]> git.mxchange.org Git - flightgear.git/blob - src/Radio/radio.cxx
remove unnecessary function
[flightgear.git] / src / Radio / radio.cxx
1 // radio.cxx -- implementation of FGRadio
2 // Class to manage radio propagation using the ITM model
3 // Written by Adrian Musceac, started August 2011.
4 //
5 // This program is free software; you can redistribute it and/or
6 // modify it under the terms of the GNU General Public License as
7 // published by the Free Software Foundation; either version 2 of the
8 // License, or (at your option) any later version.
9 //
10 // This program is distributed in the hope that it will be useful, but
11 // WITHOUT ANY WARRANTY; without even the implied warranty of
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 // General Public License for more details.
14 //
15 // You should have received a copy of the GNU General Public License
16 // along with this program; if not, write to the Free Software
17 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
18
19
20
21 #ifdef HAVE_CONFIG_H
22 #  include <config.h>
23 #endif
24
25 #include <math.h>
26 #include <stdlib.h>
27 #include <deque>
28 #include "radio.hxx"
29 #include <simgear/scene/material/mat.hxx>
30 #include <Scenery/scenery.hxx>
31
32 #define WITH_POINT_TO_POINT 1
33 #include "itm.cpp"
34
35
36 FGRadio::FGRadio() {
37         
38         /** radio parameters (which should probably be set for each radio) */
39         
40         _receiver_sensitivity = -110.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD
41         
42         /** AM transmitter power in dBm.
43         *       Note this value is calculated from the typical final transistor stage output
44         *       small aircraft have portable transmitters which operate at 36 dBm output (4 Watts) others operate in the range 10-20 W
45         *       later possibly store this value in aircraft description
46         *       ATC comms usually operate high power equipment, thus making the link asymetrical; this is taken care of in propagation routines
47         *       Typical output powers for ATC ground equipment, VHF-UHF:
48         *       40 dBm - 10 W (ground, clearance)
49         *       44 dBm - 20 W (tower)
50         *       47 dBm - 50 W (center, sectors)
51         *       50 dBm - 100 W (center, sectors)
52         *       53 dBm - 200 W (sectors, on directional arrays)
53         **/
54         _transmitter_power = 43.0;
55         
56         /** pilot plane's antenna gain + AI aircraft antenna gain
57         *       real-life gain for conventional monopole/dipole antenna
58         **/
59         _antenna_gain = 2.0;
60         _propagation_model = 2; //  choose between models via option: realistic radio on/off
61         
62 }
63
64 FGRadio::~FGRadio() 
65 {
66 }
67
68
69 double FGRadio::getFrequency(int radio) {
70         double freq = 118.0;
71         switch (radio) {
72                 case 1:
73                         freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
74                         break;
75                 case 2:
76                         freq = fgGetDouble("/instrumentation/comm[1]/frequencies/selected-mhz");
77                         break;
78                 default:
79                         freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
80                         
81         }
82         return freq;
83 }
84
85 /*** TODO: receive multiplayer chat message and voice
86 ***/
87 void FGRadio::receiveChat(SGGeod tx_pos, double freq, string text, int ground_to_air) {
88
89 }
90
91 /*** TODO: receive navaid 
92 ***/
93 double FGRadio::receiveNav(SGGeod tx_pos, double freq, int transmission_type) {
94         
95         // typical VOR/LOC transmitter power appears to be 200 Watt ~ 53 dBm
96         // vor/loc typical sensitivity between -107 and -101 dBm
97         // glideslope sensitivity between -85 and -81 dBm
98         if ( _propagation_model == 1) {
99                 return LOS_calculate_attenuation(tx_pos, freq, 1);
100         }
101         else if ( _propagation_model == 2) {
102                 return ITM_calculate_attenuation(tx_pos, freq, 1);
103         }
104         
105         return -1;
106
107 }
108
109 /*** Receive ATC radio communication as text
110 ***/
111 void FGRadio::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) {
112
113         
114         double comm1 = getFrequency(1);
115         double comm2 = getFrequency(2);
116         if ( !(fabs(freq - comm1) <= 0.0001) &&  !(fabs(freq - comm2) <= 0.0001) ) {
117                 //cerr << "Frequency not tuned: " << freq << " Radio1: " << comm1 << " Radio2: " << comm2 << endl;
118                 return;
119         }
120         else {
