]> git.mxchange.org Git - flightgear.git/blob - src/Radio/radio.cxx
Merge branch 'next' of gitorious.org:fg/flightgear into next
[flightgear.git] / src / Radio / radio.cxx
1 // radio.cxx -- implementation of FGRadio
2 // Class to manage radio propagation using the ITM model
3 // Written by Adrian Musceac YO8RZZ, started August 2011.
4 //
5 // This program is free software; you can redistribute it and/or
6 // modify it under the terms of the GNU General Public License as
7 // published by the Free Software Foundation; either version 2 of the
8 // License, or (at your option) any later version.
9 //
10 // This program is distributed in the hope that it will be useful, but
11 // WITHOUT ANY WARRANTY; without even the implied warranty of
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 // General Public License for more details.
14 //
15 // You should have received a copy of the GNU General Public License
16 // along with this program; if not, write to the Free Software
17 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
18
19
20
21 #ifdef HAVE_CONFIG_H
22 #  include <config.h>
23 #endif
24
25 #include <math.h>
26
27 #include <stdlib.h>
28 #include <deque>
29 #include "radio.hxx"
30 #include <simgear/scene/material/mat.hxx>
31 #include <Scenery/scenery.hxx>
32 #include <boost/scoped_array.hpp>
33
34 #define WITH_POINT_TO_POINT 1
35 #include "itm.cpp"
36
37
38 FGRadioTransmission::FGRadioTransmission() {
39         
40         
41         _receiver_sensitivity = -105.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD or less
42         
43         /** AM transmitter power in dBm.
44         *       Typical output powers for ATC ground equipment, VHF-UHF:
45         *       40 dBm - 10 W (ground, clearance)
46         *       44 dBm - 20 W (tower)
47         *       47 dBm - 50 W (center, sectors)
48         *       50 dBm - 100 W (center, sectors)
49         *       53 dBm - 200 W (sectors, on directional arrays)
50         **/
51         _transmitter_power = 43.0;
52         
53         _tx_antenna_height = 2.0; // TX antenna height above ground level
54         
55         _rx_antenna_height = 2.0; // RX antenna height above ground level
56         
57         
58         _rx_antenna_gain = 1.0; // maximum antenna gain expressed in dBi
59         _tx_antenna_gain = 1.0;
60         
61         _rx_line_losses = 2.0;  // to be configured for each station
62         _tx_line_losses = 2.0;
63         
64         _polarization = 1; // default vertical
65         
66         _propagation_model = 2; 
67         
68         _root_node = fgGetNode("sim/radio", true);
69         _terrain_sampling_distance = _root_node->getDoubleValue("sampling-distance", 90.0); // regular SRTM is 90 meters
70         
71         
72 }
73
74 FGRadioTransmission::~FGRadioTransmission() 
75 {
76 }
77
78
79 double FGRadioTransmission::getFrequency(int radio) {
80         double freq = 118.0;
81         switch (radio) {
82                 case 1:
83                         freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
84                         break;
85                 case 2:
86                         freq = fgGetDouble("/instrumentation/comm[1]/frequencies/selected-mhz");
87                         break;
88                 default:
89                         freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
90                         
91         }
92         return freq;
93 }
94
95
96 void FGRadioTransmission::receiveChat(SGGeod tx_pos, double freq, string text, int ground_to_air) {
97
98 }
99
100
101 double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmission_type) {
102         
103         // typical VOR/LOC transmitter power appears to be 100 - 200 Watt i.e 50 - 53 dBm
104         // vor/loc typical sensitivity between -107 and -101 dBm
105         // glideslope sensitivity between -85 and -81 dBm
106         if ( _propagation_model == 1) {
107                 return LOS_calculate_attenuation(tx_pos, freq, 1);
108         }
109         else if ( _propagation_model == 2) {
110                 return ITM_calculate_attenuation(tx_pos, freq, 1);
111         }
112         
113         return -1;
114
115 }
116
117
118 double FGRadioTransmission::receiveBeacon(SGGeod &tx_pos, double heading, double pitch) {
119         
120         // these properties should be set by an instrument
121         _receiver_sensitivity = _root_node->getDoubleValue("station[0]/rx-sensitivity", _receiver_sensitivity);
122         _transmitter_power = watt_to_dbm(_root_node->getDoubleValue("station[0]/tx-power-watt", _transmitter_power));
123         _polarization = _root_node->getIntValue("station[0]/polarization", 1);
124         _tx_antenna_height += _root_node->getDoubleValue("station[0]/tx-antenna-height", 0);
125         _rx_antenna_height += _root_node->getDoubleValue("station[0]/rx-antenna-height", 0);
126         _tx_antenna_gain += _root_node->getDoubleValue("station[0]/tx-antenna-gain", 0);
127         _rx_antenna_gain += _root_node->getDoubleValue("station[0]/rx-antenna-gain", 0);
128         
129         double freq = _root_node->getDoubleValue("station[0]/frequency", 144.8);        // by default stay in the ham 2 meter band
130         
131         double comm1 = getFrequency(1);
132         double comm2 = getFrequency(2);
133         if ( !(fabs(freq - comm1) <= 0.0001) &&  !(fabs(freq - comm2) <= 0.0001) ) {
134                 return -1;
135         }
136         
137         double signal = ITM_calculate_attenuation(tx_pos, freq, 1);
138         
139         return signal;
140 }
141
142
143
144 void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) {
145
146         // adjust some default parameters in case the ATC code does not set them
147         if(ground_to_air == 1) {
148                 _transmitter_power += 4.0;
149                 _tx_antenna_height += 30.0;
150                 _tx_antenna_gain += 2.0; 
151         }
152         
153         double comm1 = getFrequency(1);
154         double comm2 = getFrequency(2);
155         if ( !(fabs(freq - comm1) <= 0.0001) &&  !(fabs(freq - comm2) <= 0.0001) ) {
156                 return;
157         }
158         else {
159         
160                 if ( _propagation_model == 0) {         // skip propagation routines entirely
161                         fgSetString("/sim/messages/atc", text.c_str());
162                 }
163                 else if ( _propagation_model == 1 ) {           // Use free-space, round earth
164                         
