]> git.mxchange.org Git - flightgear.git/blob - src/FDM/YASim/FGFDM.cpp
GUI ‘restore defaults’ support.
[flightgear.git] / src / FDM / YASim / FGFDM.cpp
1 #ifdef HAVE_CONFIG_H
2 #  include "config.h"
3 #endif
4
5 #include <stdio.h>
6 #include <stdlib.h>
7
8 #include <Main/fg_props.hxx>
9
10 #include "Math.hpp"
11 #include "Jet.hpp"
12 #include "SimpleJet.hpp"
13 #include "Gear.hpp"
14 #include "Hook.hpp"
15 #include "Launchbar.hpp"
16 #include "Atmosphere.hpp"
17 #include "PropEngine.hpp"
18 #include "Propeller.hpp"
19 #include "PistonEngine.hpp"
20 #include "TurbineEngine.hpp"
21 #include "Rotor.hpp"
22 #include "Rotorpart.hpp"
23 #include "Hitch.hpp"
24
25 #include "FGFDM.hpp"
26
27 namespace yasim {
28
29 // Some conversion factors
30 static const float KTS2MPS = 0.514444444444;
31 static const float FT2M = 0.3048;
32 static const float DEG2RAD = 0.0174532925199;
33 static const float RPM2RAD = 0.10471975512;
34 static const float LBS2N = 4.44822;
35 static const float LBS2KG = 0.45359237;
36 static const float KG2LBS = 2.2046225;
37 static const float CM2GALS = 264.172037284;
38 static const float HP2W = 745.700;
39 static const float INHG2PA = 3386.389;
40 static const float K2DEGF = 1.8;
41 static const float K2DEGFOFFSET = -459.4;
42 static const float CIN2CM = 1.6387064e-5;
43 static const float YASIM_PI = 3.14159265358979323846;
44
45 static const float NM2FTLB = (1/(LBS2N*FT2M));
46
47 // Stubs, so that this can be compiled without the FlightGear
48 // binary.  What's the best way to handle this?
49
50 //     float fgGetFloat(char* name, float def) { return 0; }
51 //     void fgSetFloat(char* name, float val) {}
52
53 FGFDM::FGFDM()
54 {
55     _vehicle_radius = 0.0f;
56
57     _nextEngine = 0;
58
59     // Map /controls/flight/elevator to the approach elevator control.  This
60     // should probably be settable, but there are very few aircraft
61     // who trim their approaches using things other than elevator.
62     _airplane.setElevatorControl(parseAxis("/controls/flight/elevator-trim"));
63
64     // FIXME: read seed from somewhere?
65     int seed = 0;
66     _turb = new Turbulence(10, seed);
67 }
68
69 FGFDM::~FGFDM()
70 {
71     for(int i=0; i<_axes.size(); i++) {
72         AxisRec* a = (AxisRec*)_axes.get(i);
73         delete[] a->name;
74         delete a;
75     }
76
77     for(int i=0; i<_thrusters.size(); i++) {
78         EngRec* er = (EngRec*)_thrusters.get(i);
79         delete[] er->prefix;
80         delete er->eng;
81         delete er;
82     }
83
84     for(int i=0; i<_weights.size(); i++) {
85         WeightRec* wr = (WeightRec*)_weights.get(i);
86         delete[] wr->prop;
87         delete wr;
88     }
89
90     for(int i=0; i<_controlProps.size(); i++)
91         delete (PropOut*)_controlProps.get(i);
92
93     delete _turb;
94 }
95
96 void FGFDM::iterate(float dt)
97 {
98     getExternalInput(dt);
99     _airplane.iterate(dt);
100
101     // Do fuel stuff
102     for(int i=0; i<_airplane.numThrusters(); i++) {
103         Thruster* t = _airplane.getThruster(i);
104
105         bool out_of_fuel = _fuel_props[i]._out_of_fuel->getBoolValue();
106         t->setFuelState(!out_of_fuel);
107
108         double consumed = _fuel_props[i]._fuel_consumed_lbs->getDoubleValue();
109         _fuel_props[i]._fuel_consumed_lbs->setDoubleValue(
110                 consumed + dt * KG2LBS * t->getFuelFlow());
111     }
112     for(int i=0; i<_airplane.numTanks(); i++) {
113         _airplane.setFuel(i, LBS2KG * _tank_level_lbs[i]->getFloatValue());
114     }
115     _airplane.calcFuelWeights();
116     
117     setOutputProperties(dt);
118 }
119
120 Airplane* FGFDM::getAirplane()
121 {
122     return &_airplane;
123 }
124
125 void FGFDM::init()
126 {
127     _turb_magnitude_norm = fgGetNode("/environment/turbulence/magnitude-norm", true);
128     _turb_rate_hz        = fgGetNode("/environment/turbulence/rate-hz", true);
129     _gross_weight_lbs    = fgGetNode("/yasim/gross-weight-lbs", true);
130
131     // Allows the user to start with something other than full fuel
132     _airplane.setFuelFraction(fgGetFloat("/sim/fuel-fraction", 1));
133
134     // stash engine/thruster properties
135     _thrust_props.clear();
136     for (int i=0; i<_thrusters.size(); i++) {
137         SGPropertyNode_ptr node = fgGetNode("engines/engine", i, true);
138         Thruster* t = ((EngRec*)_thrusters.get(i))->eng;
139
140         ThrusterProps tp;
141         tp._running =       node->getChild("running", 0, true);
142         tp._cranking =      node->getChild("cranking", 0, true);
143         tp._prop_thrust =   node->getChild("prop-thrust", 0, true); // Deprecated name
144         tp._thrust_lbs =    node->getChild("thrust-lbs", 0, true);
145         tp._fuel_flow_gph = node->getChild("fuel-flow-gph", 0, true);
146
147         if(t->getPropEngine())
148         {
149             tp._rpm = node->getChild("rpm", 0, true);
150             tp._torque_ftlb = node->getChild("torque-ftlb", 0, true);
151
152             PropEngine* p = t->getPropEngine();
153             if(p->getEngine()->isPistonEngine())
154             {
155                 tp._mp_osi =   node->getChild("mp-osi",   0, true);
156                 tp._mp_inhg =  node->getChild("mp-inhg",  0, true);
157                 tp._egt_degf = node->getChild("egt-degf", 0, true);
158
159                 tp._oil_temperature_degf = node->getChild("oil-temperature-degf", 0, true);
160                 tp._boost_gauge_inhg =     node->getChild("boost-gauge-inhg", 0, true);
161             } else if(p->getEngine()->isTurbineEngine()) {
162                 tp._n2 = node->getChild("n2", 0, true);
163             }
164         }
165
166         if(t->getJet())
167         {
168             tp._n1 =       node->getChild("n1",       0, true);
169             tp._n2 =       node->getChild("n2",       0, true);
170             tp._epr =      node->getChild("epr",      0, true);
171             tp._egt_degf = node->getChild("egt-degf", 0, true);
172         }
173         _thrust_props.push_back(tp);
174     }
175
176     // stash properties for fuel state
177     _fuel_props.clear();
178     for(int i=0; i<_airplane.numThrusters(); i++) {
179         SGPropertyNode_ptr e = fgGetNode("engines/engine", i, true);
180         FuelProps f;
181         f._out_of_fuel       = e->getChild("out-of-fuel", 0, true);
182         f._fuel_consumed_lbs = e->getChild("fuel-consumed-lbs", 0, true);
183         _fuel_props.push_back(f);
184     }
185
186     // initialize tanks and stash properties for tank level
187     _tank_level_lbs.clear();
188     for(int i=0; i<_airplane.numTanks(); i++) {
189         char buf[256];
190         sprintf(buf, "/consumables/fuel/tank[%d]/level-lbs", i);
191         fgSetDouble(buf, _airplane.getFuel(i) * KG2LBS);
192         _tank_level_lbs.push_back(fgGetNode(buf, true));
193
194         double density = _airplane.getFuelDensity(i);
195         sprintf(buf, "/consumables/fuel/tank[%d]/density-ppg", i);
196         fgSetDouble(buf, density * (KG2LBS/CM2GALS));
197
198 // set in TankProperties class
199 //        sprintf(buf, "/consumables/fuel/tank[%d]/level-gal_us", i);
200 //        fgSetDouble(buf, _airplane.getFuel(i) * CM2GALS / density);
201
202         sprintf(buf, "/consumables/fuel/tank[%d]/capacity-gal_us", i);
203         fgSetDouble(buf, CM2GALS * _airplane.getTankCapacity(i)/density);
204     }
205
206     // This has a nasty habit of being false at startup.  That's not
207     // good.