121         
122                 if ( _propagation_model == 0) {
123                         fgSetString("/sim/messages/atc", text.c_str());
124                 }
125                 else if ( _propagation_model == 1 ) {
126                         // TODO: free space, round earth
127                         double signal = LOS_calculate_attenuation(tx_pos, freq, ground_to_air);
128                         if (signal <= 0.0) {
129                                 SG_LOG(SG_GENERAL, SG_BULK, "Signal below receiver minimum sensitivity: " << signal);
130                                 //cerr << "Signal below receiver minimum sensitivity: " << signal << endl;
131                                 return;
132                         }
133                         else {
134                                 SG_LOG(SG_GENERAL, SG_BULK, "Signal completely readable: " << signal);
135                                 //cerr << "Signal completely readable: " << signal << endl;
136                                 fgSetString("/sim/messages/atc", text.c_str());
137                                 /** write signal strength above threshold to the property tree
138                                 *       to implement a simple S-meter just divide by 3 dB per grade (VHF norm)
139                                 **/
140                                 fgSetDouble("/sim/radio/comm1-signal", signal);
141                         }
142                 }
143                 else if ( _propagation_model == 2 ) {
144                         // Use ITM propagation model
145                         double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
146                         if (signal <= 0.0) {
147                                 SG_LOG(SG_GENERAL, SG_BULK, "Signal below receiver minimum sensitivity: " << signal);
148                                 //cerr << "Signal below receiver minimum sensitivity: " << signal << endl;
149                                 return;
150                         }
151                         if ((signal > 0.0) && (signal < 12.0)) {
152                                 /** for low SNR values implement a way to make the conversation
153                                 *       hard to understand but audible
154                                 *       in the real world, the receiver AGC fails to capture the slope
155                                 *       and the signal, due to being amplitude modulated, decreases volume after demodulation
156                                 *       the workaround below is more akin to what would happen on a FM transmission
157                                 *       therefore the correct way would be to work on the volume
158                                 **/
159                                 /*
160                                 string hash_noise = " ";
161                                 int reps = (int) (fabs(floor(signal - 11.0)) * 2);
162                                 int t_size = text.size();
163                                 for (int n = 1; n <= reps; ++n) {
164                                         int pos = rand() % (t_size -1);
165                                         text.replace(pos,1, hash_noise);
166                                 }
167                                 */
168                                 double volume = (fabs(signal - 12.0) / 12);
169                                 double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
170                                 SG_LOG(SG_GENERAL, SG_BULK, "Usable signal at limit: " << signal);
171                                 //cerr << "Usable signal at limit: " << signal << endl;
172                                 fgSetDouble("/sim/sound/voices/voice/volume", volume);
173                                 fgSetString("/sim/messages/atc", text.c_str());
174                                 fgSetDouble("/sim/radio/comm1-signal", signal);
175                                 fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
176                         }
177                         else {
178                                 SG_LOG(SG_GENERAL, SG_BULK, "Signal completely readable: " << signal);
179                                 //cerr << "Signal completely readable: " << signal << endl;
180                                 fgSetString("/sim/messages/atc", text.c_str());
181                                 /** write signal strength above threshold to the property tree
182                                 *       to implement a simple S-meter just divide by 3 dB per grade (VHF norm)
183                                 **/
184                                 fgSetDouble("/sim/radio/comm1-signal", signal);
