->setVariableProp(min, max);
894     }
895
896     if(attrb(a, "contra"))
897         thruster->setContraPair(true);
898
899     if(a->hasAttribute("manual-pitch")) {
900         prop->setManualPitch();
901     }
902
903     thruster->setGearRatio(attrf(a, "gear-ratio", 1));
904
905     char buf[64];
906     sprintf(buf, "/engines/engine[%d]", _nextEngine++);
907     EngRec* er = new EngRec();
908     er->eng = thruster;
909     er->prefix = dup(buf);
910     _thrusters.add(er);
911
912     _currObj = thruster;
913 }
914
915 // Turns a string axis name into an integer for use by the
916 // ControlMap.  Creates a new axis if this one hasn't been defined
917 // yet.
918 int FGFDM::parseAxis(const char* name)
919 {
920     int i;
921     for(i=0; i<_axes.size(); i++) {
922         AxisRec* a = (AxisRec*)_axes.get(i);
923         if(eq(a->name, name))
924             return a->handle;
925     }
926
927     // Not there, make a new one.
928     AxisRec* a = new AxisRec();
929     a->name = dup(name);
930     fgGetNode( a->name, true ); // make sure the property name exists
931     a->handle = _airplane.getControlMap()->newInput();
932     _axes.add(a);
933     return a->handle;
934 }
935
936 int FGFDM::parseOutput(const char* name)
937 {
938     if(eq(name, "THROTTLE"))  return ControlMap::THROTTLE;
939     if(eq(name, "MIXTURE"))   return ControlMap::MIXTURE;
940     if(eq(name, "CONDLEVER")) return ControlMap::CONDLEVER;
941     if(eq(name, "STARTER"))   return ControlMap::STARTER;
942     if(eq(name, "MAGNETOS"))  return ControlMap::MAGNETOS;
943     if(eq(name, "ADVANCE"))   return ControlMap::ADVANCE;
944     if(eq(name, "REHEAT"))    return ControlMap::REHEAT;
945     if(eq(name, "BOOST"))     return ControlMap::BOOST;
946     if(eq(name, "VECTOR"))    return ControlMap::VECTOR;
947     if(eq(name, "PROP"))      return ControlMap::PROP;
948     if(eq(name, "BRAKE"))     return ControlMap::BRAKE;
949     if(eq(name, "STEER"))     return ControlMap::STEER;
950     if(eq(name, "EXTEND"))    return ControlMap::EXTEND;
951     if(eq(name, "HEXTEND"))   return ControlMap::HEXTEND;
952     if(eq(name, "LEXTEND"))   return ControlMap::LEXTEND;
953         if(eq(name, "LACCEL"))    return ControlMap::LACCEL;
954     if(eq(name, "INCIDENCE")) return ControlMap::INCIDENCE;
955     if(eq(name, "FLAP0"))     return ControlMap::FLAP0;
956     if(eq(name, "FLAP0EFFECTIVENESS"))   return ControlMap::FLAP0EFFECTIVENESS;
957     if(eq(name, "FLAP1"))     return ControlMap::FLAP1;
958     if(eq(name, "FLAP1EFFECTIVENESS"))   return ControlMap::FLAP1EFFECTIVENESS;
959     if(eq(name, "SLAT"))      return ControlMap::SLAT;
960     if(eq(name, "SPOILER"))   return ControlMap::SPOILER;
961     if(eq(name, "CASTERING")) return ControlMap::CASTERING;
962     if(eq(name, "PROPPITCH")) return ControlMap::PROPPITCH;
963     if(eq(name, "PROPFEATHER")) return ControlMap::PROPFEATHER;
964     if(eq(name, "COLLECTIVE")) return ControlMap::COLLECTIVE;
965     if(eq(name, "CYCLICAIL")) return ControlMap::CYCLICAIL;
966     if(eq(name, "CYCLICELE")) return ControlMap::CYCLICELE;
967     if(eq(name, "TILTROLL")) return ControlMap::TILTROLL;
968     if(eq(name, "TILTPITCH")) return ControlMap::TILTPITCH;
969     if(eq(name, "TILTYAW")) return ControlMap::TILTYAW;
970     if(eq(name, "ROTORGEARENGINEON")) return ControlMap::ROTORENGINEON;
971     if(eq(name, "ROTORBRAKE")) return ControlMap::ROTORBRAKE;
972     if(eq(name, "ROTORENGINEMAXRELTORQUE")) 
973         return ControlMap::ROTORENGINEMAXRELTORQUE;
974     if(eq(name, "ROTORRELTARGET")) return ControlMap::ROTORRELTARGET;
975     if(eq(name, "ROTORBALANCE")) return ControlMap::ROTORBALANCE;
976     if(eq(name, "REVERSE_THRUST")) return ControlMap::REVERSE_THRUST;
977     if(eq(name, "WASTEGATE")) return ControlMap::WASTEGATE;
978     if(eq(name, "WINCHRELSPEED")) return ControlMap::WINCHRELSPEED;
979     if(eq(name, "HITCHOPEN")) return ControlMap::HITCHOPEN;