208     fgSetBool("/controls/gear/gear-down", true);
209
210     _airplane.getModel()->setTurbulence(_turb);
211 }
212
213 // Not the worlds safest parser.  But it's short & sweet.
214 void FGFDM::startElement(const char* name, const XMLAttributes &atts)
215 {
216     XMLAttributes* a = (XMLAttributes*)&atts;
217     float v[3];
218     char buf[64];
219
220     if(eq(name, "airplane")) {
221         _airplane.setWeight(attrf(a, "mass") * LBS2KG);
222         if(a->hasAttribute("version")) {
223           _airplane.setVersion( a->getValue("version") );
224         }
225         if( !_airplane.isVersionOrNewer( Version::YASIM_VERSION_CURRENT ) ) {
226           SG_LOG(SG_FLIGHT,SG_ALERT, "This aircraft does not use the latest yasim configuration version.");
227         }
228     } else if(eq(name, "approach")) {
229         float spd = attrf(a, "speed") * KTS2MPS;
230         float alt = attrf(a, "alt", 0) * FT2M;
231         float aoa = attrf(a, "aoa", 0) * DEG2RAD;
232         float gla = attrf(a, "glide-angle", 0) * DEG2RAD;
233         _airplane.setApproach(spd, alt, aoa, attrf(a, "fuel", 0.2),gla);
234         _cruiseCurr = false;
235     } else if(eq(name, "cruise")) {
236         float spd = attrf(a, "speed") * KTS2MPS;
237         float alt = attrf(a, "alt") * FT2M;
238         float gla = attrf(a, "glide-angle", 0) * DEG2RAD;
239         _airplane.setCruise(spd, alt, attrf(a, "fuel", 0.5),gla);
240         _cruiseCurr = true;
241     } else if(eq(name, "solve-weight")) {
242         int idx = attri(a, "idx");
243         float wgt = attrf(a, "weight") * LBS2KG;
244         _airplane.addSolutionWeight(!_cruiseCurr, idx, wgt);
245     } else if(eq(name, "cockpit")) {
246         v[0] = attrf(a, "x");
247         v[1] = attrf(a, "y");
248         v[2] = attrf(a, "z");
249         _airplane.setPilotPos(v);
250     } else if(eq(name, "rotor")) {
251         _airplane.getModel()->getRotorgear()->addRotor(parseRotor(a, name));
252     } else if(eq(name, "rotorgear")) {
253         Rotorgear* r = _airplane.getModel()->getRotorgear();
254         _currObj = r;
255         #define p(x) if (a->hasAttribute(#x)) r->setParameter((char *)#x,attrf(a,#x) );
256         #define p2(x,y) if (a->hasAttribute(y)) r->setParameter((char *)#x,attrf(a,y) );
257         p2(max_power_engine,"max-power-engine")
258         p2(engine_prop_factor,"engine-prop-factor")
259         p(yasimdragfactor)
260         p(yasimliftfactor)
261         p2(max_power_rotor_brake,"max-power-rotor-brake")
262         p2(rotorgear_friction,"rotorgear-friction")
263         p2(engine_accel_limit,"engine-accel-limit")
264         #undef p
265         #undef p2
266         r->setInUse();
267     } else if(eq(name, "wing")) {
268         _airplane.setWing(parseWing(a, name, &_airplane));
269     } else if(eq(name, "hstab")) {
270         _airplane.setTail(parseWing(a, name, &_airplane));
271     } else if(eq(name, "vstab") || eq(name, "mstab")) {
272         _airplane.addVStab(parseWing(a, name, &_airplane));
273     } else if(eq(name, "piston-engine")) {
274         parsePistonEngine(a);
275     } else if(eq(name, "turbine-engine")) {
276         parseTurbineEngine(a);
277     } else if(eq(name, "propeller")) {
278         parsePropeller(a);
279     } else if(eq(name, "thruster")) {
280         SimpleJet* j = new SimpleJet();
281         _currObj = j;
282         v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z");
283         j->setPosition(v);
284         _airplane.addThruster(j, 0, v);
285         v[0] = attrf(a, "vx"); v[1] = attrf(a, "vy"); v[2] = attrf(a, "vz");
286         j->setDirection(v);
287         j->setThrust(attrf(a, "thrust") * LBS2N);
288     } else if(eq(name, "jet")) {
289         Jet* j = new Jet();
290         _currObj = j;
291         v[0] = attrf(a, "x");
292         v[1] = attrf(a, "y");
293         v[2] = attrf(a, "z");
294         float mass = attrf(a, "mass") * LBS2KG;
295         j->setMaxThrust(attrf(a, "thrust") * LBS2N,
296                         attrf(a, "afterburner", 0) * LBS2N);
297         j->setVectorAngle(attrf(a, "rotate", 0) * DEG2RAD);
298         j->setReverseThrust(attrf(a, "reverse", 0.2));
299
300         float n1min = attrf(a, "n1-idle", 55);
301         float n1max = attrf(a, "n1-max", 102);
302         float n2min = attrf(a, "n2-idle", 73);
303         float n2max = attrf(a, "n2-max", 103);
304         j->setRPMs(n1min, n1max, n2min, n2max);
305
306         j->setTSFC(attrf(a, "tsfc", 0.8));
307         if(a->hasAttribute("egt"))  j->setEGT(attrf(a, "egt"));
308         if(a->hasAttribute("epr"))  j->setEPR(attrf(a, "epr"));
309         if(a->hasAttribute("exhaust-speed"))
310             j->setVMax(attrf(a, "exhaust-speed") * KTS2MPS);
311         if(a->hasAttribute("spool-time"))
312             j->setSpooling(attrf(a, "spool-time"));
313         
314         j->setPosition(v);
315         _airplane.addThruster(j, mass, v);
316         sprintf(buf, "/engines/engine[%d]", _nextEngine++);
317         EngRec* er = new EngRec();
318         er->eng = j;
319         er->prefix = dup(buf);
320         _thrusters.add(er);
321     } else if(eq(name, "hitch")) {
322         Hitch* h = new Hitch(a->getValue("name"));
323         _currObj = h;
324         v[0] = attrf(a, "x");
325         v[1] = attrf(a, "y");
326         v[2] = attrf(a, "z");
327         h->setPosition(v);
328         if(a->hasAttribute("force-is-calculated-by-other")) h->setForceIsCalculatedByOther(attrb(a,"force-is-calculated-by-other"));
