]> git.mxchange.org Git - flightgear.git/blob - src/Radio/radio.cxx
Windows fixes/work-arounds
[flightgear.git] / src / Radio / radio.cxx
1 // radio.cxx -- implementation of FGRadio
2 // Class to manage radio propagation using the ITM model
3 // Written by Adrian Musceac, started August 2011.
4 //
5 // This program is free software; you can redistribute it and/or
6 // modify it under the terms of the GNU General Public License as
7 // published by the Free Software Foundation; either version 2 of the
8 // License, or (at your option) any later version.
9 //
10 // This program is distributed in the hope that it will be useful, but
11 // WITHOUT ANY WARRANTY; without even the implied warranty of
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 // General Public License for more details.
14 //
15 // You should have received a copy of the GNU General Public License
16 // along with this program; if not, write to the Free Software
17 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
18
19
20
21 #ifdef HAVE_CONFIG_H
22 #  include <config.h>
23 #endif
24
25 #include <math.h>
26
27 #include <stdlib.h>
28 #include <deque>
29 #include "radio.hxx"
30 #include <simgear/scene/material/mat.hxx>
31 #include <Scenery/scenery.hxx>
32
33 #define WITH_POINT_TO_POINT 1
34 #include "itm.cpp"
35
36
37 FGRadioTransmission::FGRadioTransmission() {
38         
39         
40         _receiver_sensitivity = -110.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD
41         
42         /** AM transmitter power in dBm.
43         *       Typical output powers for ATC ground equipment, VHF-UHF:
44         *       40 dBm - 10 W (ground, clearance)
45         *       44 dBm - 20 W (tower)
46         *       47 dBm - 50 W (center, sectors)
47         *       50 dBm - 100 W (center, sectors)
48         *       53 dBm - 200 W (sectors, on directional arrays)
49         **/
50         _transmitter_power = 43.0;
51         
52         _tx_antenna_height = 2.0; // TX antenna height above ground level
53         
54         _rx_antenna_height = 2.0; // RX antenna height above ground level
55         
56         
57         _rx_antenna_gain = 1.0; // gain expressed in dBi
58         _tx_antenna_gain = 1.0;
59         
60         _rx_line_losses = 2.0;  // to be configured for each station
61         _tx_line_losses = 2.0;
62         
63         _polarization = 1; // default vertical
64         
65         _propagation_model = 2; 
66         
67         _root_node = fgGetNode("sim/radio", true);
68         _terrain_sampling_distance = _root_node->getDoubleValue("sampling-distance", 90.0); // regular SRTM is 90 meters
69 }
70
71 FGRadioTransmission::~FGRadioTransmission() 
72 {
73 }
74
75
76 double FGRadioTransmission::getFrequency(int radio) {
77         double freq = 118.0;
78         switch (radio) {
79                 case 1:
80                         freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
81                         break;
82                 case 2:
83                         freq = fgGetDouble("/instrumentation/comm[1]/frequencies/selected-mhz");
84                         break;
85                 default:
86                         freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
87                         
88         }
89         return freq;
90 }
91
92 /*** TODO: receive multiplayer chat message and voice
93 ***/
94 void FGRadioTransmission::receiveChat(SGGeod tx_pos, double freq, string text, int ground_to_air) {
95
96 }
97
98 /*** TODO: receive navaid 
99 ***/
100 double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmission_type) {
101         
102         // typical VOR/LOC transmitter power appears to be 200 Watt ~ 53 dBm
103         // vor/loc typical sensitivity between -107 and -101 dBm
104         // glideslope sensitivity between -85 and -81 dBm
105         if ( _propagation_model == 1) {
106                 return LOS_calculate_attenuation(tx_pos, freq, 1);
107         }
108         else if ( _propagation_model == 2) {
109                 return ITM_calculate_attenuation(tx_pos, freq, 1);
110         }
111         
112         return -1;
113
114 }
115
116 /*** Receive ATC radio communication as text
117 ***/
118 void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) {
119
120         
121         if(ground_to_air == 1) {
122                 _transmitter_power += 4.0;
123                 _tx_antenna_height += 30.0;
124                 _tx_antenna_gain += 2.0; 
125         }
126         
127         
128         double comm1 = getFrequency(1);
129         double comm2 = getFrequency(2);
130         if ( !(fabs(freq - comm1) <= 0.0001) &&  !(fabs(freq - comm2) <= 0.0001) ) {
131                 return;
132         }
133         else {
134         
135                 if ( _propagation_model == 0) {
136                         // skip propagation routines entirely
137                         fgSetString("/sim/messages/atc", text.c_str());
138                 }
139                 else if ( _propagation_model == 1 ) {
140                         // Use free-space, round earth
141                         double signal = LOS_calculate_attenuation(tx_pos, freq, ground_to_air);
142                         if (signal <= 0.0) {
143                                 return;
144                         }
145                         else {
146                                 
147                                 fgSetString("/sim/messages/atc", text.c_str());
148                                 
149                         }
150                 }
151                 else if ( _propagation_model == 2 ) {
152                         // Use ITM propagation model
153                         double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
154                         if (signal <= 0.0) {
155                                 return;
156                         }
157                         if ((signal > 0.0) && (signal < 12.0)) {
158                                 /** for low SNR values implement a way to make the conversation
159                                 *       hard to understand but audible
160                                 *       in the real world, the receiver AGC fails to capture the slope
161                                 *       and the signal, due to being amplitude modulated, decreases volume after demodulation