165                         double signal = LOS_calculate_attenuation(tx_pos, freq, ground_to_air);
166                         if (signal <= 0.0) {
167                                 return;
168                         }
169                         else {
170                                 fgSetString("/sim/messages/atc", text.c_str());
171                         }
172                 }
173                 else if ( _propagation_model == 2 ) {   // Use ITM propagation model
174                         
175                         double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
176                         if (signal <= 0.0) {
177                                 return;
178                         }
179                         if ((signal > 0.0) && (signal < 12.0)) {
180                                 /** for low SNR values need a way to make the conversation
181                                 *       hard to understand but audible
182                                 *       in the real world, the receiver AGC fails to capture the slope
183                                 *       and the signal, due to being amplitude modulated, decreases volume after demodulation
184                                 *       the workaround below is more akin to what would happen on a FM transmission
185                                 *       therefore the correct way would be to work on the volume
186                                 **/
187                                 /*
188                                 string hash_noise = " ";
189                                 int reps = (int) (fabs(floor(signal - 11.0)) * 2);
190                                 int t_size = text.size();
191                                 for (int n = 1; n <= reps; ++n) {
192                                         int pos = rand() % (t_size -1);
193                                         text.replace(pos,1, hash_noise);
194                                 }
195                                 */
196                                 //double volume = (fabs(signal - 12.0) / 12);
197                                 //double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
198                                 
199                                 //fgSetDouble("/sim/sound/voices/voice/volume", volume);
200                                 fgSetString("/sim/messages/atc", text.c_str());
201                                 //fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
202                         }
203                         else {
204                                 fgSetString("/sim/messages/atc", text.c_str());
205                         }
206                 }
207         }
208 }
209
210
211 double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
212
213         
214         if((freq < 40.0) || (freq > 20000.0))   // frequency out of recommended range 
215                 return -1;
216         /** ITM default parameters 
217                 TODO: take them from tile materials (especially for sea)?
218         **/
219         double eps_dielect=15.0;
220         double sgm_conductivity = 0.005;
221         double eno = 301.0;
222         double frq_mhz = freq;
223         
224         int radio_climate = 5;          // continental temperate
225         int pol= _polarization; 
226         double conf = 0.90;     // 90% of situations and time, take into account speed
227         double rel = 0.90;      
228         double dbloss;
229         char strmode[150];
230         int p_mode = 0; // propgation mode selector: 0 LOS, 1 diffraction dominant, 2 troposcatter
231         double horizons[2];
232         int errnum;
233         
234         double clutter_loss = 0.0;      // loss due to vegetation and urban
235         double tx_pow = _transmitter_power;
236         double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
237         double signal = 0.0;
238         
239         
240         double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain;     
241         double signal_strength = tx_pow - _rx_line_losses - _tx_line_losses + ant_gain; 
242         double tx_erp = dbm_to_watt(tx_pow + _tx_antenna_gain - _tx_line_losses);
243         
244
245         FGScenery * scenery = globals->get_scenery();
246         
247         double own_lat = fgGetDouble("/position/latitude-deg");
248         double own_lon = fgGetDouble("/position/longitude-deg");
249         double own_alt_ft = fgGetDouble("/position/altitude-ft");
250         double own_heading = fgGetDouble("/orientation/heading-deg");
251         double own_alt= own_alt_ft * SG_FEET_TO_METER;
252         
253         
254         
255         
256         SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
257         SGGeod max_own_pos = SGGeod::fromDegM( own_lon, own_lat, SG_MAX_ELEVATION_M );
258         SGGeoc center = SGGeoc::fromGeod( max_own_pos );
259         SGGeoc own_pos_c = SGGeoc::fromGeod( own_pos );
260         
261         
262         double sender_alt_ft,sender_alt;
263         double transmitter_height=0.0;
264         double receiver_height=0.0;
265         SGGeod sender_pos = pos;
266         
267         sender_alt_ft = sender_pos.getElevationFt();
268         sender_alt = sender_alt_ft * SG_FEET_TO_METER;
269         SGGeod max_sender_pos = SGGeod::fromGeodM( pos, SG_MAX_ELEVATION_M );
270         SGGeoc sender_pos_c = SGGeoc::fromGeod( sender_pos );
271         
272         
273         double point_distance= _terrain_sampling_distance; 
274         double course = SGGeodesy::courseRad(own_pos_c, sender_pos_c);
275         double reverse_course = SGGeodesy::courseRad(sender_pos_c, own_pos_c);
276         double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
277         double probe_distance = 0.0;
278         /** If distance larger than this value (300 km), assume reception imposssible to spare CPU cycles */
279         if (distance_m > 300000)
280                 return -1.0;
281         /** If above 8000 meters, consider LOS mode and calculate free-space att to spare CPU cycles */
282         if (own_alt > 8000) {
283                 dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
284                 SG_LOG(SG_GENERAL, SG_BULK,
285                         "ITM Free-space mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation");
286                 //cerr << "ITM Free-space mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation" << endl;
287                 signal = link_budget - dbloss;
288                 return signal;
289         }