329         _airplane.addHitch(h);
330     } else if(eq(name, "tow")) {
331         Hitch* h = (Hitch*)_currObj;
332         if(a->hasAttribute("length"))
333             h->setTowLength(attrf(a, "length"));
334         if(a->hasAttribute("elastic-constant"))
335             h->setTowElasticConstant(attrf(a, "elastic-constant"));
336         if(a->hasAttribute("break-force"))
337             h->setTowBreakForce(attrf(a, "break-force"));
338         if(a->hasAttribute("weight-per-meter"))
339             h->setTowWeightPerM(attrf(a, "weight-per-meter"));
340         if(a->hasAttribute("mp-auto-connect-period"))
341             h->setMpAutoConnectPeriod(attrf(a, "mp-auto-connect-period"));
342     } else if(eq(name, "winch")) {
343         Hitch* h = (Hitch*)_currObj;
344         double pos[3];
345         pos[0] = attrd(a, "x",0);
346         pos[1] = attrd(a, "y",0);
347         pos[2] = attrd(a, "z",0);
348         h->setWinchPosition(pos);
349         if(a->hasAttribute("max-speed"))
350             h->setWinchMaxSpeed(attrf(a, "max-speed"));
351         if(a->hasAttribute("power"))
352             h->setWinchPower(attrf(a, "power") * 1000);
353         if(a->hasAttribute("max-force"))
354             h->setWinchMaxForce(attrf(a, "max-force"));
355         if(a->hasAttribute("initial-tow-length"))
356             h->setWinchInitialTowLength(attrf(a, "initial-tow-length"));
357         if(a->hasAttribute("max-tow-length"))
358             h->setWinchMaxTowLength(attrf(a, "max-tow-length"));
359         if(a->hasAttribute("min-tow-length"))
360             h->setWinchMinTowLength(attrf(a, "min-tow-length"));
361     } else if(eq(name, "gear")) {
362         Gear* g = new Gear();
363         _currObj = g;
364         v[0] = attrf(a, "x");
365         v[1] = attrf(a, "y");
366         v[2] = attrf(a, "z");
367         g->setPosition(v);
368         float nrm = Math::mag3(v);
369         if (_vehicle_radius < nrm)
370             _vehicle_radius = nrm;
371         if(a->hasAttribute("upx")) {
372             v[0] = attrf(a, "upx");
373             v[1] = attrf(a, "upy");
374             v[2] = attrf(a, "upz");
375             Math::unit3(v, v);
376         } else {
377             v[0] = 0;
378             v[1] = 0;
379             v[2] = 1;
380         }
381         for(int i=0; i<3; i++)
382             v[i] *= attrf(a, "compression", 1);
383         g->setCompression(v);
384         g->setBrake(attrf(a, "skid", 0));
385         g->setInitialLoad(attrf(a, "initial-load", 0));
386         g->setStaticFriction(attrf(a, "sfric", 0.8));
387         g->setDynamicFriction(attrf(a, "dfric", 0.7));
388         g->setSpring(attrf(a, "spring", 1));
389         g->setDamping(attrf(a, "damp", 1));
390         if(a->hasAttribute("on-water")) g->setOnWater(attrb(a,"on-water"));
391         if(a->hasAttribute("on-solid")) g->setOnSolid(attrb(a,"on-solid"));
392         if(a->hasAttribute("ignored-by-solver")) g->setIgnoreWhileSolving(attrb(a,"ignored-by-solver"));
393         g->setSpringFactorNotPlaning(attrf(a, "spring-factor-not-planing", 1));
394         g->setSpeedPlaning(attrf(a, "speed-planing", 0) * KTS2MPS);
395         g->setReduceFrictionByExtension(attrf(a, "reduce-friction-by-extension", 0));
396         _airplane.addGear(g);
397     } else if(eq(name, "hook")) {
398         Hook* h = new Hook();
399         _currObj = h;
400         v[0] = attrf(a, "x");
401         v[1] = attrf(a, "y");
402         v[2] = attrf(a, "z");
403         h->setPosition(v);
404         float length = attrf(a, "length", 1.0);
405         h->setLength(length);
406         float nrm = length+Math::mag3(v);
407         if (_vehicle_radius < nrm)
408             _vehicle_radius = nrm;
409         h->setDownAngle(attrf(a, "down-angle", 70) * DEG2RAD);
410         h->setUpAngle(attrf(a, "up-angle", 0) * DEG2RAD);
411         _airplane.addHook(h);
412     } else if(eq(name, "launchbar")) {
413         Launchbar* l = new Launchbar();
414         _currObj = l;
415         v[0] = attrf(a, "x");
416         v[1] = attrf(a, "y");
417         v[2] = attrf(a, "z");
418         l->setLaunchbarMount(v);
419         v[0] = attrf(a, "holdback-x", v[0]);
420         v[1] = attrf(a, "holdback-y", v[1]);
421         v[2] = attrf(a, "holdback-z", v[2]);
422         l->setHoldbackMount(v);
423         float length = attrf(a, "length", 1.0);
424         l->setLength(length);
425         l->setDownAngle(attrf(a, "down-angle", 45) * DEG2RAD);
426         l->setUpAngle(attrf(a, "up-angle", -45) * DEG2RAD);
427         l->setHoldbackLength(attrf(a, "holdback-length", 2.0));
428         _airplane.addLaunchbar(l);
429     } else if(eq(name, "fuselage")) {
430         float b[3];
431         v[0] = attrf(a, "ax");
432         v[1] = attrf(a, "ay");
433         v[2] = attrf(a, "az");
434         b[0] = attrf(a, "bx");
435         b[1] = attrf(a, "by");
436         b[2] = attrf(a, "bz");
437         float taper = attrf(a, "taper", 1);
438         float mid = attrf(a, "midpoint", 0.5);
439         if (_airplane.isVersionOrNewer(Version::YASIM_VERSION_32)) {
440             // A fuselage's "midpoint" XML attribute is defined from the
441             // fuselage's front end, but the Fuselage object's internal
442             // "mid" attribute is actually defined from the rear end.
443             // Thus YASim's original interpretation of "midpoint" was wrong.
444             // Complement the "midpoint" value to ensure the fuselage
445             // points the right way.