162                                 *       the workaround below is more akin to what would happen on a FM transmission
163                                 *       therefore the correct way would be to work on the volume
164                                 **/
165                                 /*
166                                 string hash_noise = " ";
167                                 int reps = (int) (fabs(floor(signal - 11.0)) * 2);
168                                 int t_size = text.size();
169                                 for (int n = 1; n <= reps; ++n) {
170                                         int pos = rand() % (t_size -1);
171                                         text.replace(pos,1, hash_noise);
172                                 }
173                                 */
174                                 double volume = (fabs(signal - 12.0) / 12);
175                                 double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
176                                 SG_LOG(SG_GENERAL, SG_BULK, "Usable signal at limit: " << signal);
177                                 //cerr << "Usable signal at limit: " << signal << endl;
178                                 fgSetDouble("/sim/sound/voices/voice/volume", volume);
179                                 fgSetString("/sim/messages/atc", text.c_str());
180                                 fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
181                         }
182                         else {
183                                 fgSetString("/sim/messages/atc", text.c_str());
184                         }
185                         
186                 }
187                 
188         }
189         
190 }
191
192 /***  Implement radio attenuation               
193           based on the Longley-Rice propagation model
194 ***/
195 double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
196
197         
198         
199         /** ITM default parameters 
200                 TODO: take them from tile materials (especially for sea)?
201         **/
202         double eps_dielect=15.0;
203         double sgm_conductivity = 0.005;
204         double eno = 301.0;
205         double frq_mhz;
206         if( (freq < 118.0) || (freq > 137.0) )
207                 frq_mhz = 125.0;        // sane value, middle of bandplan
208         else
209                 frq_mhz = freq;
210         int radio_climate = 5;          // continental temperate
211         int pol= _polarization; 
212         double conf = 0.90;     // 90% of situations and time, take into account speed
213         double rel = 0.90;      
214         double dbloss;
215         char strmode[150];
216         int p_mode = 0; // propgation mode selector: 0 LOS, 1 diffraction dominant, 2 troposcatter
217         double horizons[2];
218         int errnum;
219         
220         double clutter_loss = 0.0;      // loss due to vegetation and urban
221         double tx_pow = _transmitter_power;
222         double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
223         double signal = 0.0;
224         
225         
226         double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain;     
227         double signal_strength = tx_pow - _rx_line_losses - _tx_line_losses + ant_gain; 
228         double tx_erp = dbm_to_watt(tx_pow + _tx_antenna_gain - _tx_line_losses);
229         
230
231         FGScenery * scenery = globals->get_scenery();
232         
233         double own_lat = fgGetDouble("/position/latitude-deg");
234         double own_lon = fgGetDouble("/position/longitude-deg");
235         double own_alt_ft = fgGetDouble("/position/altitude-ft");
236         double own_alt= own_alt_ft * SG_FEET_TO_METER;
237         
238         
239         //cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
240         
241         SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
242         SGGeod max_own_pos = SGGeod::fromDegM( own_lon, own_lat, SG_MAX_ELEVATION_M );
243         SGGeoc center = SGGeoc::fromGeod( max_own_pos );
244         SGGeoc own_pos_c = SGGeoc::fromGeod( own_pos );
245         
246         
247         double sender_alt_ft,sender_alt;
248         double transmitter_height=0.0;
249         double receiver_height=0.0;
250         SGGeod sender_pos = pos;
251         
252         sender_alt_ft = sender_pos.getElevationFt();
253         sender_alt = sender_alt_ft * SG_FEET_TO_METER;
254         SGGeod max_sender_pos = SGGeod::fromGeodM( pos, SG_MAX_ELEVATION_M );
255         SGGeoc sender_pos_c = SGGeoc::fromGeod( sender_pos );
256         //cerr << "ITM:: sender Lat: " << parent->getLatitude() << ", Lon: " << parent->getLongitude() << ", Alt: " << sender_alt << endl;
257         
258         double point_distance= _terrain_sampling_distance; 
259         double course = SGGeodesy::courseRad(own_pos_c, sender_pos_c);
260         double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
261         double probe_distance = 0.0;
262         /** If distance larger than this value (300 km), assume reception imposssible */
263         if (distance_m > 300000)
264                 return -1.0;
265         /** If above 8000 meters, consider LOS mode and calculate free-space att */
266         if (own_alt > 8000) {
267                 dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
268                 SG_LOG(SG_GENERAL, SG_BULK,
269                         "ITM Free-space mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation");
270                 //cerr << "ITM Free-space mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation" << endl;
271                 signal = link_budget - dbloss;
272                 return signal;
273         }
274         
275                 
276         int max_points = (int)floor(distance_m / point_distance);
277         double delta_last = fmod(distance_m, point_distance);
278         
279         deque<double> _elevations;
280         deque<string> materials;
281         
282
283         double elevation_under_pilot = 0.0;
284         if (scenery->get_elevation_m( max_own_pos, elevation_under_pilot, NULL )) {
285                 receiver_height = own_alt - elevation_under_pilot; 
286         }
287
288         double elevation_under_sender = 0.0;