290         
291                 
292         int max_points = (int)floor(distance_m / point_distance);
293         //double delta_last = fmod(distance_m, point_distance);
294         
295         deque<double> elevations;
296         deque<string*> materials;
297         
298
299         double elevation_under_pilot = 0.0;
300         if (scenery->get_elevation_m( max_own_pos, elevation_under_pilot, NULL )) {
301                 receiver_height = own_alt - elevation_under_pilot; 
302         }
303
304         double elevation_under_sender = 0.0;
305         if (scenery->get_elevation_m( max_sender_pos, elevation_under_sender, NULL )) {
306                 transmitter_height = sender_alt - elevation_under_sender;
307         }
308         else {
309                 transmitter_height = sender_alt;
310         }
311         
312         
313         transmitter_height += _tx_antenna_height;
314         receiver_height += _rx_antenna_height;
315         
316         //cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl;
317         _root_node->setDoubleValue("station[0]/rx-height", receiver_height);
318         _root_node->setDoubleValue("station[0]/tx-height", transmitter_height);
319         _root_node->setDoubleValue("station[0]/distance", distance_m / 1000);
320         
321         unsigned int e_size = (deque<unsigned>::size_type)max_points;
322         
323         while (elevations.size() <= e_size) {
324                 probe_distance += point_distance;
325                 SGGeod probe = SGGeod::fromGeoc(center.advanceRadM( course, probe_distance ));
326                 const SGMaterial *mat = 0;
327                 double elevation_m = 0.0;
328         
329                 if (scenery->get_elevation_m( probe, elevation_m, &mat )) {
330                         if((transmission_type == 3) || (transmission_type == 4)) {
331                                 elevations.push_back(elevation_m);
332                                 if(mat) {
333                                         const std::vector<string> mat_names = mat->get_names();
334                                         string* name = new string(mat_names[0]);
335                                         materials.push_back(name);
336                                 }
337                                 else {
338                                         string* no_material = new string("None"); 
339                                         materials.push_back(no_material);
340                                 }
341                         }
342                         else {
343                                  elevations.push_front(elevation_m);
344                                  if(mat) {
345                                          const std::vector<string> mat_names = mat->get_names();
346                                          string* name = new string(mat_names[0]);
347                                          materials.push_front(name);
348                                 }
349                                 else {
350                                         string* no_material = new string("None"); 
351                                         materials.push_front(no_material);
352                                 }
353                         }
354                 }
355                 else {
356                         if((transmission_type == 3) || (transmission_type == 4)) {
357                                 elevations.push_back(0.0);
358                                 string* no_material = new string("None"); 
359                                 materials.push_back(no_material);
360                         }
361                         else {
362                                 string* no_material = new string("None"); 
363                                 elevations.push_front(0.0);
364                                 materials.push_front(no_material);
365                         }
366                 }
367         }
368         if((transmission_type == 3) || (transmission_type == 4)) {
369                 elevations.push_front(elevation_under_pilot);
370                 //if (delta_last > (point_distance / 2) )                       // only add last point if it's farther than half point_distance
371                         elevations.push_back(elevation_under_sender);
372         }
373         else {
374                 elevations.push_back(elevation_under_pilot);
375                 //if (delta_last > (point_distance / 2) )
376                         elevations.push_front(elevation_under_sender);
377         }
378         
379         
380         double num_points= (double)elevations.size();
381
382
383         elevations.push_front(point_distance);
384         elevations.push_front(num_points -1);
385
386         int size = elevations.size();
387         boost::scoped_array<double> itm_elev( new double[size] );
388
389         for(int i=0;i<size;i++) {
390                 itm_elev[i]=elevations[i];
391         }
392         
393         if((transmission_type == 3) || (transmission_type == 4)) {
394                 // the sender and receiver roles are switched
395                 ITM::point_to_point(itm_elev.get(), receiver_height, transmitter_height,
396                         eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
397                         pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
398                 if( _root_node->getBoolValue( "use-clutter-attenuation", false ) )
399                         calculate_clutter_loss(frq_mhz, itm_elev.get(), materials, receiver_height, transmitter_height, p_mode, horizons, clutter_loss);
400         }
401         else {
402                 ITM::point_to_point(itm_elev.get(), transmitter_height, receiver_height,
403                         eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
404                         pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
405                 if( _root_node->getBoolValue( "use-clutter-attenuation", false ) )
406                         calculate_clutter_loss(frq_mhz, itm_elev.get(), materials, transmitter_height, receiver_height, p_mode, horizons, clutter_loss);
407         }
408         
409         double pol_loss = 0.0;
410         // TODO: remove this check after we check a bit the axis calculations in this function
411         if (_polarization == 1) {
412                 pol_loss = polarization_loss();
413         }
414         //SG_LOG(SG_GENERAL, SG_BULK,
415         //              "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