446             mid = 1 - mid;
447         }
448         float cx = attrf(a, "cx", 1);
449         float cy = attrf(a, "cy", 1);
450         float cz = attrf(a, "cz", 1);
451         float idrag = attrf(a, "idrag", 1);
452         _airplane.addFuselage(v, b, attrf(a, "width"), taper, mid, 
453             cx, cy, cz, idrag);
454     } else if(eq(name, "tank")) {
455         v[0] = attrf(a, "x");
456         v[1] = attrf(a, "y");
457         v[2] = attrf(a, "z");
458         float density = 6.0; // gasoline, in lbs/gal
459         if(a->hasAttribute("jet")) density = 6.72; 
460         density *= LBS2KG*CM2GALS;
461         _airplane.addTank(v, attrf(a, "capacity") * LBS2KG, density);
462     } else if(eq(name, "ballast")) {
463         v[0] = attrf(a, "x");
464         v[1] = attrf(a, "y");
465         v[2] = attrf(a, "z");
466         _airplane.addBallast(v, attrf(a, "mass") * LBS2KG);
467     } else if(eq(name, "weight")) {
468         parseWeight(a);
469     } else if(eq(name, "stall")) {
470         Wing* w = (Wing*)_currObj;
471         w->setStall(attrf(a, "aoa") * DEG2RAD);
472         w->setStallWidth(attrf(a, "width", 2) * DEG2RAD);
473         w->setStallPeak(attrf(a, "peak", 1.5));
474     } else if(eq(name, "flap0")) {
475         ((Wing*)_currObj)->setFlap0(attrf(a, "start"), attrf(a, "end"),
476                                     attrf(a, "lift"), attrf(a, "drag"));
477     } else if(eq(name, "flap1")) {
478         ((Wing*)_currObj)->setFlap1(attrf(a, "start"), attrf(a, "end"),
479                                     attrf(a, "lift"), attrf(a, "drag"));
480     } else if(eq(name, "slat")) {
481         ((Wing*)_currObj)->setSlat(attrf(a, "start"), attrf(a, "end"),
482                                    attrf(a, "aoa"), attrf(a, "drag"));
483     } else if(eq(name, "spoiler")) {
484         ((Wing*)_currObj)->setSpoiler(attrf(a, "start"), attrf(a, "end"),
485                                       attrf(a, "lift"), attrf(a, "drag"));
486     /* } else if(eq(name, "collective")) {
487         ((Rotor*)_currObj)->setcollective(attrf(a, "min"), attrf(a, "max"));
488     } else if(eq(name, "cyclic")) {
489         ((Rotor*)_currObj)->setcyclic(attrf(a, "ail"), attrf(a, "ele"));
490     */                               
491     } else if(eq(name, "actionpt")) {
492         v[0] = attrf(a, "x");
493         v[1] = attrf(a, "y");
494         v[2] = attrf(a, "z");
495         ((Thruster*)_currObj)->setPosition(v);
496     } else if(eq(name, "dir")) {
497         v[0] = attrf(a, "x");
498         v[1] = attrf(a, "y");
499         v[2] = attrf(a, "z");
500         ((Thruster*)_currObj)->setDirection(v);
501     } else if(eq(name, "control-setting")) {
502         // A cruise or approach control setting
503         const char* axis = a->getValue("axis");
504         float value = attrf(a, "value", 0);
505         if(_cruiseCurr)
506             _airplane.addCruiseControl(parseAxis(axis), value);
507         else
508             _airplane.addApproachControl(parseAxis(axis), value);
509     } else if(eq(name, "control-input")) {
510
511         // A mapping of input property to a control
512         int axis = parseAxis(a->getValue("axis"));
513         int control = parseOutput(a->getValue("control"));
514         int opt = 0;
515         opt |= a->hasAttribute("split") ? ControlMap::OPT_SPLIT : 0;
516         opt |= a->hasAttribute("invert") ? ControlMap::OPT_INVERT : 0;
517         opt |= a->hasAttribute("square") ? ControlMap::OPT_SQUARE : 0;
518         
519         ControlMap* cm = _airplane.getControlMap();
520         if(a->hasAttribute("src0")) {
521                            cm->addMapping(axis, control, _currObj, opt,
522                            attrf(a, "src0"), attrf(a, "src1"), 
523                            attrf(a, "dst0"), attrf(a, "dst1"));
524         } else {
525             cm->addMapping(axis, control, _currObj, opt);
526         }
527     } else if(eq(name, "control-output")) {
528         // A property output for a control on the current object
529         ControlMap* cm = _airplane.getControlMap();
530         int type = parseOutput(a->getValue("control"));
531         int handle = cm->getOutputHandle(_currObj, type);
532
533         PropOut* p = new PropOut();
534         p->prop = fgGetNode(a->getValue("prop"), true);
535         p->handle = handle;
536         p->type = type;
537         p->left = !(a->hasAttribute("side") &&
538                         eq("right", a->getValue("side")));
539         p->min = attrf(a, "min", cm->rangeMin(type));
540         p->max = attrf(a, "max", cm->rangeMax(type));
541         _controlProps.add(p);
542
543     } else if(eq(name, "control-speed")) {
544         ControlMap* cm = _airplane.getControlMap();
545         int type = parseOutput(a->getValue("control"));
546         int handle = cm->getOutputHandle(_currObj, type);
547         float time = attrf(a, "transition-time", 0);
548         
549         cm->setTransitionTime(handle, time);
550     } else {
551         SG_LOG(SG_FLIGHT,SG_ALERT,"Unexpected tag '"
552                << name << "' found in YASim aircraft description");
553         exit(1);
554     }
555 }
556
557 void FGFDM::getExternalInput(float dt)
558 {
559     char buf[256];
560
561     _turb->setMagnitude(_turb_magnitude_norm->getFloatValue());
562     _turb->update(dt, _turb_rate_hz->getFloatValue());
563
564     // The control axes
565     ControlMap* cm = _airplane.getControlMap();
566     cm->reset();
567
568     for(int i=0; i<_axes.size(); i++) {
569         AxisRec* a = (AxisRec*)_axes.get(i);
570         float val = fgGetFloat(a->name, 0);
571         cm->setInput(a->handle, val);
572     }
573     cm->applyControls(dt);
574
575     // Weights
576     for(int i=0; i<_weights.size(); i++) {
577         WeightRec* wr = (WeightRec*)_weights.get(i);
578         _airplane.setWeight(wr->handle, LBS2KG * fgGetFloat(wr->prop));
579     }
580
581     for(int i=0; i<_thrusters.size(); i++) {
582         EngRec* er = (EngRec*)_thrusters.get(i);
583         Thruster* t = er->eng;
584
585         if(t->getPropEngine()) {
586             PropEngine* p = t->getPropEngine();
587             sprintf(buf, "%s/rpm", er->prefix);
588             p->setOmega(fgGetFloat(buf, 500) * RPM2RAD);
589         }
590     }
591 }
592
593 // Linearly "seeks" a property by the specified fraction of the way to
594 // the target value.  Used to emulate "slowly changing" output values.