289         if (scenery->get_elevation_m( max_sender_pos, elevation_under_sender, NULL )) {
290                 transmitter_height = sender_alt - elevation_under_sender;
291         }
292         else {
293                 transmitter_height = sender_alt;
294         }
295         
296         
297         transmitter_height += _tx_antenna_height;
298         receiver_height += _rx_antenna_height;
299         
300         
301         SG_LOG(SG_GENERAL, SG_BULK,
302                         "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters");
303         //cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl;
304         _root_node->setDoubleValue("station[0]/rx-height", receiver_height);
305         _root_node->setDoubleValue("station[0]/tx-height", transmitter_height);
306         _root_node->setDoubleValue("station[0]/distance", distance_m / 1000);
307         
308         unsigned int e_size = (deque<unsigned>::size_type)max_points;
309         
310         while (_elevations.size() <= e_size) {
311                 probe_distance += point_distance;
312                 SGGeod probe = SGGeod::fromGeoc(center.advanceRadM( course, probe_distance ));
313                 const SGMaterial *mat = 0;
314                 double elevation_m = 0.0;
315         
316                 if (scenery->get_elevation_m( probe, elevation_m, &mat )) {
317                         if((transmission_type == 3) || (transmission_type == 4)) {
318                                 _elevations.push_back(elevation_m);
319                                 if(mat) {
320                                         const std::vector<string> mat_names = mat->get_names();
321                                         materials.push_back(mat_names[0]);
322                                 }
323                                 else {
324                                         materials.push_back("None");
325                                 }
326                         }
327                         else {
328                                  _elevations.push_front(elevation_m);
329                                  if(mat) {
330                                          const std::vector<string> mat_names = mat->get_names();
331                                          materials.push_front(mat_names[0]);
332                                 }
333                                 else {
334                                         materials.push_front("None");
335                                 }
336                         }
337                 }
338                 else {
339                         if((transmission_type == 3) || (transmission_type == 4)) {
340                                 _elevations.push_back(0.0);
341                                 materials.push_back("None");
342                         }
343                         else {
344                                 _elevations.push_front(0.0);
345                                 materials.push_front("None");
346                         }
347                 }
348         }
349         if((transmission_type == 3) || (transmission_type == 4)) {
350                 _elevations.push_front(elevation_under_pilot);
351                 if (delta_last > (point_distance / 2) )                 // only add last point if it's farther than half point_distance
352                         _elevations.push_back(elevation_under_sender);
353         }
354         else {
355                 _elevations.push_back(elevation_under_pilot);
356                 if (delta_last > (point_distance / 2) )
357                         _elevations.push_front(elevation_under_sender);
358         }
359         
360         
361         double num_points= (double)_elevations.size();
362
363         _elevations.push_front(point_distance);
364         _elevations.push_front(num_points -1);
365         
366     int size = _elevations.size();
367     double itm_elev[10000];
368
369         for(int i=0;i<size;i++) {
370                 itm_elev[i]=_elevations[i];
371                 //cerr << "ITM:: itm_elev: " << _elevations[i] << endl;
372         }
373
374         if((transmission_type == 3) || (transmission_type == 4)) {
375                 // the sender and receiver roles are switched
376                 point_to_point(itm_elev, receiver_height, transmitter_height,
377                         eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
378                         pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
379                 if( _root_node->getBoolValue( "use-clutter-attenuation", false ) )
380                         clutterLoss(frq_mhz, itm_elev, materials, receiver_height, transmitter_height, p_mode, horizons, clutter_loss);
381         }
382         else {
383                 point_to_point(itm_elev, transmitter_height, receiver_height,
384                         eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
385                         pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
386                 if( _root_node->getBoolValue( "use-clutter-attenuation", false ) )
387                         clutterLoss(frq_mhz, itm_elev, materials, transmitter_height, receiver_height, p_mode, horizons, clutter_loss);
388         }
389         
390         double pol_loss = 0.0;
391         if (_polarization == 1) {
392                 pol_loss = polarization_loss();
393         }
394         SG_LOG(SG_GENERAL, SG_BULK,
395                         "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
396         //cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
397         _root_node->setDoubleValue("station[0]/link-budget", link_budget);
398         _root_node->setDoubleValue("station[0]/terrain-attenuation", dbloss);
399         _root_node->setStringValue("station[0]/prop-mode", strmode);
400         _root_node->setDoubleValue("station[0]/clutter-attenuation", clutter_loss);
401         _root_node->setDoubleValue("station[0]/polarization-attenuation", pol_loss);
402         //cerr << "Clutter loss: " << clutter_loss << endl;
403         //if (errnum == 4)      // if parameters are outside sane values for lrprop, the alternative method is used
404         //      return -1;
405         signal = link_budget - dbloss - clutter_loss + pol_loss;
406         double signal_strength_dbm = signal_strength - dbloss - clutter_loss + pol_loss;