185                         }
186                         
187                 }
188                 
189         }
190         
191 }
192
193 /***  Implement radio attenuation               
194           based on the Longley-Rice propagation model
195 ***/
196 double FGRadio::ITM_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
197
198         
199         
200         /** ITM default parameters 
201                 TODO: take them from tile materials (especially for sea)?
202         **/
203         double eps_dielect=15.0;
204         double sgm_conductivity = 0.005;
205         double eno = 301.0;
206         double frq_mhz;
207         if( (freq < 118.0) || (freq > 137.0) )
208                 frq_mhz = 125.0;        // sane value, middle of bandplan
209         else
210                 frq_mhz = freq;
211         int radio_climate = 5;          // continental temperate
212         int pol=1;      // assuming vertical polarization although this is more complex in reality
213         double conf = 0.90;     // 90% of situations and time, take into account speed
214         double rel = 0.90;      
215         double dbloss;
216         char strmode[150];
217         int p_mode = 0; // propgation mode selector: 0 LOS, 1 diffraction dominant, 2 troposcatter
218         double horizons[2];
219         int errnum;
220         
221         double clutter_loss = 0.0;      // loss due to vegetation and urban
222         double tx_pow = _transmitter_power;
223         double ant_gain = _antenna_gain;
224         double signal = 0.0;
225         
226         if(transmission_type == 1)
227                 tx_pow = _transmitter_power + 6.0;
228
229         if((transmission_type == 1) || (transmission_type == 3))
230                 ant_gain = _antenna_gain + 3.0; //pilot plane's antenna gain + ground station antenna gain
231         
232         double link_budget = tx_pow - _receiver_sensitivity + ant_gain; 
233
234         FGScenery * scenery = globals->get_scenery();
235         
236         double own_lat = fgGetDouble("/position/latitude-deg");
237         double own_lon = fgGetDouble("/position/longitude-deg");
238         double own_alt_ft = fgGetDouble("/position/altitude-ft");
239         double own_alt= own_alt_ft * SG_FEET_TO_METER;
240         
241         
242         //cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
243         
244         SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
245         SGGeod max_own_pos = SGGeod::fromDegM( own_lon, own_lat, SG_MAX_ELEVATION_M );
246         SGGeoc center = SGGeoc::fromGeod( max_own_pos );
247         SGGeoc own_pos_c = SGGeoc::fromGeod( own_pos );
248         
249         /**     position of sender radio antenna (HAAT)
250                         sender can be aircraft or ground station
251         **/
252         double ATC_HAAT = 30.0;
253         double Aircraft_HAAT = 5.0;
254         double sender_alt_ft,sender_alt;
255         double transmitter_height=0.0;
256         double receiver_height=0.0;
257         SGGeod sender_pos = pos;
258         
259         sender_alt_ft = sender_pos.getElevationFt();
260         sender_alt = sender_alt_ft * SG_FEET_TO_METER;
261         SGGeod max_sender_pos = SGGeod::fromGeodM( pos, SG_MAX_ELEVATION_M );
262         SGGeoc sender_pos_c = SGGeoc::fromGeod( sender_pos );
263         //cerr << "ITM:: sender Lat: " << parent->getLatitude() << ", Lon: " << parent->getLongitude() << ", Alt: " << sender_alt << endl;
264         
265         double point_distance= 90.0; // regular SRTM is 90 meters
266         double course = SGGeodesy::courseRad(own_pos_c, sender_pos_c);
267         double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
268         double probe_distance = 0.0;
269         /** If distance larger than this value (300 km), assume reception imposssible */
270         if (distance_m > 300000)
271                 return -1.0;
272         /** If above 8000 meters, consider LOS mode and calculate free-space att */
273         if (own_alt > 8000) {
274                 dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
275                 SG_LOG(SG_GENERAL, SG_BULK,
276                         "ITM Free-space mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation");
277                 //cerr << "ITM Free-space mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation" << endl;
278                 signal = link_budget - dbloss;
279                 return signal;
280         }
281         
282                 
283         double max_points = distance_m / point_distance;
284         deque<double> _elevations;
285         deque<string> materials;
286         
287
288         double elevation_under_pilot = 0.0;
289         if (scenery->get_elevation_m( max_own_pos, elevation_under_pilot, NULL )) {
290                 receiver_height = own_alt - elevation_under_pilot + 3; //assume antenna located 3 meters above ground
291         }
292
293         double elevation_under_sender = 0.0;
294         if (scenery->get_elevation_m( max_sender_pos, elevation_under_sender, NULL )) {
295                 transmitter_height = sender_alt - elevation_under_sender;
296         }
297         else {
298                 transmitter_height = sender_alt;
299         }
300         
301         if(transmission_type == 1) 
302                 transmitter_height += ATC_HAAT;
303         else
304                 transmitter_height += Aircraft_HAAT;
305         
306         SG_LOG(SG_GENERAL, SG_BULK,
307                         "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters");
308         cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl;
309         
310         unsigned int e_size = (deque<unsigned>::size_type)max_points;
311         
312         while (_elevations.size() <= e_size) {
313                 probe_distance += point_distance;
314                 SGGeod probe = SGGeod::fromGeoc(center.advanceRadM( course, probe_distance ));
315                 const SGMaterial *mat = 0;
316                 double elevation_m = 0.0;
317         
318                 if (scenery->get_elevation_m( probe, elevation_m, &mat )) {
319                         if((transmission_type == 3) || (transmission_type == 4)) {