595 static void moveprop(SGPropertyNode* node, const char* prop,
596                     float target, float frac)
597 {
598     float val = node->getFloatValue(prop);
599     if(frac > 1) frac = 1;
600     if(frac < 0) frac = 0;
601     val += (target - val) * frac;
602     node->setFloatValue(prop, val);
603 }
604
605 void FGFDM::setOutputProperties(float dt)
606 {
607     float grossWgt = _airplane.getModel()->getBody()->getTotalMass() * KG2LBS;
608     _gross_weight_lbs->setFloatValue(grossWgt);
609
610     ControlMap* cm = _airplane.getControlMap();
611     for(int i=0; i<_controlProps.size(); i++) {
612         PropOut* p = (PropOut*)_controlProps.get(i);
613         float val = (p->left
614                      ? cm->getOutput(p->handle)
615                      : cm->getOutputR(p->handle));
616         float rmin = cm->rangeMin(p->type);
617         float rmax = cm->rangeMax(p->type);
618         float frac = (val - rmin) / (rmax - rmin);
619         val = frac*(p->max - p->min) + p->min;
620         p->prop->setFloatValue(val);
621     }
622
623     for(int i=0; i<_airplane.getRotorgear()->getNumRotors(); i++) {
624         Rotor*r=(Rotor*)_airplane.getRotorgear()->getRotor(i);
625         int j = 0;
626         float f;
627         char b[256];
628         while((j = r->getValueforFGSet(j, b, &f)))
629             if(b[0]) fgSetFloat(b,f);
630         j=0;
631         while((j = _airplane.getRotorgear()->getValueforFGSet(j, b, &f)))
632             if(b[0]) fgSetFloat(b,f);
633         for(j=0; j < r->numRotorparts(); j+=r->numRotorparts()>>2) {
634             Rotorpart* s = (Rotorpart*)r->getRotorpart(j);
635             char *b;
636             int k;
637             for(k=0; k<2; k++) {
638                 b=s->getAlphaoutput(k);
639                 if(b[0]) fgSetFloat(b, s->getAlpha(k));
640             }
641         }
642     }
643
644     // Use the density of the first tank, or a dummy value if no tanks
645     float fuelDensity = 1.0;
646     if(_airplane.numTanks())
647         fuelDensity = _airplane.getFuelDensity(0);
648     for(int i=0; i<_thrusters.size(); i++) {
649         EngRec* er = (EngRec*)_thrusters.get(i);
650         Thruster* t = er->eng;
651         SGPropertyNode * node = fgGetNode("engines/engine", i, true);
652
653         ThrusterProps& tp = _thrust_props[i];
654
655         // Set: running, cranking, prop-thrust, max-hp, power-pct
656         tp._running->setBoolValue(t->isRunning());
657         tp._cranking->setBoolValue(t->isCranking());
658
659         float tmp[3];
660         t->getThrust(tmp);
661         float lbs = Math::mag3(tmp) * (KG2LBS/9.8);
662         tp._prop_thrust->setFloatValue(lbs); // Deprecated name
663         tp._thrust_lbs->setFloatValue(lbs);
664         tp._fuel_flow_gph->setFloatValue(
665                 (t->getFuelFlow()/fuelDensity) * 3600 * CM2GALS);
666
667         if(t->getPropEngine()) {
668             PropEngine* p = t->getPropEngine();
669             tp._rpm->setFloatValue(p->getOmega() * (1/RPM2RAD));
670             tp._torque_ftlb->setFloatValue(
671                     p->getEngine()->getTorque() * NM2FTLB);
672
673             if(p->getEngine()->isPistonEngine()) {
674                 PistonEngine* pe = p->getEngine()->isPistonEngine();
675                 tp._mp_osi->setFloatValue(pe->getMP() * (1/INHG2PA));
676                 tp._mp_inhg->setFloatValue(pe->getMP() * (1/INHG2PA));
677                 tp._egt_degf->setFloatValue(
678                         pe->getEGT() * K2DEGF + K2DEGFOFFSET);
679                 tp._oil_temperature_degf->setFloatValue(
680                         pe->getOilTemp() * K2DEGF + K2DEGFOFFSET);
681                 tp._boost_gauge_inhg->setFloatValue(
682                         pe->getBoost() * (1/INHG2PA));
683             } else if(p->getEngine()->isTurbineEngine()) {
684                 TurbineEngine* te = p->getEngine()->isTurbineEngine();
685                 tp._n2->setFloatValue(te->getN2());
686             }
687         }
688
689         if(t->getJet()) {
690             Jet* j = t->getJet();
691             tp._n1->setFloatValue(j->getN1());
692             tp._n2->setFloatValue(j->getN2());
693             tp._epr->setFloatValue(j->getEPR());
694             tp._egt_degf->setFloatValue(
695                     j->getEGT() * K2DEGF + K2DEGFOFFSET);
696
697             // These are "unmodeled" values that are still needed for
698             // many cockpits.  Tie them all to the N1 speed, but
699             // normalize the numbers to the range [0:1] so the
700             // cockpit code can scale them to the right values.
701             float pnorm = j->getPerfNorm();
702             moveprop(node, "oilp-norm", pnorm, dt/3); // 3s seek time
703             moveprop(node, "oilt-norm", pnorm, dt/30); // 30s 
704             moveprop(node, "itt-norm", pnorm, dt/1); // 1s
705         }
706     }
707 }
708
709 Wing* FGFDM::parseWing(XMLAttributes* a, const char* type, Version * version)
710 {
711     Wing* w = new Wing(version);
712
713     float defDihed = 0;
714     if(eq(type, "vstab"))
715         defDihed = 90;
716     else
717         w->setMirror(true);
718
719     float pos[3];
720     pos[0] = attrf(a, "x");
721     pos[1] = attrf(a, "y");
722     pos[2] = attrf(a, "z");
723     w->setBase(pos);
724
725     w->setLength(attrf(a, "length"));
726     w->setChord(attrf(a, "chord"));
727     w->setSweep(attrf(a, "sweep", 0) * DEG2RAD);
728     w->setTaper(attrf(a, "taper", 1));
729     w->setDihedral(attrf(a, "dihedral", defDihed) * DEG2RAD);
730     w->setCamber(attrf(a, "camber", 0));
731
732     // These come in with positive indicating positive AoA, but the
733     // internals expect a rotation about the left-pointing Y axis, so
734     // invert the sign.
735     w->setIncidence(attrf(a, "incidence", 0) * DEG2RAD * -1);
736     w->setTwist(attrf(a, "twist", 0) * DEG2RAD * -1);
737
738     // The 70% is a magic number that sorta kinda seems to match known
739     // throttle settings to approach speed.