407         double field_strength_uV = dbm_to_microvolt(signal_strength_dbm);
408         _root_node->setDoubleValue("station[0]/signal-dbm", signal_strength_dbm);
409         _root_node->setDoubleValue("station[0]/field-strength-uV", field_strength_uV);
410         _root_node->setDoubleValue("station[0]/signal", signal);
411         _root_node->setDoubleValue("station[0]/tx-erp", tx_erp);
412         return signal;
413
414 }
415
416 /*** Calculate losses due to vegetation and urban clutter (WIP)
417 *        We are only worried about clutter loss, terrain influence 
418 *        on the first Fresnel zone is calculated in the ITM functions
419 ***/
420 void FGRadioTransmission::clutterLoss(double freq, double itm_elev[], deque<string> materials,
421         double transmitter_height, double receiver_height, int p_mode,
422         double horizons[], double &clutter_loss) {
423         
424         double distance_m = itm_elev[0] * itm_elev[1]; // only consider elevation points
425         
426         if (p_mode == 0) {      // LOS: take each point and see how clutter height affects first Fresnel zone
427                 int mat = 0;
428                 int j=1; 
429                 for (int k=3;k < (int)(itm_elev[0]) + 2;k++) {
430                         
431                         double clutter_height = 0.0;    // mean clutter height for a certain terrain type
432                         double clutter_density = 0.0;   // percent of reflected wave
433                         get_material_properties(materials[mat], clutter_height, clutter_density);
434                         
435                         double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
436                         // First Fresnel radius
437                         double frs_rad = 548 * sqrt( (j * itm_elev[1] * (itm_elev[0] - j) * itm_elev[1] / 1000000) / (  distance_m * freq / 1000) );
438                         
439                         //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
440                         
441                         double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
442                         double d1 = j * itm_elev[1];
443                         if ((itm_elev[2] + transmitter_height) > ( itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) {
444                                 d1 = (itm_elev[0] - j) * itm_elev[1];
445                         }
446                         double ray_height = (grad * d1) + min_elev;
447                         
448                         double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
449                         double intrusion = fabs(clearance);
450                         
451                         if (clearance >= 0) {
452                                 // no losses
453                         }
454                         else if (clearance < 0 && (intrusion < clutter_height)) {
455                                 
456                                 clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
457                         }
458                         else if (clearance < 0 && (intrusion > clutter_height)) {
459                                 clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
460                         }
461                         else {
462                                 // no losses
463                         }
464                         j++;
465                         mat++;
466                 }
467                 
468         }
469         else if (p_mode == 1) {         // diffraction
470                 
471                 if (horizons[1] == 0.0) {       //      single horizon: same as above, except pass twice using the highest point
472                         int num_points_1st = (int)floor( horizons[0] * itm_elev[0]/ distance_m ); 
473                         int num_points_2nd = (int)ceil( (distance_m - horizons[0]) * itm_elev[0] / distance_m ); 
474                         //cerr << "Diffraction 1 horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << endl;
475                         int last = 1;
476                         /** perform the first pass */
477                         int mat = 0;
478                         int j=1; 
479                         for (int k=3;k < num_points_1st + 2;k++) {
480                                 if (num_points_1st < 1)
481                                         break;
482                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
483                                 double clutter_density = 0.0;   // percent of reflected wave
484                                 get_material_properties(materials[mat], clutter_height, clutter_density);
485                                 
486                                 double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
487                                 // First Fresnel radius
488                                 double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / ( num_points_1st * itm_elev[1] * freq / 1000) );
489                                 
490                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
491                                 
492                                 double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
493                                 double d1 = j * itm_elev[1];
494                                 if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
495                                         d1 = (num_points_1st - j) * itm_elev[1];
496                                 }
497                                 double ray_height = (grad * d1) + min_elev;
498                                 
499                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
500                                 double intrusion = fabs(clearance);
501                                 
502                                 if (clearance >= 0) {
503                                         // no losses
504                                 }
505                                 else if (clearance < 0 && (intrusion < clutter_height)) {
506                                         
507                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
508                                 }
509                                 else if (clearance < 0 && (intrusion > clutter_height)) {