320                                 _elevations.push_back(elevation_m);
321                                 if(mat) {
322                                         const std::vector<string> mat_names = mat->get_names();
323                                         materials.push_back(mat_names[0]);
324                                 }
325                                 else {
326                                         materials.push_back("None");
327                                 }
328                         }
329                         else {
330                                  _elevations.push_front(elevation_m);
331                                  if(mat) {
332                                          const std::vector<string> mat_names = mat->get_names();
333                                          materials.push_front(mat_names[0]);
334                                 }
335                                 else {
336                                         materials.push_front("None");
337                                 }
338                         }
339                 }
340                 else {
341                         if((transmission_type == 3) || (transmission_type == 4)) {
342                                 _elevations.push_back(0.0);
343                                 materials.push_back("None");
344                         }
345                         else {
346                                 _elevations.push_front(0.0);
347                                 materials.push_front("None");
348                         }
349                 }
350         }
351         if((transmission_type == 3) || (transmission_type == 4)) {
352                 _elevations.push_front(elevation_under_pilot);
353                 _elevations.push_back(elevation_under_sender);
354         }
355         else {
356                 _elevations.push_back(elevation_under_pilot);
357                 _elevations.push_front(elevation_under_sender);
358         }
359         
360         
361         double max_alt_between=0.0;
362         for( deque<double>::size_type i = 0; i < _elevations.size(); i++ ) {
363                 if (_elevations[i] > max_alt_between) {
364                         max_alt_between = _elevations[i];
365                 }
366         }
367         
368         double num_points= (double)_elevations.size();
369         //cerr << "ITM:: Max alt between: " << max_alt_between << ", num points:" << num_points << endl;
370         _elevations.push_front(point_distance);
371         _elevations.push_front(num_points -1);
372         int size = _elevations.size();
373         double itm_elev[size];
374         for(int i=0;i<size;i++) {
375                 itm_elev[i]=_elevations[i];
376                 //cerr << "ITM:: itm_elev: " << _elevations[i] << endl;
377         }
378
379         if((transmission_type == 3) || (transmission_type == 4)) {
380                 // the sender and receiver roles are switched
381                 point_to_point(itm_elev, receiver_height, transmitter_height,
382                         eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
383                         pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
384                 if( fgGetBool( "/sim/radio/use-clutter-attenuation", false ) )
385                         clutterLoss(frq_mhz, distance_m, itm_elev, materials, receiver_height, transmitter_height, p_mode, horizons, clutter_loss);
386         }
387         else {
388                 point_to_point(itm_elev, transmitter_height, receiver_height,
389                         eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
390                         pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
391                 if( fgGetBool( "/sim/radio/use-clutter-attenuation", false ) )
392                         clutterLoss(frq_mhz, distance_m, itm_elev, materials, transmitter_height, receiver_height, p_mode, horizons, clutter_loss);
393         }
394         SG_LOG(SG_GENERAL, SG_BULK,
395                         "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
396         cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
397         
398         cerr << "Clutter loss: " << clutter_loss << endl;
399         //if (errnum == 4)      // if parameters are outside sane values for lrprop, the alternative method is used
400         //      return -1;
401         signal = link_budget - dbloss - clutter_loss;
402         return signal;
403
404 }
405
406 /*** Calculate losses due to vegetation and urban clutter (WIP)
407 *        We are only worried about clutter loss, terrain influence 
408 *        on the first Fresnel zone is calculated in the ITM functions
409 ***/
410 void FGRadio::clutterLoss(double freq, double distance_m, double itm_elev[], deque<string> materials,
411         double transmitter_height, double receiver_height, int p_mode,
412         double horizons[], double &clutter_loss) {
413         
414         if (p_mode == 0) {      // LOS: take each point and see how clutter height affects first Fresnel zone
415                 int mat = 0;
416                 int j=1; // first point is TX elevation, last is RX elevation
417                 for (int k=3;k < (int)itm_elev[0];k++) {
418                         
419                         double clutter_height = 0.0;    // mean clutter height for a certain terrain type
420                         double clutter_density = 0.0;   // percent of reflected wave
421                         get_material_properties(materials[mat], clutter_height, clutter_density);
422                         //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
423                         double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 1] + receiver_height) / distance_m;
424                         // First Fresnel radius
425                         double frs_rad = 548 * sqrt( (j * itm_elev[1] * (itm_elev[0] - j) * itm_elev[1] / 1000000) / (  distance_m * freq / 1000) );
426                         
427                         //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
428                         //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
429                         