740     w->setInducedDrag(0.7*attrf(a, "idrag", 1));
741
742     float effect = attrf(a, "effectiveness", 1);
743     w->setDragScale(w->getDragScale()*effect);
744
745     _currObj = w;
746     return w;
747 }
748
749 Rotor* FGFDM::parseRotor(XMLAttributes* a, const char* type)
750 {
751     Rotor* w = new Rotor();
752
753     // float defDihed = 0;
754
755     float pos[3];
756     pos[0] = attrf(a, "x");
757     pos[1] = attrf(a, "y");
758     pos[2] = attrf(a, "z");
759     w->setBase(pos);
760
761     float normal[3];
762     normal[0] = attrf(a, "nx");
763     normal[1] = attrf(a, "ny");
764     normal[2] = attrf(a, "nz");
765     w->setNormal(normal);
766
767     float forward[3];
768     forward[0] = attrf(a, "fx");
769     forward[1] = attrf(a, "fy");
770     forward[2] = attrf(a, "fz");
771     w->setForward(forward);
772
773     w->setMaxCyclicail(attrf(a, "maxcyclicail", 7.6));
774     w->setMaxCyclicele(attrf(a, "maxcyclicele", 4.94));
775     w->setMinCyclicail(attrf(a, "mincyclicail", -7.6));
776     w->setMinCyclicele(attrf(a, "mincyclicele", -4.94));
777     w->setMaxCollective(attrf(a, "maxcollective", 15.8));
778     w->setMinCollective(attrf(a, "mincollective", -0.2));
779     w->setDiameter(attrf(a, "diameter", 10.2));
780     w->setWeightPerBlade(attrf(a, "weightperblade", 44));
781     w->setNumberOfBlades(attrf(a, "numblades", 4));
782     w->setRelBladeCenter(attrf(a, "relbladecenter", 0.7));
783     w->setDynamic(attrf(a, "dynamic", 0.7));
784     w->setDelta3(attrf(a, "delta3", 0));
785     w->setDelta(attrf(a, "delta", 0));
786     w->setTranslift(attrf(a, "translift", 0.05));
787     w->setC2(attrf(a, "dragfactor", 1));
788     w->setStepspersecond(attrf(a, "stepspersecond", 120));
789     w->setPhiNull((attrf(a, "phi0", 0))*YASIM_PI/180);
790     w->setRPM(attrf(a, "rpm", 424));
791     w->setRelLenHinge(attrf(a, "rellenflaphinge", 0.07));
792     w->setAlpha0((attrf(a, "flap0", -5))*YASIM_PI/180);
793     w->setAlphamin((attrf(a, "flapmin", -15))/180*YASIM_PI);
794     w->setAlphamax((attrf(a, "flapmax",  15))*YASIM_PI/180);
795     w->setAlpha0factor(attrf(a, "flap0factor", 1));
796     w->setTeeterdamp(attrf(a,"teeterdamp",.0001));
797     w->setMaxteeterdamp(attrf(a,"maxteeterdamp",1000));
798     w->setRelLenTeeterHinge(attrf(a,"rellenteeterhinge",0.01));
799     w->setBalance(attrf(a,"balance",1.0));
800     w->setMinTiltYaw(attrf(a,"mintiltyaw",0.0));
801     w->setMinTiltPitch(attrf(a,"mintiltpitch",0.0));
802     w->setMinTiltRoll(attrf(a,"mintiltroll",0.0));
803     w->setMaxTiltYaw(attrf(a,"maxtiltyaw",0.0));
804     w->setMaxTiltPitch(attrf(a,"maxtiltpitch",0.0));
805     w->setMaxTiltRoll(attrf(a,"maxtiltroll",0.0));
806     w->setTiltCenterX(attrf(a,"tiltcenterx",0.0));
807     w->setTiltCenterY(attrf(a,"tiltcentery",0.0));
808     w->setTiltCenterZ(attrf(a,"tiltcenterz",0.0));
809     w->setDownwashFactor(attrf(a, "downwashfactor", 1));
810     if(attrb(a,"ccw"))
811        w->setCcw(1); 
812     if(attrb(a,"sharedflaphinge"))
813        w->setSharedFlapHinge(true); 
814
815     if(a->hasAttribute("name"))
816        w->setName(a->getValue("name") );
817     if(a->hasAttribute("alphaout0"))
818        w->setAlphaoutput(0,a->getValue("alphaout0") );
819     if(a->hasAttribute("alphaout1"))  w->setAlphaoutput(1,a->getValue("alphaout1") );
820     if(a->hasAttribute("alphaout2"))  w->setAlphaoutput(2,a->getValue("alphaout2") );
821     if(a->hasAttribute("alphaout3"))  w->setAlphaoutput(3,a->getValue("alphaout3") );
822     if(a->hasAttribute("coneout"))  w->setAlphaoutput(4,a->getValue("coneout") );
823     if(a->hasAttribute("yawout"))   w->setAlphaoutput(5,a->getValue("yawout") );
824     if(a->hasAttribute("rollout"))  w->setAlphaoutput(6,a->getValue("rollout") );
825
826     w->setPitchA(attrf(a, "pitch-a", 10));
827     w->setPitchB(attrf(a, "pitch-b", 10));
828     w->setForceAtPitchA(attrf(a, "forceatpitch-a", 3000));
829     w->setPowerAtPitch0(attrf(a, "poweratpitch-0", 300));
830     w->setPowerAtPitchB(attrf(a, "poweratpitch-b", 3000));
831     if(attrb(a,"notorque"))
832        w->setNotorque(1); 
833
834 #define p(x) if (a->hasAttribute(#x)) w->setParameter((char *)#x,attrf(a,#x) );
835 #define p2(x,y) if (a->hasAttribute(y)) w->setParameter((char *)#x,attrf(a,y) );
836     p2(translift_ve,"translift-ve")
837     p2(translift_maxfactor,"translift-maxfactor")
838     p2(ground_effect_constant,"ground-effect-constant")
839     p2(vortex_state_lift_factor,"vortex-state-lift-factor")
840     p2(vortex_state_c1,"vortex-state-c1")
841     p2(vortex_state_c2,"vortex-state-c2")
842     p2(vortex_state_c3,"vortex-state_c3")
843     p2(vortex_state_e1,"vortex-state-e1")
844     p2(vortex_state_e2,"vortex-state-e2")
845     p(twist)
846     p2(number_of_segments,"number-of-segments")
847     p2(number_of_parts,"number-of-parts")
848     p2(rel_len_where_incidence_is_measured,"rel-len-where-incidence-is-measured")
849     p(chord)
850     p(taper)
851     p2(airfoil_incidence_no_lift,"airfoil-incidence-no-lift")
852     p2(rel_len_blade_start,"rel-len-blade-start")
853     p2(incidence_stall_zero_speed,"incidence-stall-zero-speed")
854     p2(incidence_stall_half_sonic_speed,"incidence-stall-half-sonic-speed")
855     p2(lift_factor_stall,"lift-factor-stall")
856     p2(stall_change_over,"stall-change-over")
857     p2(drag_factor_stall,"drag-factor-stall")