510                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
511                                 }
512                                 else {
513                                         // no losses
514                                 }
515                                 j++;
516                                 mat++;
517                                 last = k;
518                         }
519                         
520                         /** and the second pass */
521                         mat +=1;
522                         j =1; // first point is diffraction edge, 2nd the RX elevation
523                         for (int k=last+2;k < (int)(itm_elev[0]) + 2;k++) {
524                                 if (num_points_2nd < 1)
525                                         break;
526                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
527                                 double clutter_density = 0.0;   // percent of reflected wave
528                                 get_material_properties(materials[mat], clutter_height, clutter_density);
529                                 
530                                 double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
531                                 // First Fresnel radius
532                                 double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
533                                 
534                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
535                                 
536                                 double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
537                                 double d1 = j * itm_elev[1];
538                                 if ( (itm_elev[last+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { 
539                                         d1 = (num_points_2nd - j) * itm_elev[1];
540                                 }
541                                 double ray_height = (grad * d1) + min_elev;
542                                 
543                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
544                                 double intrusion = fabs(clearance);
545                                 
546                                 if (clearance >= 0) {
547                                         // no losses
548                                 }
549                                 else if (clearance < 0 && (intrusion < clutter_height)) {
550                                         
551                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
552                                 }
553                                 else if (clearance < 0 && (intrusion > clutter_height)) {
554                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
555                                 }
556                                 else {
557                                         // no losses
558                                 }
559                                 j++;
560                                 mat++;
561                         }
562                         
563                 }
564                 else {  // double horizon: same as single horizon, except there are 3 segments
565                         
566                         int num_points_1st = (int)floor( horizons[0] * itm_elev[0] / distance_m ); 
567                         int num_points_2nd = (int)floor(horizons[1] * itm_elev[0] / distance_m ); 
568                         int num_points_3rd = (int)itm_elev[0] - num_points_1st - num_points_2nd; 
569                         //cerr << "Double horizon:: horizon1: " << horizons[0] << " horizon2: " << horizons[1] << " distance: " << distance_m << endl;
570                         //cerr << "Double horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << " points3: " << num_points_3rd << endl;
571                         int last = 1;
572                         /** perform the first pass */
573                         int mat = 0;
574                         int j=1; // first point is TX elevation, 2nd is obstruction elevation
575                         for (int k=3;k < num_points_1st +2;k++) {
576                                 if (num_points_1st < 1)
577                                         break;
578                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
579                                 double clutter_density = 0.0;   // percent of reflected wave
580                                 get_material_properties(materials[mat], clutter_height, clutter_density);
581                                 
582                                 double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
583                                 // First Fresnel radius
584                                 double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / (  num_points_1st * itm_elev[1] * freq / 1000) );
585                                 
586                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
587                                 
588                                 double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
589                                 double d1 = j * itm_elev[1];
590                                 if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
591                                         d1 = (num_points_1st - j) * itm_elev[1];
592                                 }
593                                 double ray_height = (grad * d1) + min_elev;
594                                 
595                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
596                                 double intrusion = fabs(clearance);
597                                 
598                                 if (clearance >= 0) {
599                                         // no losses
600                                 }
601                                 else if (clearance < 0 && (intrusion < clutter_height)) {
602                                         
603                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
604                                 }
605                                 else if (clearance < 0 && (intrusion > clutter_height)) {
606                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
607                                 }
