]> git.mxchange.org Git - flightgear.git/blob - src/Instrumentation/commradio.cxx
add to project files
[flightgear.git] / src / Instrumentation / commradio.cxx
1 // commradio.cxx -- implementation of FGCommRadio
2 // Class to manage radio propagation using the ITM model
3 // Written by Adrian Musceac, started August 2011.
4 //
5 // This program is free software; you can redistribute it and/or
6 // modify it under the terms of the GNU General Public License as
7 // published by the Free Software Foundation; either version 2 of the
8 // License, or (at your option) any later version.
9 //
10 // This program is distributed in the hope that it will be useful, but
11 // WITHOUT ANY WARRANTY; without even the implied warranty of
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 // General Public License for more details.
14 //
15 // You should have received a copy of the GNU General Public License
16 // along with this program; if not, write to the Free Software
17 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
18
19
20
21 #ifdef HAVE_CONFIG_H
22 #  include <config.h>
23 #endif
24
25 #include <math.h>
26 #include <stdlib.h>
27 #include <deque>
28
29 #include <Scenery/scenery.hxx>
30
31 #define WITH_POINT_TO_POINT 1
32 #include "itm.cpp"
33
34
35 FGCommRadio::FGCommRadio(SGPropertyNode *node) {
36         
37         /////////// radio parameters ///////////
38         _receiver_sensitivity = -110.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD
39         // AM transmitter power in dBm.
40         // Note this value is calculated from the typical final transistor stage output
41         // !!! small aircraft have portable transmitters which operate at 36 dBm output (4 Watts)
42         // later store this value in aircraft description
43         // ATC comms usually operate high power equipment, thus making the link asymetrical; this is ignored for now
44         _transmitter_power = 43.0;
45         //pilot plane's antenna gain + AI aircraft antenna gain
46         //real-life gain for conventional monopole/dipole antenna
47         _antenna_gain = 2.0;
48         _propagation_model = 2; //  choose between models via option: realistic radio on/off
49         
50 }
51
52 FGCommRadio::~FGCommRadio() 
53 {
54 }
55
56 void FGCommRadio::init ()
57 {
58 }
59
60
61 void FGCommRadio::bind ()
62 {
63 }
64
65
66 void FGCommRadio::update ()
67 {
68         if (dt <= 0.0) {
69                 return; // paused
70     }
71 }
72
73 double FGCommRadio::getFrequency(int radio) {
74         double freq = 118.0;
75         switch (radio) {
76                 case 1:
77                         freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
78                         break;
79                 case 2:
80                         freq = fgGetDouble("/instrumentation/comm[1]/frequencies/selected-mhz");
81                         break;
82                 default:
83                         freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
84                         
85         }
86         return freq;
87 }
88
89
90
91
92 void FGCommRadio::receiveText(SGGeod tx_pos, double freq, string text,
93         int ground_to_air) {
94
95         comm1 = getFrequency(1);
96         comm2 = getFrequency(2);
97         if ( (freq != comm1) &&  (freq != comm2) ) {
98                 return;
99         }
100         else {
101                 double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
102                 if (signal <= 0)
103                         return;
104                 if ((signal > 0) && (signal < 12)) {
105                         //for low SNR values implement a way to make the conversation
106                         //hard to understand but audible
107                         //how this works in the real world, is the receiver AGC fails to capture the slope
108                         //and the signal, due to being amplitude modulated, decreases volume after demodulation
109                         //the implementation below is more akin to what would happen on a FM transmission
110                         //therefore the correct way would be to work on the volume
111                         /*
112                         string hash_noise = " ";
113                         int reps = fabs((int)signal - 11);
114                         int t_size = text.size();
115                         for (int n=1;n<=reps * 2;n++) {
116                                 int pos = rand() % t_size -1;
117                                 text.replace(pos,1, hash_noise);
118                         }
119                         */
120                         
121                 }
122                 fgSetString("/sim/messages/atc", text.c_str());
123         }
124         
125 }
126
127 double FGCommRadio::ITM_calculate_attenuation(SGGeod pos, double freq,
128                                int transmission_type) {
129
130         ///  Implement radio attenuation                
131         ///  based on the Longley-Rice propagation model
132         
133         ////////////// ITM default parameters //////////////
134         // in the future perhaps take them from tile materials?