430                         double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[(int)itm_elev[0] + 1] + receiver_height);
431                         double d1 = j * itm_elev[1];
432                         if ((itm_elev[2] + transmitter_height) > ( itm_elev[(int)itm_elev[0] + 1] + receiver_height) ) {
433                                 d1 = (itm_elev[0] - j) * itm_elev[1];
434                         }
435                         double ray_height = (grad * d1) + min_elev;
436                         //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
437                         double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
438                         double intrusion = fabs(clearance);
439                         //cerr << "Clutter:: clearance: " << clearance << endl;
440                         if (clearance >= 0) {
441                                 // no losses
442                         }
443                         else if (clearance < 0 && (intrusion < clutter_height)) {
444                                 
445                                 clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * freq/100;
446                         }
447                         else if (clearance < 0 && (intrusion > clutter_height)) {
448                                 clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * freq/100;
449                         }
450                         else {
451                                 // no losses
452                         }
453                         j++;
454                         mat++;
455                 }
456                 
457         }
458         else if (p_mode == 1) {         // diffraction
459                 
460                 if (horizons[1] == 0.0) {       //      single horizon: same as above, except pass twice using the highest point
461                         int num_points_1st = (int)floor( horizons[0] * (double)itm_elev[0] / distance_m ); 
462                         int num_points_2nd = (int)floor( (distance_m - horizons[0]) * (double)itm_elev[0] / distance_m ); 
463                         int last = 1;
464                         /** perform the first pass */
465                         int mat = 0;
466                         int j=1; // first point is TX elevation, 2nd is obstruction elevation
467                         for (int k=3;k < num_points_1st ;k++) {
468                                 
469                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
470                                 double clutter_density = 0.0;   // percent of reflected wave
471                                 get_material_properties(materials[mat], clutter_height, clutter_density);
472                                 //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
473                                 double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 1] + clutter_height) / distance_m;
474                                 // First Fresnel radius
475                                 double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / (  num_points_1st * itm_elev[1] * freq / 1000) );
476                                 
477                                 //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
478                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
479                                 
480                                 double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 1] + clutter_height);
481                                 double d1 = j * itm_elev[1];
482                                 if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 1] + clutter_height) ) {
483                                         d1 = (num_points_1st - j) * itm_elev[1];
484                                 }
485                                 double ray_height = (grad * d1) + min_elev;
486                                 //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
487                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
488                                 double intrusion = fabs(clearance);
489                                 //cerr << "Clutter:: clearance: " << clearance << endl;
490                                 if (clearance >= 0) {
491                                         // no losses
492                                 }
493                                 else if (clearance < 0 && (intrusion < clutter_height)) {
494                                         
495                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * freq/100;
496                                 }
497                                 else if (clearance < 0 && (intrusion > clutter_height)) {
498                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * freq/100;
499                                 }
500                                 else {
501                                         // no losses
502                                 }
503                                 j++;
504                                 mat++;
505                                 last = k;
506                         }
507                         
508                         /** and the second pass */
509                         
510                         int l =1; // first point is diffraction edge, 2nd the RX elevation
511                         for (int k=last+1;k < num_points_2nd ;k++) {
512                                 
513                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
514                                 double clutter_density = 0.0;   // percent of reflected wave
515                                 get_material_properties(materials[mat], clutter_height, clutter_density);
516                                 //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
517                                 double grad = fabs(itm_elev[last] + clutter_height - itm_elev[(int)itm_elev[0] + 1] + receiver_height) / distance_m;
518                                 // First Fresnel radius
519                                 double frs_rad = 548 * sqrt( (l * itm_elev[1] * (num_points_2nd - l) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
520                                 