608                                 else {
609                                         // no losses
610                                 }
611                                 j++;
612                                 last = k;
613                         }
614                         mat +=1;
615                         /** and the second pass */
616                         int last2=1;
617                         j =1; // first point is 1st obstruction elevation, 2nd is 2nd obstruction elevation
618                         for (int k=last+2;k < num_points_1st + num_points_2nd +2;k++) {
619                                 if (num_points_2nd < 1)
620                                         break;
621                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
622                                 double clutter_density = 0.0;   // percent of reflected wave
623                                 get_material_properties(materials[mat], clutter_height, clutter_density);
624                                 
625                                 double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) / distance_m;
626                                 // First Fresnel radius
627                                 double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
628                                 
629                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
630                                 
631                                 double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[num_points_1st + num_points_2nd +2] + clutter_height);
632                                 double d1 = j * itm_elev[1];
633                                 if ( (itm_elev[last+1] + clutter_height) > (itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) ) { 
634                                         d1 = (num_points_2nd - j) * itm_elev[1];
635                                 }
636                                 double ray_height = (grad * d1) + min_elev;
637                                 
638                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
639                                 double intrusion = fabs(clearance);
640                                 
641                                 if (clearance >= 0) {
642                                         // no losses
643                                 }
644                                 else if (clearance < 0 && (intrusion < clutter_height)) {
645                                         
646                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
647                                 }
648                                 else if (clearance < 0 && (intrusion > clutter_height)) {
649                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
650                                 }
651                                 else {
652                                         // no losses
653                                 }
654                                 j++;
655                                 mat++;
656                                 last2 = k;
657                         }
658                         
659                         /** third and final pass */
660                         mat +=1;
661                         j =1; // first point is 2nd obstruction elevation, 3rd is RX elevation
662                         for (int k=last2+2;k < (int)itm_elev[0] + 2;k++) {
663                                 if (num_points_3rd < 1)
664                                         break;
665                                 double clutter_height = 0.0;    // mean clutter height for a certain terrain type
666                                 double clutter_density = 0.0;   // percent of reflected wave
667                                 get_material_properties(materials[mat], clutter_height, clutter_density);
668                                 
669                                 double grad = fabs(itm_elev[last2+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
670                                 // First Fresnel radius
671                                 double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_3rd - j) * itm_elev[1] / 1000000) / (  num_points_3rd * itm_elev[1] * freq / 1000) );
672                                 
673                                 
674                                 //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
675                                 
676                                 double min_elev = SGMiscd::min(itm_elev[last2+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
677                                 double d1 = j * itm_elev[1];
678                                 if ( (itm_elev[last2+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { 
679                                         d1 = (num_points_3rd - j) * itm_elev[1];
680                                 }
681                                 double ray_height = (grad * d1) + min_elev;
682                                 
683                                 double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
684                                 double intrusion = fabs(clearance);
685                                 
686                                 if (clearance >= 0) {
687                                         // no losses
688                                 }
689                                 else if (clearance < 0 && (intrusion < clutter_height)) {
690                                         
691                                         clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
692                                 }
693                                 else if (clearance < 0 && (intrusion > clutter_height)) {
694                                         clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
695                                 }
696                                 else {
697                                         // no losses
698                                 }
699                                 j++;
700                                 mat++;
701                                 
702                         }
703                         
704                 }
705         }
706         else if (p_mode == 2) {         //      troposcatter: ignore ground clutter for now...
