]> git.mxchange.org Git - flightgear.git/blob - src/Radio/radio.cxx
separate implementation
[flightgear.git] / src / Radio / radio.cxx
1 // commradio.cxx -- implementation of FGCommRadio
2 // Class to manage radio propagation using the ITM model
3 // Written by Adrian Musceac, started August 2011.
4 //
5 // This program is free software; you can redistribute it and/or
6 // modify it under the terms of the GNU General Public License as
7 // published by the Free Software Foundation; either version 2 of the
8 // License, or (at your option) any later version.
9 //
10 // This program is distributed in the hope that it will be useful, but
11 // WITHOUT ANY WARRANTY; without even the implied warranty of
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 // General Public License for more details.
14 //
15 // You should have received a copy of the GNU General Public License
16 // along with this program; if not, write to the Free Software
17 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
18
19
20
21 #ifdef HAVE_CONFIG_H
22 #  include <config.h>
23 #endif
24
25 #include <math.h>
26 #include <stdlib.h>
27 #include <deque>
28
29 #include <Scenery/scenery.hxx>
30
31 #define WITH_POINT_TO_POINT 1
32 #include "itm.cpp"
33
34
35 FGRadio::FGRadio() {
36         
37         /////////// radio parameters ///////////
38         _receiver_sensitivity = -110.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD
39         // AM transmitter power in dBm.
40         // Note this value is calculated from the typical final transistor stage output
41         // !!! small aircraft have portable transmitters which operate at 36 dBm output (4 Watts)
42         // later store this value in aircraft description
43         // ATC comms usually operate high power equipment, thus making the link asymetrical; this is ignored for now
44         _transmitter_power = 43.0;
45         //pilot plane's antenna gain + AI aircraft antenna gain
46         //real-life gain for conventional monopole/dipole antenna
47         _antenna_gain = 2.0;
48         _propagation_model = 2; //  choose between models via option: realistic radio on/off
49         
50 }
51
52 FGRadio::~FGRadio() 
53 {
54 }
55
56
57 double FGCommRadio::getFrequency(int radio) {
58         double freq = 118.0;
59         switch (radio) {
60                 case 1:
61                         freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
62                         break;
63                 case 2:
64                         freq = fgGetDouble("/instrumentation/comm[1]/frequencies/selected-mhz");
65                         break;
66                 default:
67                         freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
68                         
69         }
70         return freq;
71 }
72
73
74
75
76 void FGRadio::receiveText(SGGeod tx_pos, double freq, string text,
77         int ground_to_air) {
78
79         double comm1 = getFrequency(1);
80         double comm2 = getFrequency(2);
81         if ( (freq != comm1) &&  (freq != comm2) ) {
82                 return;
83         }
84         else {
85                 double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
86                 if (signal <= 0)
87                         return;
88                 if ((signal > 0) && (signal < 12)) {
89                         //for low SNR values implement a way to make the conversation
90                         //hard to understand but audible
91                         //how this works in the real world, is the receiver AGC fails to capture the slope
92                         //and the signal, due to being amplitude modulated, decreases volume after demodulation
93                         //the implementation below is more akin to what would happen on a FM transmission
94                         //therefore the correct way would be to work on the volume
95                         /*
96                         string hash_noise = " ";
97                         int reps = fabs((int)signal - 11);
98                         int t_size = text.size();
99                         for (int n=1;n<=reps * 2;n++) {
100                                 int pos = rand() % t_size -1;
101                                 text.replace(pos,1, hash_noise);
102                         }
103                         */
104                         
105                 }
106                 fgSetString("/sim/messages/atc", text.c_str());
107         }
108         
109 }
110
111 double FGRadio::ITM_calculate_attenuation(SGGeod pos, double freq,
112                                int transmission_type) {
113
114         ///  Implement radio attenuation                
115         ///  based on the Longley-Rice propagation model
116         
117         ////////////// ITM default parameters //////////////
118         // in the future perhaps take them from tile materials?