521                                 //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
522                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
523                                 
524                                 double min_elev = SGMiscd::min(itm_elev[last] + clutter_height, itm_elev[(int)itm_elev[0] + 1] + receiver_height);
525                                 double d1 = l * itm_elev[1];
526                                 if ( (itm_elev[last] + clutter_height) > (itm_elev[(int)itm_elev[0] + 1] + receiver_height) ) { 
527                                         d1 = (num_points_2nd - l) * itm_elev[1];
528                                 }
529                                 double ray_height = (grad * d1) + min_elev;
530                                 //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
531                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
532                                 double intrusion = fabs(clearance);
533                                 //cerr << "Clutter:: clearance: " << clearance << endl;
534                                 if (clearance >= 0) {
535                                         // no losses
536                                 }
537                                 else if (clearance < 0 && (intrusion < clutter_height)) {
538                                         
539                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * freq/100;
540                                 }
541                                 else if (clearance < 0 && (intrusion > clutter_height)) {
542                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * freq/100;
543                                 }
544                                 else {
545                                         // no losses
546                                 }
547                                 j++;
548                                 l++;
549                                 mat++;
550                         }
551                         
552                 }
553                 else {  // double horizon: same as single horizon, except there are 3 segments
554                         
555                         int num_points_1st = (int)floor( horizons[0] * (double)itm_elev[0] / distance_m ); 
556                         int num_points_2nd = (int)floor( (horizons[1] - horizons[0]) * (double)itm_elev[0] / distance_m ); 
557                         int num_points_3rd = (int)floor( (distance_m - horizons[1]) * (double)itm_elev[0] / distance_m ); 
558                         int last = 1;
559                         /** perform the first pass */
560                         int mat = 0;
561                         int j=1; // first point is TX elevation, 2nd is obstruction elevation
562                         for (int k=3;k < num_points_1st ;k++) {
563                                 
564                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
565                                 double clutter_density = 0.0;   // percent of reflected wave
566                                 get_material_properties(materials[mat], clutter_height, clutter_density);
567                                 //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
568                                 double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 1] + clutter_height) / distance_m;
569                                 // First Fresnel radius
570                                 double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / (  num_points_1st * itm_elev[1] * freq / 1000) );
571                                 
572                                 //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
573                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
574                                 
575                                 double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 1] + clutter_height);
576                                 double d1 = j * itm_elev[1];
577                                 if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 1] + clutter_height) ) {
578                                         d1 = (num_points_1st - j) * itm_elev[1];
579                                 }
580                                 double ray_height = (grad * d1) + min_elev;
581                                 //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
582                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
583                                 double intrusion = fabs(clearance);
584                                 //cerr << "Clutter:: clearance: " << clearance << endl;
585                                 if (clearance >= 0) {
586                                         // no losses
587                                 }
588                                 else if (clearance < 0 && (intrusion < clutter_height)) {
589                                         
590                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * freq/100;
591                                 }
592                                 else if (clearance < 0 && (intrusion > clutter_height)) {
593                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * freq/100;
594                                 }
595                                 else {
596                                         // no losses
597                                 }
598                                 j++;
599                                 last = k;
600                         }
601                         
602                         /** and the second pass */
603                         
604                         int l =1; // first point is 1st obstruction elevation, 2nd is 2nd obstruction elevation
605                         for (int k=last;k < num_points_2nd ;k++) {
606                                 
607                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
608                                 double clutter_density = 0.0;   // percent of reflected wave
609                                 get_material_properties(materials[mat], clutter_height, clutter_density);
610                                 //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