858     p2(airfoil_lift_coefficient,"airfoil-lift-coefficient")
859     p2(airfoil_drag_coefficient0,"airfoil-drag-coefficient0")
860     p2(airfoil_drag_coefficient1,"airfoil-drag-coefficient1")
861     p2(cyclic_factor,"cyclic-factor")
862     p2(rotor_correction_factor,"rotor-correction-factor")
863 #undef p
864 #undef p2
865     _currObj = w;
866     return w;
867 }
868
869 void FGFDM::parsePistonEngine(XMLAttributes* a)
870 {
871     float engP = attrf(a, "eng-power") * HP2W;
872     float engS = attrf(a, "eng-rpm") * RPM2RAD;
873
874     PistonEngine* eng = new PistonEngine(engP, engS);
875
876     if(a->hasAttribute("displacement"))
877         eng->setDisplacement(attrf(a, "displacement") * CIN2CM);
878
879     if(a->hasAttribute("compression"))
880         eng->setCompression(attrf(a, "compression"));        
881
882     if(a->hasAttribute("min-throttle"))
883         eng->setMinThrottle(attrf(a, "min-throttle"));
884
885     if(a->hasAttribute("turbo-mul")) {
886         float mul = attrf(a, "turbo-mul");
887         float mp = attrf(a, "wastegate-mp", 1e6) * INHG2PA;
888         eng->setTurboParams(mul, mp);
889         eng->setTurboLag(attrf(a, "turbo-lag", 2));
890     }
891
892     if(a->hasAttribute("supercharger"))
893         eng->setSupercharger(attrb(a, "supercharger"));
894
895     ((PropEngine*)_currObj)->setEngine(eng);
896 }
897
898 void FGFDM::parseTurbineEngine(XMLAttributes* a)
899 {
900     float power = attrf(a, "eng-power") * HP2W;
901     float omega = attrf(a, "eng-rpm") * RPM2RAD;
902     float alt = attrf(a, "alt") * FT2M;
903     float flatRating = attrf(a, "flat-rating") * HP2W;
904     TurbineEngine* eng = new TurbineEngine(power, omega, alt, flatRating);
905
906     if(a->hasAttribute("n2-low-idle"))
907         eng->setN2Range(attrf(a, "n2-low-idle"), attrf(a, "n2-high-idle"),
908                         attrf(a, "n2-max"));
909
910     // Nasty units conversion: lbs/hr per hp -> kg/s per watt
911     if(a->hasAttribute("bsfc"))
912         eng->setFuelConsumption(attrf(a, "bsfc") * (LBS2KG/(3600*HP2W)));
913
914     ((PropEngine*)_currObj)->setEngine(eng);
915 }
916
917 void FGFDM::parsePropeller(XMLAttributes* a)
918 {
919     // Legacy Handling for the old engines syntax:
920     PistonEngine* eng = 0;
921     if(a->hasAttribute("eng-power")) {
922         SG_LOG(SG_FLIGHT,SG_ALERT, "WARNING: "
923                << "Legacy engine definition in YASim configuration file.  "
924                << "Please fix.");
925         float engP = attrf(a, "eng-power") * HP2W;
926         float engS = attrf(a, "eng-rpm") * RPM2RAD;
927         eng = new PistonEngine(engP, engS);
928         if(a->hasAttribute("displacement"))
929             eng->setDisplacement(attrf(a, "displacement") * CIN2CM);
930         if(a->hasAttribute("compression"))
931             eng->setCompression(attrf(a, "compression"));        
932         if(a->hasAttribute("turbo-mul")) {
933             float mul = attrf(a, "turbo-mul");
934             float mp = attrf(a, "wastegate-mp", 1e6) * INHG2PA;
935             eng->setTurboParams(mul, mp);
936         }
937     }
938
939     // Now parse the actual propeller definition:
940     float cg[3];
941     cg[0] = attrf(a, "x");
942     cg[1] = attrf(a, "y");
943     cg[2] = attrf(a, "z");
944     float mass = attrf(a, "mass") * LBS2KG;
945     float moment = attrf(a, "moment");
946     float radius = attrf(a, "radius");
947     float speed = attrf(a, "cruise-speed") * KTS2MPS;
948     float omega = attrf(a, "cruise-rpm") * RPM2RAD;
949     float power = attrf(a, "cruise-power") * HP2W;
950     float rho = Atmosphere::getStdDensity(attrf(a, "cruise-alt") * FT2M);
951
952     Propeller* prop = new Propeller(radius, speed, omega, rho, power);
953     PropEngine* thruster = new PropEngine(prop, eng, moment);
954     _airplane.addThruster(thruster, mass, cg);
955
956     // Set the stops (fine = minimum pitch, coarse = maximum pitch)
957     float fine_stop = attrf(a, "fine-stop", 0.25f);
958     float coarse_stop = attrf(a, "coarse-stop", 4.0f);
959     prop->setStops(fine_stop, coarse_stop);
960
961     if(a->hasAttribute("takeoff-power")) {
962         float power0 = attrf(a, "takeoff-power") * HP2W;
963         float omega0 = attrf(a, "takeoff-rpm") * RPM2RAD;
964         prop->setTakeoff(omega0, power0);
965     }
966
967     if(a->hasAttribute("max-rpm")) {
968         float max = attrf(a, "max-rpm") * RPM2RAD;
969         float min = attrf(a, "min-rpm") * RPM2RAD;
970         thruster->setVariableProp(min, max);
971     }
972
973     if(attrb(a, "contra"))
974         thruster->setContraPair(true);
975
976     if(a->hasAttribute("manual-pitch")) {
977         prop->setManualPitch();
978     }
979
980     thruster->setGearRatio(attrf(a, "gear-ratio", 1));
981
982     char buf[64];
983     sprintf(buf, "/engines/engine[%d]", _nextEngine++);
984     EngRec* er = new EngRec();
985     er->eng = thruster;
986     er->prefix = dup(buf);
987     _thrusters.add(er);
988
989     _currObj = thruster;
990 }
991
992 // Turns a string axis name into an integer for use by the
993 // ControlMap.  Creates a new axis if this one hasn't been defined
994 // yet.
995 int FGFDM::parseAxis(const char* name)
996 {
997     for(int i=0; i<_axes.size(); i++) {
998         AxisRec* a = (AxisRec*)_axes.get(i);
999         if(eq(a->name, name))
1000             return a->handle;
1001     }
1002
1003     // Not there, make a new one.