416         //cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
417         _root_node->setDoubleValue("station[0]/link-budget", link_budget);
418         _root_node->setDoubleValue("station[0]/terrain-attenuation", dbloss);
419         _root_node->setStringValue("station[0]/prop-mode", strmode);
420         _root_node->setDoubleValue("station[0]/clutter-attenuation", clutter_loss);
421         _root_node->setDoubleValue("station[0]/polarization-attenuation", pol_loss);
422         //if (errnum == 4)      // if parameters are outside sane values for lrprop, bail out fast
423         //      return -1;
424         
425         // temporary, keep this antenna radiation pattern code here
426         double tx_pattern_gain = 0.0;
427         double rx_pattern_gain = 0.0;
428         double sender_heading = 270.0; // due West
429         double tx_antenna_bearing = sender_heading - reverse_course * SGD_RADIANS_TO_DEGREES;
430         double rx_antenna_bearing = own_heading - course * SGD_RADIANS_TO_DEGREES;
431         double rx_elev_angle = atan((itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m) * SGD_RADIANS_TO_DEGREES;
432         double tx_elev_angle = 0.0 - rx_elev_angle;
433         if (_root_node->getBoolValue("use-tx-antenna-pattern", false)) {
434                 FGRadioAntenna* TX_antenna;
435                 TX_antenna = new FGRadioAntenna("Plot2");
436                 TX_antenna->set_heading(sender_heading);
437                 TX_antenna->set_elevation_angle(0);
438                 tx_pattern_gain = TX_antenna->calculate_gain(tx_antenna_bearing, tx_elev_angle);
439                 delete TX_antenna;
440         }
441         if (_root_node->getBoolValue("use-rx-antenna-pattern", false)) {
442                 FGRadioAntenna* RX_antenna;
443                 RX_antenna = new FGRadioAntenna("Plot2");
444                 RX_antenna->set_heading(own_heading);
445                 RX_antenna->set_elevation_angle(fgGetDouble("/orientation/pitch-deg"));
446                 rx_pattern_gain = RX_antenna->calculate_gain(rx_antenna_bearing, rx_elev_angle);
447                 delete RX_antenna;
448         }
449         
450         signal = link_budget - dbloss - clutter_loss + pol_loss + rx_pattern_gain + tx_pattern_gain;
451         double signal_strength_dbm = signal_strength - dbloss - clutter_loss + pol_loss + rx_pattern_gain + tx_pattern_gain;
452         double field_strength_uV = dbm_to_microvolt(signal_strength_dbm);
453         _root_node->setDoubleValue("station[0]/signal-dbm", signal_strength_dbm);
454         _root_node->setDoubleValue("station[0]/field-strength-uV", field_strength_uV);
455         _root_node->setDoubleValue("station[0]/signal", signal);
456         _root_node->setDoubleValue("station[0]/tx-erp", tx_erp);
457
458         //_root_node->setDoubleValue("station[0]/tx-pattern-gain", tx_pattern_gain);
459         //_root_node->setDoubleValue("station[0]/rx-pattern-gain", rx_pattern_gain);
460
461         for (unsigned i =0; i < materials.size(); i++) {
462                 delete materials[i];
463         }
464         
465         return signal;
466
467 }
468
469
470 void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[], deque<string*> &materials,
471         double transmitter_height, double receiver_height, int p_mode,
472         double horizons[], double &clutter_loss) {
473         
474         double distance_m = itm_elev[0] * itm_elev[1]; // only consider elevation points
475         unsigned mat_size = materials.size();
476         if (p_mode == 0) {      // LOS: take each point and see how clutter height affects first Fresnel zone
477                 int mat = 0;
478                 int j=1; 
479                 for (int k=3;k < (int)(itm_elev[0]) + 2;k++) {
480                         
481                         double clutter_height = 0.0;    // mean clutter height for a certain terrain type
482                         double clutter_density = 0.0;   // percent of reflected wave
483                         if((unsigned)mat >= mat_size) { //this tends to happen when the model interferes with the antenna (obstructs)
484                                 //cerr << "Array index out of bounds 0-0: " << mat << " size: " << mat_size << endl;
485                                 break;
486                         }
487                         get_material_properties(materials[mat], clutter_height, clutter_density);
488                         
489                         double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
490                         // First Fresnel radius
491                         double frs_rad = 548 * sqrt( (j * itm_elev[1] * (itm_elev[0] - j) * itm_elev[1] / 1000000) / (  distance_m * freq / 1000) );
492                         if (frs_rad <= 0.0) {   //this tends to happen when the model interferes with the antenna (obstructs)
493                                 //cerr << "Frs rad 0-0: " << frs_rad << endl;
494                                 continue;
495                         }
496                         //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
497                         
498                         double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
499                         double d1 = j * itm_elev[1];
500                         if ((itm_elev[2] + transmitter_height) > ( itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) {
501                                 d1 = (itm_elev[0] - j) * itm_elev[1];
502                         }
503                         double ray_height = (grad * d1) + min_elev;
504                         
505                         double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
506                         double intrusion = fabs(clearance);
507                         
508                         if (clearance >= 0) {
509                                 // no losses
510                         }
511                         else if (clearance < 0 && (intrusion < clutter_height)) {
512                                 
513                                 clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
514                         }
515                         else if (clearance < 0 && (intrusion > clutter_height)) {
516                                 clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
517                         }
518                         else {
519                                 // no losses
520                         }