611                                 double grad = fabs(itm_elev[last] + clutter_height - itm_elev[num_points_1st + num_points_2nd + 1] + clutter_height) / distance_m;
612                                 // First Fresnel radius
613                                 double frs_rad = 548 * sqrt( (l * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
614                                 
615                                 //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
616                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
617                                 
618                                 double min_elev = SGMiscd::min(itm_elev[last] + clutter_height, itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height);
619                                 double d1 = l * itm_elev[1];
620                                 if ( (itm_elev[last] + clutter_height) > (itm_elev[num_points_1st + num_points_2nd + 1] + clutter_height) ) { 
621                                         d1 = (num_points_2nd - l) * itm_elev[1];
622                                 }
623                                 double ray_height = (grad * d1) + min_elev;
624                                 //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
625                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
626                                 double intrusion = fabs(clearance);
627                                 //cerr << "Clutter:: clearance: " << clearance << endl;
628                                 if (clearance >= 0) {
629                                         // no losses
630                                 }
631                                 else if (clearance < 0 && (intrusion < clutter_height)) {
632                                         
633                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * freq/100;
634                                 }
635                                 else if (clearance < 0 && (intrusion > clutter_height)) {
636                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * freq/100;
637                                 }
638                                 else {
639                                         // no losses
640                                 }
641                                 j++;
642                                 l++;
643                                 mat++;
644                                 last = k;
645                         }
646                         
647                         /** third and final pass */
648                         
649                         int m =1; // first point is 2nd obstruction elevation, 3rd is RX elevation
650                         for (int k=last;k < num_points_3rd ;k++) {
651                                 
652                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
653                                 double clutter_density = 0.0;   // percent of reflected wave
654                                 get_material_properties(materials[mat], clutter_height, clutter_density);
655                                 //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
656                                 double grad = fabs(itm_elev[last] + clutter_height - itm_elev[(int)itm_elev[0] + 1] + receiver_height) / distance_m;
657                                 // First Fresnel radius
658                                 double frs_rad = 548 * sqrt( (m * itm_elev[1] * (num_points_3rd - m) * itm_elev[1] / 1000000) / (  num_points_3rd * itm_elev[1] * freq / 1000) );
659                                 
660                                 //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
661                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
662                                 
663                                 double min_elev = SGMiscd::min(itm_elev[last] + clutter_height, itm_elev[(int)itm_elev[0] + 1] + receiver_height);
664                                 double d1 = m * itm_elev[1];
665                                 if ( (itm_elev[last] + clutter_height) > (itm_elev[(int)itm_elev[0] + 1] + receiver_height) ) { 
666                                         d1 = (num_points_3rd - m) * itm_elev[1];
667                                 }
668                                 double ray_height = (grad * d1) + min_elev;
669                                 //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
670                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
671                                 double intrusion = fabs(clearance);
672                                 //cerr << "Clutter:: clearance: " << clearance << endl;
673                                 if (clearance >= 0) {
674                                         // no losses
675                                 }
676                                 else if (clearance < 0 && (intrusion < clutter_height)) {
677                                         
678                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * freq/100;
679                                 }
680                                 else if (clearance < 0 && (intrusion > clutter_height)) {
681                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * freq/100;
682                                 }
683                                 else {
684                                         // no losses
685                                 }
686                                 j++;
687                                 m++;
688                                 mat++;
689                                 last = k+1;
690                         }
691                         
692                 }
693         }
694         else if (p_mode == 2) {         //      troposcatter: ignore ground clutter for now...
695                 clutter_loss = 0.0;
696         }
697         
698 }
699
700 /***    Temporary material properties database
701 *               height: median clutter height
702 *               density: radiowave attenuation factor
703 ***/
704 void FGRadio::get_material_properties(string mat_name, double &height, double &density) {
705         
706         if(mat_name == "Landmass") {
707                 height = 15.0;
708                 density = 0.2;
709         }