135         double eps_dielect=15.0;
136         double sgm_conductivity = 0.005;
137         double eno = 301.0;
138         double frq_mhz;
139         if( (freq < 118.0) || (freq > 137.0) )
140                 frq_mhz = 125.0;        // sane value, middle of bandplan
141         else
142                 frq_mhz = freq;
143         int radio_climate = 5;          // continental temperate
144         int pol=1;      // assuming vertical polarization although this is more complex in reality
145         double conf = 0.90;     // 90% of situations and time, take into account speed
146         double rel = 0.90;      // ^^
147         double dbloss;
148         char strmode[150];
149         int errnum;
150         
151         double tx_pow,ant_gain;
152         double signal = 0.0;
153         
154         if(transmission_type == 1)
155                 tx_pow = _transmitter_power + 6.0;
156
157         if((transmission_type == 1) || (transmission_type == 3))
158                 ant_gain = _antenna_gain + 3.0; //pilot plane's antenna gain + ground station antenna gain
159         
160         double link_budget = tx_pow - _receiver_sensitivity + ant_gain; 
161
162         FGScenery * scenery = globals->get_scenery();
163         
164         double own_lat = fgGetDouble("/position/latitude-deg");
165         double own_lon = fgGetDouble("/position/longitude-deg");
166         double own_alt_ft = fgGetDouble("/position/altitude-ft");
167         double own_alt= own_alt_ft * SG_FEET_TO_METER;
168         
169         
170         //cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
171         
172         SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
173         SGGeod max_own_pos = SGGeod::fromDegM( own_lon, own_lat, SG_MAX_ELEVATION_M );
174         SGGeoc center = SGGeoc::fromGeod( max_own_pos );
175         SGGeoc own_pos_c = SGGeoc::fromGeod( own_pos );
176         
177         // position of sender radio antenna (HAAT)
178         // sender can be aircraft or ground station
179         double ATC_HAAT = 30.0;
180         double Aircraft_HAAT = 5.0;
181         double sender_alt_ft,sender_alt;
182         double transmitter_height=0.0;
183         double receiver_height=0.0;
184         SGGeod sender_pos = pos;
185         
186         sender_alt_ft = sender_pos.getElevationFt();
187         sender_alt = sender_alt_ft * SG_FEET_TO_METER;
188         SGGeod max_sender_pos = SGGeod::fromGeodM( pos, SG_MAX_ELEVATION_M );
189         SGGeoc sender_pos_c = SGGeoc::fromGeod( sender_pos );
190         //cerr << "ITM:: sender Lat: " << parent->getLatitude() << ", Lon: " << parent->getLongitude() << ", Alt: " << sender_alt << endl;
191         
192         double point_distance= 90.0; // regular SRTM is 90 meters
193         double course = SGGeodesy::courseRad(own_pos_c, sender_pos_c);
194         double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
195         double probe_distance = 0.0;
196         // If distance larger than this value (300 km), assume reception imposssible to preserve resources
197         if (distance_m > 300000)
198                 return -1.0;
199         // If above 9000, consider LOS mode and calculate free-space att
200         if (own_alt > 9000) {
201                 dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
202                 signal = link_budget - dbloss;
203                 return signal;
204         }
205         
206                 
207         double max_points = distance_m / point_distance;
208         deque<double> _elevations;
209
210         double elevation_under_pilot = 0.0;
211         if (scenery->get_elevation_m( max_own_pos, elevation_under_pilot, NULL )) {
212                 receiver_height = own_alt - elevation_under_pilot + 3; //assume antenna located 3 meters above ground
213         }
214
215         double elevation_under_sender = 0.0;
216         if (scenery->get_elevation_m( max_sender_pos, elevation_under_sender, NULL )) {
217                 transmitter_height = sender_alt - elevation_under_sender;
218         }
219         else {
220                 transmitter_height = sender_alt;
221         }
222         
223         if(transmission_type == 1) 
224                 transmitter_height += ATC_HAAT;
225         else
226                 transmitter_height += Aircraft_HAAT;
227         
228         cerr << "ITM:: RX-height: " << receiver_height << ", TX-height: " << transmitter_height << ", Distance: " << distance_m << endl;
229         
230         unsigned int e_size = (deque<unsigned>::size_type)max_points;
231         
232         while (_elevations.size() <= e_size) {
233                 probe_distance += point_distance;
234                 SGGeod probe = SGGeod::fromGeoc(center.advanceRadM( course, probe_distance ));
235                 
236                 double elevation_m = 0.0;
237         
238                 if (scenery->get_elevation_m( probe, elevation_m, NULL )) {
239                         if((transmission_type == 3) || (transmission_type == 4)) {
240                                 _elevations.push_back(elevation_m);
241                         }
242                         else {
243                                  _elevations.push_front(elevation_m);
244                         }
245                 }
246                 else {
247                         if((transmission_type == 3) || (transmission_type == 4)) {
248                                 _elevations.push_back(elevation_m);
249                         }
250                         else {
251                         _elevations.push_front(0.0);
252                         }
253                 }
254         }
255         if((transmission_type == 3) || (transmission_type == 4)) {
256                 _elevations.push_front(elevation_under_pilot);
257                 _elevations.push_back(elevation_under_sender);
258         }
259         else {
260                 _elevations.push_back(elevation_under_pilot);
261                 _elevations.push_front(elevation_under_sender);
262         }
263         
264         
265         double max_alt_between=0.0;
266         for( deque<double>::size_type i = 0; i < _elevations.size(); i++ ) {
267                 if (_elevations[i] > max_alt_between) {
268                         max_alt_between = _elevations[i];
269                 }
270         }
271         
272         double num_points= (double)_elevations.size();
273         //cerr << "ITM:: Max alt between: " << max_alt_between << ", num points:" << num_points << endl;
274         _elevations.push_front(point_distance);
275         _elevations.push_front(num_points -1);
276         int size = _elevations.size();
277         double itm_elev[size];
278         for(int i=0;i<size;i++) {
279                 itm_elev[i]=_elevations[i];
280                 //cerr << "ITM:: itm_elev: " << _elevations[i] << endl;
281         }
282
283         
284         // first Fresnel zone radius
285         // frequency in the middle of the bandplan, more accuracy is not necessary
286         double fz_clr= 8.657 * sqrt(distance_m / 0.125);
287         
288         // TODO: If we clear the first Fresnel zone, we are into line of sight teritory
289
290         // else we need to calculate point to point link loss
291         if((transmission_type == 3) || (transmission_type == 4)) {
292                 // the sender and receiver roles are switched
293                 point_to_point(itm_elev, receiver_height, transmitter_height,
294                         eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
295                         pol, conf, rel, dbloss, strmode, errnum);
296                 
297         }
298         else {
299
300                 point_to_point(itm_elev, transmitter_height, receiver_height,
301                         eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
302                         pol, conf, rel, dbloss, strmode, errnum);
303         }
304
305         cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
306         
307         //if (errnum == 4)
308         //      return -1;
309         signal = link_budget - dbloss;
310         return signal;
311
312 }