521                         j++;
522                         mat++;
523                 }
524                 
525         }
526         else if (p_mode == 1) {         // diffraction
527                 
528                 if (horizons[1] == 0.0) {       //      single horizon: same as above, except pass twice using the highest point
529                         int num_points_1st = (int)floor( horizons[0] * itm_elev[0]/ distance_m ); 
530                         int num_points_2nd = (int)ceil( (distance_m - horizons[0]) * itm_elev[0] / distance_m ); 
531                         //cerr << "Diffraction 1 horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << endl;
532                         int last = 1;
533                         /** perform the first pass */
534                         int mat = 0;
535                         int j=1; 
536                         for (int k=3;k < num_points_1st + 2;k++) {
537                                 if (num_points_1st < 1)
538                                         break;
539                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
540                                 double clutter_density = 0.0;   // percent of reflected wave
541                                 
542                                 if((unsigned)mat >= mat_size) {         
543                                         //cerr << "Array index out of bounds 1-1: " << mat << " size: " << mat_size << endl;
544                                         break;
545                                 }
546                                 get_material_properties(materials[mat], clutter_height, clutter_density);
547                                 
548                                 double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
549                                 // First Fresnel radius
550                                 double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / ( num_points_1st * itm_elev[1] * freq / 1000) );
551                                 if (frs_rad <= 0.0) {   
552                                         //cerr << "Frs rad 1-1: " << frs_rad << endl;
553                                         continue;
554                                 }
555                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
556                                 
557                                 double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
558                                 double d1 = j * itm_elev[1];
559                                 if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
560                                         d1 = (num_points_1st - j) * itm_elev[1];
561                                 }
562                                 double ray_height = (grad * d1) + min_elev;
563                                 
564                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
565                                 double intrusion = fabs(clearance);
566                                 
567                                 if (clearance >= 0) {
568                                         // no losses
569                                 }
570                                 else if (clearance < 0 && (intrusion < clutter_height)) {
571                                         
572                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
573                                 }
574                                 else if (clearance < 0 && (intrusion > clutter_height)) {
575                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
576                                 }
577                                 else {
578                                         // no losses
579                                 }
580                                 j++;
581                                 mat++;
582                                 last = k;
583                         }
584                         
585                         /** and the second pass */
586                         mat +=1;
587                         j =1; // first point is diffraction edge, 2nd the RX elevation
588                         for (int k=last+2;k < (int)(itm_elev[0]) + 2;k++) {
589                                 if (num_points_2nd < 1)
590                                         break;
591                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
592                                 double clutter_density = 0.0;   // percent of reflected wave
593                                 
594                                 if((unsigned)mat >= mat_size) {         
595                                         //cerr << "Array index out of bounds 1-2: " << mat << " size: " << mat_size << endl;
596                                         break;
597                                 }
598                                 get_material_properties(materials[mat], clutter_height, clutter_density);
599                                 
600                                 double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
601                                 // First Fresnel radius
602                                 double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
603                                 if (frs_rad <= 0.0) {   
604                                         //cerr << "Frs rad 1-2: " << frs_rad << " numpoints2 " << num_points_2nd << " j: " << j << endl;
605                                         continue;
606                                 }
607                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
608                                 
609                                 double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
610                                 double d1 = j * itm_elev[1];
611                                 if ( (itm_elev[last+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { 
612                                         d1 = (num_points_2nd - j) * itm_elev[1];
613                                 }
614                                 double ray_height = (grad * d1) + min_elev;
615                                 
616                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
617                                 double intrusion = fabs(clearance);
618                                 
619                                 if (clearance >= 0) {
620                                         // no losses
621                                 }
622                                 else if (clearance < 0 && (intrusion < clutter_height)) {