710
711         else if(mat_name == "SomeSort") {
712                 height = 15.0;
713                 density = 0.2;
714         }
715
716         else if(mat_name == "Island") {
717                 height = 15.0;
718                 density = 0.2;
719         }
720         else if(mat_name == "Default") {
721                 height = 15.0;
722                 density = 0.2;
723         }
724         else if(mat_name == "EvergreenBroadCover") {
725                 height = 20.0;
726                 density = 0.2;
727         }
728         else if(mat_name == "EvergreenForest") {
729                 height = 20.0;
730                 density = 0.2;
731         }
732         else if(mat_name == "DeciduousBroadCover") {
733                 height = 15.0;
734                 density = 0.3;
735         }
736         else if(mat_name == "DeciduousForest") {
737                 height = 15.0;
738                 density = 0.3;
739         }
740         else if(mat_name == "MixedForestCover") {
741                 height = 20.0;
742                 density = 0.25;
743         }
744         else if(mat_name == "MixedForest") {
745                 height = 15.0;
746                 density = 0.25;
747         }
748         else if(mat_name == "RainForest") {
749                 height = 25.0;
750                 density = 0.55;
751         }
752         else if(mat_name == "EvergreenNeedleCover") {
753                 height = 15.0;
754                 density = 0.2;
755         }
756         else if(mat_name == "WoodedTundraCover") {
757                 height = 5.0;
758                 density = 0.15;
759         }
760         else if(mat_name == "DeciduousNeedleCover") {
761                 height = 5.0;
762                 density = 0.2;
763         }
764         else if(mat_name == "ScrubCover") {
765                 height = 3.0;
766                 density = 0.15;
767         }
768         else if(mat_name == "BuiltUpCover") {
769                 height = 30.0;
770                 density = 0.7;
771         }
772         else if(mat_name == "Urban") {
773                 height = 30.0;
774                 density = 0.7;
775         }
776         else if(mat_name == "Construction") {
777                 height = 30.0;
778                 density = 0.7;
779         }
780         else if(mat_name == "Industrial") {
781                 height = 30.0;
782                 density = 0.7;
783         }
784         else if(mat_name == "Port") {
785                 height = 30.0;
786                 density = 0.7;
787         }
788         else if(mat_name == "Town") {
789                 height = 10.0;
790                 density = 0.5;
791         }
792         else if(mat_name == "SubUrban") {
793                 height = 10.0;
794                 density = 0.5;
795         }
796         else if(mat_name == "CropWoodCover") {
797                 height = 10.0;
798                 density = 0.1;
799         }
800         else if(mat_name == "CropWood") {
801                 height = 10.0;
802                 density = 0.1;
803         }
804         else if(mat_name == "AgroForest") {
805                 height = 10.0;
806                 density = 0.1;
807         }
808         else {
809                 height = 0.0;
810                 density = 0.0;
811         }
812         
813 }
814
815 /*** implement simple LOS propagation model (WIP)
816 ***/
817 double FGRadio::LOS_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
818         double frq_mhz;
819         if( (freq < 118.0) || (freq > 137.0) )
820                 frq_mhz = 125.0;        // sane value, middle of bandplan
821         else
822                 frq_mhz = freq;
823         double dbloss;
824         double tx_pow = _transmitter_power;
825         double ant_gain = _antenna_gain;
826         double signal = 0.0;
827         double ATC_HAAT = 30.0;
828         double Aircraft_HAAT = 5.0;
829         double sender_alt_ft,sender_alt;
830         double transmitter_height=0.0;
831         double receiver_height=0.0;
832         double own_lat = fgGetDouble("/position/latitude-deg");
833         double own_lon = fgGetDouble("/position/longitude-deg");
834         double own_alt_ft = fgGetDouble("/position/altitude-ft");
835         double own_alt= own_alt_ft * SG_FEET_TO_METER;
836         
837         if(transmission_type == 1)
838                 tx_pow = _transmitter_power + 6.0;
839
840         if((transmission_type == 1) || (transmission_type == 3))
841                 ant_gain = _antenna_gain + 3.0; //pilot plane's antenna gain + ground station antenna gain
842         
843         double link_budget = tx_pow - _receiver_sensitivity + ant_gain; 
844
845         //cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
846         
847         SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
848         
849         SGGeod sender_pos = pos;
850         
851         sender_alt_ft = sender_pos.getElevationFt();
852         sender_alt = sender_alt_ft * SG_FEET_TO_METER;
853         
854         receiver_height = own_alt;
855         transmitter_height = sender_alt;
856         
857         double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
858         
859         if(transmission_type == 1) 
860                 transmitter_height += ATC_HAAT;
861         else
862                 transmitter_height += Aircraft_HAAT;
863         
864         /** radio horizon calculation with wave bending k=4/3 */
865         double receiver_horizon = 4.12 * sqrt(receiver_height);
866         double transmitter_horizon = 4.12 * sqrt(transmitter_height);
867         double total_horizon = receiver_horizon + transmitter_horizon;
868         
869         if (distance_m > total_horizon) {
870                 return -1;
871         }
872         
873         // free-space loss (distance calculation should be changed)
874         dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
875         signal = link_budget - dbloss;
876         SG_LOG(SG_GENERAL, SG_BULK,
877                         "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm ");
878         //cerr << "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm " << endl;
879         return signal;
880         
881 }
882
883