707                 clutter_loss = 0.0;
708         }
709         
710 }
711
712 /***    Temporary material properties database
713 *               height: median clutter height
714 *               density: radiowave attenuation factor
715 ***/
716 void FGRadioTransmission::get_material_properties(string mat_name, double &height, double &density) {
717         
718         if(mat_name == "Landmass") {
719                 height = 15.0;
720                 density = 0.2;
721         }
722
723         else if(mat_name == "SomeSort") {
724                 height = 15.0;
725                 density = 0.2;
726         }
727
728         else if(mat_name == "Island") {
729                 height = 15.0;
730                 density = 0.2;
731         }
732         else if(mat_name == "Default") {
733                 height = 15.0;
734                 density = 0.2;
735         }
736         else if(mat_name == "EvergreenBroadCover") {
737                 height = 20.0;
738                 density = 0.2;
739         }
740         else if(mat_name == "EvergreenForest") {
741                 height = 20.0;
742                 density = 0.2;
743         }
744         else if(mat_name == "DeciduousBroadCover") {
745                 height = 15.0;
746                 density = 0.3;
747         }
748         else if(mat_name == "DeciduousForest") {
749                 height = 15.0;
750                 density = 0.3;
751         }
752         else if(mat_name == "MixedForestCover") {
753                 height = 20.0;
754                 density = 0.25;
755         }
756         else if(mat_name == "MixedForest") {
757                 height = 15.0;
758                 density = 0.25;
759         }
760         else if(mat_name == "RainForest") {
761                 height = 25.0;
762                 density = 0.55;
763         }
764         else if(mat_name == "EvergreenNeedleCover") {
765                 height = 15.0;
766                 density = 0.2;
767         }
768         else if(mat_name == "WoodedTundraCover") {
769                 height = 5.0;
770                 density = 0.15;
771         }
772         else if(mat_name == "DeciduousNeedleCover") {
773                 height = 5.0;
774                 density = 0.2;
775         }
776         else if(mat_name == "ScrubCover") {
777                 height = 3.0;
778                 density = 0.15;
779         }
780         else if(mat_name == "BuiltUpCover") {
781                 height = 30.0;
782                 density = 0.7;
783         }
784         else if(mat_name == "Urban") {
785                 height = 30.0;
786                 density = 0.7;
787         }
788         else if(mat_name == "Construction") {
789                 height = 30.0;
790                 density = 0.7;
791         }
792         else if(mat_name == "Industrial") {
793                 height = 30.0;
794                 density = 0.7;
795         }
796         else if(mat_name == "Port") {
797                 height = 30.0;
798                 density = 0.7;
799         }
800         else if(mat_name == "Town") {
801                 height = 10.0;
802                 density = 0.5;
803         }
804         else if(mat_name == "SubUrban") {
805                 height = 10.0;
806                 density = 0.5;
807         }
808         else if(mat_name == "CropWoodCover") {
809                 height = 10.0;
810                 density = 0.1;
811         }
812         else if(mat_name == "CropWood") {
813                 height = 10.0;
814                 density = 0.1;
815         }
816         else if(mat_name == "AgroForest") {
817                 height = 10.0;
818                 density = 0.1;
819         }
820         else {
821                 height = 0.0;
822                 density = 0.0;
823         }
824         
825 }
826
827 /*** implement simple LOS propagation model (WIP)
828 ***/
829 double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
830         double frq_mhz;
831         if( (freq < 118.0) || (freq > 137.0) )
832                 frq_mhz = 125.0;        // sane value, middle of bandplan