980     if(eq(name, "PLACEWINCH")) return ControlMap::PLACEWINCH;
981     if(eq(name, "FINDAITOW")) return ControlMap::FINDAITOW;
982
983     SG_LOG(SG_FLIGHT,SG_ALERT,"Unrecognized control type '"
984            << name << "' in YASim aircraft description.");
985     exit(1);
986
987 }
988
989 void FGFDM::parseWeight(XMLAttributes* a)
990 {
991     WeightRec* wr = new WeightRec();
992
993     float v[3];
994     v[0] = attrf(a, "x");
995     v[1] = attrf(a, "y");
996     v[2] = attrf(a, "z");
997
998     wr->prop = dup(a->getValue("mass-prop"));
999     wr->size = attrf(a, "size", 0);
1000     wr->handle = _airplane.addWeight(v, wr->size);
1001
1002     _weights.add(wr);
1003 }
1004
1005 bool FGFDM::eq(const char* a, const char* b)
1006 {
1007     // Figure it out for yourself. :)
1008     while(*a && *b && *a == *b) { a++; b++; }
1009     return !(*a || *b);
1010 }
1011
1012 char* FGFDM::dup(const char* s)
1013 {
1014     int len=0;
1015     while(s[len++]);
1016     char* s2 = new char[len+1];
1017     char* p = s2;
1018     while((*p++ = *s++));
1019     s2[len] = 0;
1020     return s2;
1021 }
1022
1023 int FGFDM::attri(XMLAttributes* atts, const char* attr)
1024 {
1025     if(!atts->hasAttribute(attr)) {
1026         SG_LOG(SG_FLIGHT,SG_ALERT,"Missing '" << attr <<
1027                "' in YASim aircraft description");
1028         exit(1);
1029     }
1030     return attri(atts, attr, 0);
1031 }
1032
1033 int FGFDM::attri(XMLAttributes* atts, const char* attr, int def)
1034 {
1035     const char* val = atts->getValue(attr);
1036     if(val == 0) return def;
1037     else         return atol(val);
1038 }
1039
1040 float FGFDM::attrf(XMLAttributes* atts, const char* attr)
1041 {
1042     if(!atts->hasAttribute(attr)) {
1043         SG_LOG(SG_FLIGHT,SG_ALERT,"Missing '" << attr <<
1044                "' in YASim aircraft description");
1045         exit(1);
1046     }
1047     return attrf(atts, attr, 0);
1048 }
1049
1050 float FGFDM::attrf(XMLAttributes* atts, const char* attr, float def)
1051 {
1052     const char* val = atts->getValue(attr);
1053     if(val == 0) return def;
1054     else         return (float)atof(val);    
1055 }
1056
1057 double FGFDM::attrd(XMLAttributes* atts, const char* attr)
1058 {
1059     if(!atts->hasAttribute(attr)) {
1060         SG_LOG(SG_FLIGHT,SG_ALERT,"Missing '" << attr <<
1061                "' in YASim aircraft description");
1062         exit(1);
1063     }
1064     return attrd(atts, attr, 0);
1065 }
1066
1067 double FGFDM::attrd(XMLAttributes* atts, const char* attr, double def)
1068 {
1069     const char* val = atts->getValue(attr);
1070     if(val == 0) return def;
1071     else         return atof(val);
1072 }
1073
1074 // ACK: the dreaded ambiguous string boolean.  Remind me to shoot Maik
1075 // when I have a chance. :).  Unless you have a parser that can check
1076 // symbol constants (we don't), this kind of coding is just a Bad
1077 // Idea.  This implementation, for example, silently returns a boolean
1078 // falsehood for values of "1", "yes", "True", and "TRUE".  Which is
1079 // especially annoying preexisting boolean attributes in the same
1080 // parser want to see "1" and will choke on a "true"...
1081 //
1082 // Unfortunately, this usage creeped into existing configuration files
1083 // while I wasn't active, and it's going to be hard to remove.  Issue
1084 // a warning to nag people into changing their ways for now...
1085 bool FGFDM::attrb(XMLAttributes* atts, const char* attr)
1086 {
1087     const char* val = atts->getValue(attr);
1088     if(val == 0) return false;
1089
1090     if(eq(val,"true")) {
1091         SG_LOG(SG_FLIGHT, SG_ALERT, "Warning: " <<
1092                "deprecated 'true' boolean in YASim configuration file.  " <<
1093                "Use numeric booleans (attribute=\"1\") instead");
1094         return true;
1095     }
1096     return attri(atts, attr, 0) ? true : false;
1097 }
1098
1099 }; // namespace yasim