119         double eps_dielect=15.0;
120         double sgm_conductivity = 0.005;
121         double eno = 301.0;
122         double frq_mhz;
123         if( (freq < 118.0) || (freq > 137.0) )
124                 frq_mhz = 125.0;        // sane value, middle of bandplan
125         else
126                 frq_mhz = freq;
127         int radio_climate = 5;          // continental temperate
128         int pol=1;      // assuming vertical polarization although this is more complex in reality
129         double conf = 0.90;     // 90% of situations and time, take into account speed
130         double rel = 0.90;      
131         double dbloss;
132         char strmode[150];
133         int errnum;
134         
135         double tx_pow,ant_gain;
136         double signal = 0.0;
137         
138         if(transmission_type == 1)
139                 tx_pow = _transmitter_power + 6.0;
140
141         if((transmission_type == 1) || (transmission_type == 3))
142                 ant_gain = _antenna_gain + 3.0; //pilot plane's antenna gain + ground station antenna gain
143         
144         double link_budget = tx_pow - _receiver_sensitivity + ant_gain; 
145
146         FGScenery * scenery = globals->get_scenery();
147         
148         double own_lat = fgGetDouble("/position/latitude-deg");
149         double own_lon = fgGetDouble("/position/longitude-deg");
150         double own_alt_ft = fgGetDouble("/position/altitude-ft");
151         double own_alt= own_alt_ft * SG_FEET_TO_METER;
152         
153         
154         //cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
155         
156         SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
157         SGGeod max_own_pos = SGGeod::fromDegM( own_lon, own_lat, SG_MAX_ELEVATION_M );
158         SGGeoc center = SGGeoc::fromGeod( max_own_pos );
159         SGGeoc own_pos_c = SGGeoc::fromGeod( own_pos );
160         
161         // position of sender radio antenna (HAAT)
162         // sender can be aircraft or ground station
163         double ATC_HAAT = 30.0;
164         double Aircraft_HAAT = 5.0;
165         double sender_alt_ft,sender_alt;
166         double transmitter_height=0.0;
167         double receiver_height=0.0;
168         SGGeod sender_pos = pos;
169         
170         sender_alt_ft = sender_pos.getElevationFt();
171         sender_alt = sender_alt_ft * SG_FEET_TO_METER;
172         SGGeod max_sender_pos = SGGeod::fromGeodM( pos, SG_MAX_ELEVATION_M );
173         SGGeoc sender_pos_c = SGGeoc::fromGeod( sender_pos );
174         //cerr << "ITM:: sender Lat: " << parent->getLatitude() << ", Lon: " << parent->getLongitude() << ", Alt: " << sender_alt << endl;
175         
176         double point_distance= 90.0; // regular SRTM is 90 meters
177         double course = SGGeodesy::courseRad(own_pos_c, sender_pos_c);
178         double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
179         double probe_distance = 0.0;
180         // If distance larger than this value (300 km), assume reception imposssible to preserve resources
181         if (distance_m > 300000)
182                 return -1.0;
183         // If above 9000, consider LOS mode and calculate free-space att
184         if (own_alt > 9000) {
185                 dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
186                 signal = link_budget - dbloss;
187                 return signal;
188         }
189         
190                 
191         double max_points = distance_m / point_distance;
192         deque<double> _elevations;
193
194         double elevation_under_pilot = 0.0;
195         if (scenery->get_elevation_m( max_own_pos, elevation_under_pilot, NULL )) {
196                 receiver_height = own_alt - elevation_under_pilot + 3; //assume antenna located 3 meters above ground
197         }
198
199         double elevation_under_sender = 0.0;
200         if (scenery->get_elevation_m( max_sender_pos, elevation_under_sender, NULL )) {
201                 transmitter_height = sender_alt - elevation_under_sender;
202         }
203         else {
204                 transmitter_height = sender_alt;
205         }
206         
207         if(transmission_type == 1) 
208                 transmitter_height += ATC_HAAT;
209         else
210                 transmitter_height += Aircraft_HAAT;
211         
212         cerr << "ITM:: RX-height: " << receiver_height << ", TX-height: " << transmitter_height << ", Distance: " << distance_m << endl;
213         
214         unsigned int e_size = (deque<unsigned>::size_type)max_points;
215         
216         while (_elevations.size() <= e_size) {
217                 probe_distance += point_distance;
218                 SGGeod probe = SGGeod::fromGeoc(center.advanceRadM( course, probe_distance ));
219                 
220                 double elevation_m = 0.0;
221         
222                 if (scenery->get_elevation_m( probe, elevation_m, NULL )) {
223                         if((transmission_type == 3) || (transmission_type == 4)) {
224                                 _elevations.push_back(elevation_m);
225                         }
226                         else {
227                                  _elevations.push_front(elevation_m);
228                         }
229                 }
230                 else {
231                         if((transmission_type == 3) || (transmission_type == 4)) {
232                                 _elevations.push_back(elevation_m);
233                         }
234                         else {
235                         _elevations.push_front(0.0);
236                         }
237                 }
238         }
239         if((transmission_type == 3) || (transmission_type == 4)) {
240                 _elevations.push_front(elevation_under_pilot);
241                 _elevations.push_back(elevation_under_sender);
242         }
243         else {
244                 _elevations.push_back(elevation_under_pilot);
245                 _elevations.push_front(elevation_under_sender);
246         }
247         
248         
249         double max_alt_between=0.0;
250         for( deque<double>::size_type i = 0; i < _elevations.size(); i++ ) {
251                 if (_elevations[i] > max_alt_between) {
252                         max_alt_between = _elevations[i];
253                 }
254         }
255         
256         double num_points= (double)_elevations.size();
257         //cerr << "ITM:: Max alt between: " << max_alt_between << ", num points:" << num_points << endl;
258         _elevations.push_front(point_distance);
259         _elevations.push_front(num_points -1);
260         int size = _elevations.size();
261         double itm_elev[size];
262         for(int i=0;i<size;i++) {
263                 itm_elev[i]=_elevations[i];
264                 //cerr << "ITM:: itm_elev: " << _elevations[i] << endl;
265         }
266
267         
268         // first Fresnel zone radius
269         // frequency in the middle of the bandplan, more accuracy is not necessary
270         double fz_clr= 8.657 * sqrt(distance_m / 0.125);
271         
272         // TODO: If we clear the first Fresnel zone, we are into line of sight teritory
273
274         // else we need to calculate point to point link loss
275         if((transmission_type == 3) || (transmission_type == 4)) {
276                 // the sender and receiver roles are switched
277                 point_to_point(itm_elev, receiver_height, transmitter_height,
278                         eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
279                         pol, conf, rel, dbloss, strmode, errnum);
280                 
281         }
282         else {
283
284                 point_to_point(itm_elev, transmitter_height, receiver_height,
285                         eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
286                         pol, conf, rel, dbloss, strmode, errnum);
287         }
288
289         cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
290         
291         //if (errnum == 4)
292         //      return -1;
293         signal = link_budget - dbloss;
294         return signal;
295
296 }