833         else
834                 frq_mhz = freq;
835         double dbloss;
836         double tx_pow = _transmitter_power;
837         double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
838         double signal = 0.0;
839         
840         double sender_alt_ft,sender_alt;
841         double transmitter_height=0.0;
842         double receiver_height=0.0;
843         double own_lat = fgGetDouble("/position/latitude-deg");
844         double own_lon = fgGetDouble("/position/longitude-deg");
845         double own_alt_ft = fgGetDouble("/position/altitude-ft");
846         double own_alt= own_alt_ft * SG_FEET_TO_METER;
847         
848         
849         double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain;     
850
851         //cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
852         
853         SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
854         
855         SGGeod sender_pos = pos;
856         
857         sender_alt_ft = sender_pos.getElevationFt();
858         sender_alt = sender_alt_ft * SG_FEET_TO_METER;
859         
860         receiver_height = own_alt;
861         transmitter_height = sender_alt;
862         
863         double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
864         
865         
866         transmitter_height += _tx_antenna_height;
867         receiver_height += _rx_antenna_height;
868         
869         
870         /** radio horizon calculation with wave bending k=4/3 */
871         double receiver_horizon = 4.12 * sqrt(receiver_height);
872         double transmitter_horizon = 4.12 * sqrt(transmitter_height);
873         double total_horizon = receiver_horizon + transmitter_horizon;
874         
875         if (distance_m > total_horizon) {
876                 return -1;
877         }
878         double pol_loss = 0.0;
879         if (_polarization == 1) {
880                 pol_loss = polarization_loss();
881         }
882         // free-space loss (distance calculation should be changed)
883         dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
884         signal = link_budget - dbloss + pol_loss;
885         SG_LOG(SG_GENERAL, SG_BULK,
886                         "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm ");
887         //cerr << "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm " << endl;
888         return signal;
889         
890 }
891
892 /*** calculate loss due to polarization mismatch
893 *       this function is only reliable for vertical polarization
894 *       due to the V-shape of horizontally polarized antennas
895 ***/
896 double FGRadioTransmission::polarization_loss() {
897         
898         double theta_deg;
899         double roll = fgGetDouble("/orientation/roll-deg");
900         if (fabs(roll) > 85.0)
901                 roll = 85.0;
902         double pitch = fgGetDouble("/orientation/pitch-deg");
903         if (fabs(pitch) > 85.0)
904                 pitch = 85.0;
905         double theta = fabs( atan( sqrt( 
906                 pow(tan(roll * SGD_DEGREES_TO_RADIANS), 2) + 
907                 pow(tan(pitch * SGD_DEGREES_TO_RADIANS), 2) )) * SGD_RADIANS_TO_DEGREES);
908         
909         if (_polarization == 0)
910                 theta_deg = 90.0 - theta;
911         else
912                 theta_deg = theta;
913         if (theta_deg > 85.0)   // we don't want to converge into infinity
914                 theta_deg = 85.0;
915         
916         double loss = 10 * log10( pow(cos(theta_deg * SGD_DEGREES_TO_RADIANS), 2) );
917         //cerr << "Polarization loss: " << loss << " dBm " << endl;
918         return loss;
919 }
920
921
922 double FGRadioTransmission::watt_to_dbm(double power_watt) {
923         return 10 * log10(1000 * power_watt);   // returns dbm
924 }
925
926 double FGRadioTransmission::dbm_to_watt(double dbm) {
927         return exp( (dbm-30) * log(10.0) / 10.0);       // returns Watts
928 }
929
930 double FGRadioTransmission::dbm_to_microvolt(double dbm) {
931         return sqrt(dbm_to_watt(dbm) * 50) * 1000000;   // returns microvolts
932 }
933
934