623                                         
624                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
625                                 }
626                                 else if (clearance < 0 && (intrusion > clutter_height)) {
627                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
628                                 }
629                                 else {
630                                         // no losses
631                                 }
632                                 j++;
633                                 mat++;
634                         }
635                         
636                 }
637                 else {  // double horizon: same as single horizon, except there are 3 segments
638                         
639                         int num_points_1st = (int)floor( horizons[0] * itm_elev[0] / distance_m ); 
640                         int num_points_2nd = (int)floor(horizons[1] * itm_elev[0] / distance_m ); 
641                         int num_points_3rd = (int)itm_elev[0] - num_points_1st - num_points_2nd; 
642                         //cerr << "Double horizon:: horizon1: " << horizons[0] << " horizon2: " << horizons[1] << " distance: " << distance_m << endl;
643                         //cerr << "Double horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << " points3: " << num_points_3rd << endl;
644                         int last = 1;
645                         /** perform the first pass */
646                         int mat = 0;
647                         int j=1; // first point is TX elevation, 2nd is obstruction elevation
648                         for (int k=3;k < num_points_1st +2;k++) {
649                                 if (num_points_1st < 1)
650                                         break;
651                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
652                                 double clutter_density = 0.0;   // percent of reflected wave
653                                 if((unsigned)mat >= mat_size) {         
654                                         //cerr << "Array index out of bounds 2-1: " << mat << " size: " << mat_size << endl;
655                                         break;
656                                 }
657                                 get_material_properties(materials[mat], clutter_height, clutter_density);
658                                 
659                                 double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
660                                 // First Fresnel radius
661                                 double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / (  num_points_1st * itm_elev[1] * freq / 1000) );
662                                 if (frs_rad <= 0.0) {           
663                                         //cerr << "Frs rad 2-1: " << frs_rad << " numpoints1 " << num_points_1st << " j: " << j << endl;
664                                         continue;
665                                 }
666                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
667                                 
668                                 double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
669                                 double d1 = j * itm_elev[1];
670                                 if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
671                                         d1 = (num_points_1st - j) * itm_elev[1];
672                                 }
673                                 double ray_height = (grad * d1) + min_elev;
674                                 
675                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
676                                 double intrusion = fabs(clearance);
677                                 
678                                 if (clearance >= 0) {
679                                         // no losses
680                                 }
681                                 else if (clearance < 0 && (intrusion < clutter_height)) {
682                                         
683                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
684                                 }
685                                 else if (clearance < 0 && (intrusion > clutter_height)) {
686                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
687                                 }
688                                 else {
689                                         // no losses
690                                 }
691                                 j++;
692                                 mat++;
693                                 last = k;
694                         }
695                         mat +=1;
696                         /** and the second pass */
697                         int last2=1;
698                         j =1; // first point is 1st obstruction elevation, 2nd is 2nd obstruction elevation
699                         for (int k=last+2;k < num_points_1st + num_points_2nd +2;k++) {
700                                 if (num_points_2nd < 1)
701                                         break;
702                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
703                                 double clutter_density = 0.0;   // percent of reflected wave
704                                 if((unsigned)mat >= mat_size) {         
705                                         //cerr << "Array index out of bounds 2-2: " << mat << " size: " << mat_size << endl;
706                                         break;
707                                 }
708                                 get_material_properties(materials[mat], clutter_height, clutter_density);
709                                 
710                                 double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) / distance_m;
711                                 // First Fresnel radius
712                                 double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
713                                 if (frs_rad <= 0.0) {   
714                                         //cerr << "Frs rad 2-2: " << frs_rad << " numpoints2 " << num_points_2nd << " j: " << j << endl;
715                                         continue;
716                                 }
717                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
718                                 
719                                 double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[num_points_1st + num_points_2nd +2] + clutter_height);