1004     AxisRec* a = new AxisRec();
1005     a->name = dup(name);
1006     fgGetNode( a->name, true ); // make sure the property name exists
1007     a->handle = _airplane.getControlMap()->newInput();
1008     _axes.add(a);
1009     return a->handle;
1010 }
1011
1012 int FGFDM::parseOutput(const char* name)
1013 {
1014     if(eq(name, "THROTTLE"))  return ControlMap::THROTTLE;
1015     if(eq(name, "MIXTURE"))   return ControlMap::MIXTURE;
1016     if(eq(name, "CONDLEVER")) return ControlMap::CONDLEVER;
1017     if(eq(name, "STARTER"))   return ControlMap::STARTER;
1018     if(eq(name, "MAGNETOS"))  return ControlMap::MAGNETOS;
1019     if(eq(name, "ADVANCE"))   return ControlMap::ADVANCE;
1020     if(eq(name, "REHEAT"))    return ControlMap::REHEAT;
1021     if(eq(name, "BOOST"))     return ControlMap::BOOST;
1022     if(eq(name, "VECTOR"))    return ControlMap::VECTOR;
1023     if(eq(name, "PROP"))      return ControlMap::PROP;
1024     if(eq(name, "BRAKE"))     return ControlMap::BRAKE;
1025     if(eq(name, "STEER"))     return ControlMap::STEER;
1026     if(eq(name, "EXTEND"))    return ControlMap::EXTEND;
1027     if(eq(name, "HEXTEND"))   return ControlMap::HEXTEND;
1028     if(eq(name, "LEXTEND"))   return ControlMap::LEXTEND;
1029         if(eq(name, "LACCEL"))    return ControlMap::LACCEL;
1030     if(eq(name, "INCIDENCE")) return ControlMap::INCIDENCE;
1031     if(eq(name, "FLAP0"))     return ControlMap::FLAP0;
1032     if(eq(name, "FLAP0EFFECTIVENESS"))   return ControlMap::FLAP0EFFECTIVENESS;
1033     if(eq(name, "FLAP1"))     return ControlMap::FLAP1;
1034     if(eq(name, "FLAP1EFFECTIVENESS"))   return ControlMap::FLAP1EFFECTIVENESS;
1035     if(eq(name, "SLAT"))      return ControlMap::SLAT;
1036     if(eq(name, "SPOILER"))   return ControlMap::SPOILER;
1037     if(eq(name, "CASTERING")) return ControlMap::CASTERING;
1038     if(eq(name, "PROPPITCH")) return ControlMap::PROPPITCH;
1039     if(eq(name, "PROPFEATHER")) return ControlMap::PROPFEATHER;
1040     if(eq(name, "COLLECTIVE")) return ControlMap::COLLECTIVE;
1041     if(eq(name, "CYCLICAIL")) return ControlMap::CYCLICAIL;
1042     if(eq(name, "CYCLICELE")) return ControlMap::CYCLICELE;
1043     if(eq(name, "TILTROLL")) return ControlMap::TILTROLL;
1044     if(eq(name, "TILTPITCH")) return ControlMap::TILTPITCH;
1045     if(eq(name, "TILTYAW")) return ControlMap::TILTYAW;
1046     if(eq(name, "ROTORGEARENGINEON")) return ControlMap::ROTORENGINEON;
1047     if(eq(name, "ROTORBRAKE")) return ControlMap::ROTORBRAKE;
1048     if(eq(name, "ROTORENGINEMAXRELTORQUE")) 
1049         return ControlMap::ROTORENGINEMAXRELTORQUE;
1050     if(eq(name, "ROTORRELTARGET")) return ControlMap::ROTORRELTARGET;
1051     if(eq(name, "ROTORBALANCE")) return ControlMap::ROTORBALANCE;
1052     if(eq(name, "REVERSE_THRUST")) return ControlMap::REVERSE_THRUST;
1053     if(eq(name, "WASTEGATE")) return ControlMap::WASTEGATE;
1054     if(eq(name, "WINCHRELSPEED")) return ControlMap::WINCHRELSPEED;
1055     if(eq(name, "HITCHOPEN")) return ControlMap::HITCHOPEN;
1056     if(eq(name, "PLACEWINCH")) return ControlMap::PLACEWINCH;
1057     if(eq(name, "FINDAITOW")) return ControlMap::FINDAITOW;
1058
1059     SG_LOG(SG_FLIGHT,SG_ALERT,"Unrecognized control type '"
1060            << name << "' in YASim aircraft description.");
1061     exit(1);
1062
1063 }
1064
1065 void FGFDM::parseWeight(XMLAttributes* a)
1066 {
1067     WeightRec* wr = new WeightRec();
1068
1069     float v[3];
1070     v[0] = attrf(a, "x");
1071     v[1] = attrf(a, "y");
1072     v[2] = attrf(a, "z");
1073
1074     wr->prop = dup(a->getValue("mass-prop"));
1075     wr->size = attrf(a, "size", 0);
1076     wr->handle = _airplane.addWeight(v, wr->size);
1077
1078     _weights.add(wr);
1079 }
1080
1081 bool FGFDM::eq(const char* a, const char* b)
1082 {
1083     // Figure it out for yourself. :)
1084     while(*a && *b && *a == *b) { a++; b++; }
1085     return !(*a || *b);
1086 }
1087
1088 char* FGFDM::dup(const char* s)
1089 {
1090     int len=0;
1091     while(s[len++]);
1092     char* s2 = new char[len+1];
1093     char* p = s2;
1094     while((*p++ = *s++));
1095     s2[len] = 0;
1096     return s2;
1097 }
1098
1099 int FGFDM::attri(XMLAttributes* atts, const char* attr)
1100 {
1101     if(!atts->hasAttribute(attr)) {
1102         SG_LOG(SG_FLIGHT,SG_ALERT,"Missing '" << attr <<
1103                "' in YASim aircraft description");
1104         exit(1);
1105     }
1106     return attri(atts, attr, 0);
1107 }
1108
1109 int FGFDM::attri(XMLAttributes* atts, const char* attr, int def)
1110 {
1111     const char* val = atts->getValue(attr);
1112     if(val == 0) return def;
1113     else         return atol(val);
1114 }
1115
1116 float FGFDM::attrf(XMLAttributes* atts, const char* attr)
1117 {
1118     if(!atts->hasAttribute(attr)) {
1119         SG_LOG(SG_FLIGHT,SG_ALERT,"Missing '" << attr <<
1120                "' in YASim aircraft description");
1121         exit(1);
1122     }
1123     return attrf(atts, attr, 0);
1124 }
1125
1126 float FGFDM::attrf(XMLAttributes* atts, const char* attr, float def)
1127 {
1128     const char* val = atts->getValue(attr);
1129     if(val == 0) return def;
1130     else         return (float)atof(val);    
1131 }
1132
1133 double FGFDM::attrd(XMLAttributes* atts, const char* attr)
1134 {
1135     if(!atts->hasAttribute(attr)) {
1136         SG_LOG(SG_FLIGHT,SG_ALERT,"Missing '" << attr <<
1137                "' in YASim aircraft description");
1138         exit(1);
1139     }
1140     return attrd(atts, attr, 0);
1141 }
1142
1143 double FGFDM::attrd(XMLAttributes* atts, const char* attr, double def)
1144 {
1145     const char* val = atts->getValue(attr);
1146     if(val == 0) return def;
1147     else         return atof(val);
1148 }
1149
1150 // ACK: the dreaded ambiguous string boolean.  Remind me to shoot Maik
1151 // when I have a chance. :).  Unless you have a parser that can check
1152 // symbol constants (we don't), this kind of coding is just a Bad
1153 // Idea.  This implementation, for example, silently returns a boolean
1154 // falsehood for values of "1", "yes", "True", and "TRUE".  Which is
1155 // especially annoying preexisting boolean attributes in the same
1156 // parser want to see "1" and will choke on a "true"...
1157 //
1158 // Unfortunately, this usage creeped into existing configuration files
1159 // while I wasn't active, and it's going to be hard to remove.  Issue
1160 // a warning to nag people into changing their ways for now...
1161 bool FGFDM::attrb(XMLAttributes* atts, const char* attr)
1162 {
1163     const char* val = atts->getValue(attr);
1164     if(val == 0) return false;
1165
1166     if(eq(val,"true")) {
1167         SG_LOG(SG_FLIGHT, SG_ALERT, "Warning: " <<
1168                "deprecated 'true' boolean in YASim configuration file.  " <<
1169                "Use numeric booleans (attribute=\"1\") instead");
1170         return true;
1171     }
1172     return attri(atts, attr, 0) ? true : false;
1173 }
1174
1175 }; // namespace yasim