720                                 double d1 = j * itm_elev[1];
721                                 if ( (itm_elev[last+1] + clutter_height) > (itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) ) { 
722                                         d1 = (num_points_2nd - j) * itm_elev[1];
723                                 }
724                                 double ray_height = (grad * d1) + min_elev;
725                                 
726                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
727                                 double intrusion = fabs(clearance);
728                                 
729                                 if (clearance >= 0) {
730                                         // no losses
731                                 }
732                                 else if (clearance < 0 && (intrusion < clutter_height)) {
733                                         
734                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
735                                 }
736                                 else if (clearance < 0 && (intrusion > clutter_height)) {
737                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
738                                 }
739                                 else {
740                                         // no losses
741                                 }
742                                 j++;
743                                 mat++;
744                                 last2 = k;
745                         }
746                         
747                         /** third and final pass */
748                         mat +=1;
749                         j =1; // first point is 2nd obstruction elevation, 3rd is RX elevation
750                         for (int k=last2+2;k < (int)itm_elev[0] + 2;k++) {
751                                 if (num_points_3rd < 1)
752                                         break;
753                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
754                                 double clutter_density = 0.0;   // percent of reflected wave
755                                 if((unsigned)mat >= mat_size) {         
756                                         //cerr << "Array index out of bounds 2-3: " << mat << " size: " << mat_size << endl;
757                                         break;
758                                 }
759                                 get_material_properties(materials[mat], clutter_height, clutter_density);
760                                 
761                                 double grad = fabs(itm_elev[last2+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
762                                 // First Fresnel radius
763                                 double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_3rd - j) * itm_elev[1] / 1000000) / (  num_points_3rd * itm_elev[1] * freq / 1000) );
764                                 if (frs_rad <= 0.0) {           
765                                         //cerr << "Frs rad 2-3: " << frs_rad << " numpoints3 " << num_points_3rd << " j: " << j << endl;
766                                         continue;
767                                 }
768                                 
769                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
770                                 
771                                 double min_elev = SGMiscd::min(itm_elev[last2+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
772                                 double d1 = j * itm_elev[1];
773                                 if ( (itm_elev[last2+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { 
774                                         d1 = (num_points_3rd - j) * itm_elev[1];
775                                 }
776                                 double ray_height = (grad * d1) + min_elev;
777                                 
778                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
779                                 double intrusion = fabs(clearance);
780                                 
781                                 if (clearance >= 0) {
782                                         // no losses
783                                 }
784                                 else if (clearance < 0 && (intrusion < clutter_height)) {
785                                         
786                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
787                                 }
788                                 else if (clearance < 0 && (intrusion > clutter_height)) {
789                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
790                                 }
791                                 else {
792                                         // no losses
793                                 }
794                                 j++;
795                                 mat++;
796                                 
797                         }
798                         
799                 }
800         }
801         else if (p_mode == 2) {         //      troposcatter: ignore ground clutter for now... maybe do something with weather
802                 clutter_loss = 0.0;
803         }
804         
805 }
806
807
808 void FGRadioTransmission::get_material_properties(string* mat_name, double &height, double &density) {
809         
810         if(!mat_name)
811                 return;
812         
813         if(*mat_name == "Landmass") {
814                 height = 15.0;
815                 density = 0.2;
816         }
817
818         else if(*mat_name == "SomeSort") {
819                 height = 15.0;
820                 density = 0.2;
821         }
822
823         else if(*mat_name == "Island") {
824                 height = 15.0;
825                 density = 0.2;
826         }
827         else if(*mat_name == "Default") {
828                 height = 15.0;
829                 density = 0.2;
830         }
831         else if(*mat_name == "EvergreenBroadCover") {
832                 height = 20.0;
833                 density = 0.2;
834         }
835         else if(*mat_name == "EvergreenForest") {
836                 height = 20.0;
837                 density = 0.2;
838         }
839         else if(*mat_name == "DeciduousBroadCover") {
840                 height = 15.0;
841                 density = 0.3;
842         }
843         else if(*mat_name == "DeciduousForest") {
844                 height = 15.0;
845                 density = 0.3;
846         }
847         else if(*mat_name == "MixedForestCover") {
848                 height = 20.0;
849                 density = 0.25;
850         }
851         else if(*mat_name == "MixedForest") {
852                 height = 15.0;
853                 density = 0.25;
854         }
855         else if(*mat_name == "RainForest") {
856                 height = 25.0;
857                 density = 0.55;
858         }
859         else if(*mat_name == "EvergreenNeedleCover") {
860                 height = 15.0;
861                 density = 0.2;
862         }
863         else if(*mat_name == "WoodedTundraCover") {
864                 height = 5.0;
865                 density = 0.15;
866         }
867         else if(*mat_name == "DeciduousNeedleCover") {
868                 height = 5.0;
869                 density = 0.2;
870         }
871         else if(*mat_name == "ScrubCover") {
872                 height = 3.0;
873                 density = 0.15;
874         }
875         else if(*mat_name == "BuiltUpCover") {
876                 height = 30.0;
877                 density = 0.7;
878         }
879         else if(*mat_name == "Urban") {
880                 height = 30.0;
881                 density = 0.7;
882         }
883         else if(*mat_name == "Construction") {
884                 height = 30.0;
885                 density = 0.7;
886         }
887         else if(*mat_name == "Industrial") {
888                 height = 30.0;
889                 density = 0.7;
890         }
891         else if(*mat_name == "Port") {
892                 height = 30.0;
893                 density = 0.7;
894         }
895         else if(*mat_name == "Town") {
896                 height = 10.0;
897                 density = 0.5;
898         }
899         else if(*mat_name == "SubUrban") {
900                 height = 10.0;
901                 density = 0.5;
902         }
903         else if(*mat_name == "CropWoodCover") {
904                 height = 10.0;
905                 density = 0.1;
906         }
907         else if(*mat_name == "CropWood") {
908                 height = 10.0;
909                 density = 0.1;
910         }
911         else if(*mat_name == "AgroForest") {
912                 height = 10.0;
913                 density = 0.1;
914         }
915         else {
916                 height = 0.0;
917                 density = 0.0;
918         }
919         
920 }
921
922
923 double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
924         
925         double frq_mhz = freq;
926         double dbloss;
927         double tx_pow = _transmitter_power;
928         double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
929         double signal = 0.0;
930         
931         double sender_alt_ft,sender_alt;
932         double transmitter_height=0.0;
933         double receiver_height=0.0;
934         double own_lat = fgGetDouble("/position/latitude-deg");
935         double own_lon = fgGetDouble("/position/longitude-deg");
936         double own_alt_ft = fgGetDouble("/position/altitude-ft");
937         double own_alt= own_alt_ft * SG_FEET_TO_METER;
938         
939         
940         double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain;     
941
942         //cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
943         
944         SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
945         
946         SGGeod sender_pos = pos;
947         
948         sender_alt_ft = sender_pos.getElevationFt();
949         sender_alt = sender_alt_ft * SG_FEET_TO_METER;
950         
951         receiver_height = own_alt;
952         transmitter_height = sender_alt;
953         
954         double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
955         
956         
957         transmitter_height += _tx_antenna_height;
958         receiver_height += _rx_antenna_height;
959         
960         
961         /** radio horizon calculation with wave bending k=4/3 */
962         double receiver_horizon = 4.12 * sqrt(receiver_height);
963         double transmitter_horizon = 4.12 * sqrt(transmitter_height);
964         double total_horizon = receiver_horizon + transmitter_horizon;
965         
966         if (distance_m > total_horizon) {
967                 return -1;
968         }
969         double pol_loss = 0.0;
970         if (_polarization == 1) {
971                 pol_loss = polarization_loss();
972         }
973         // free-space loss (distance calculation should be changed)
974         dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
975         signal = link_budget - dbloss + pol_loss;
976
977         //cerr << "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm " << endl;
978         return signal;
979         
980 }
981
982 /*** calculate loss due to polarization mismatch
983 *       this function is only reliable for vertical polarization
984 *       due to the V-shape of horizontally polarized antennas
985 ***/
986 double FGRadioTransmission::polarization_loss() {
987         
988         double theta_deg;
989         double roll = fgGetDouble("/orientation/roll-deg");
990         if (fabs(roll) > 85.0)
991                 roll = 85.0;
992         double pitch = fgGetDouble("/orientation/pitch-deg");
993         if (fabs(pitch) > 85.0)
994                 pitch = 85.0;
995         double theta = fabs( atan( sqrt( 
996                 pow(tan(roll * SGD_DEGREES_TO_RADIANS), 2) + 
997                 pow(tan(pitch * SGD_DEGREES_TO_RADIANS), 2) )) * SGD_RADIANS_TO_DEGREES);
998         
999         if (_polarization == 0)
1000                 theta_deg = 90.0 - theta;
1001         else
1002                 theta_deg = theta;
1003         if (theta_deg > 85.0)   // we don't want to converge into infinity
1004                 theta_deg = 85.0;
1005         
1006         double loss = 10 * log10( pow(cos(theta_deg * SGD_DEGREES_TO_RADIANS), 2) );
1007         //cerr << "Polarization loss: " << loss << " dBm " << endl;
1008         return loss;
1009 }
1010
1011
1012 double FGRadioTransmission::watt_to_dbm(double power_watt) {
1013         return 10 * log10(1000 * power_watt);   // returns dbm
1014 }
1015
1016 double FGRadioTransmission::dbm_to_watt(double dbm) {
1017         return exp( (dbm-30) * log(10.0) / 10.0);       // returns Watts
1018 }
1019
1020 double FGRadioTransmission::dbm_to_microvolt(double dbm) {
1021         return sqrt(dbm_to_watt(dbm) * 50) * 1000000;   // returns microvolts
1022 }
1023
1024