]> git.mxchange.org Git - flightgear.git/blob - src/Radio/radio.cxx
log to SG_BULK
[flightgear.git] / src / Radio / radio.cxx
1 // radio.cxx -- implementation of FGRadio
2 // Class to manage radio propagation using the ITM model
3 // Written by Adrian Musceac, started August 2011.
4 //
5 // This program is free software; you can redistribute it and/or
6 // modify it under the terms of the GNU General Public License as
7 // published by the Free Software Foundation; either version 2 of the
8 // License, or (at your option) any later version.
9 //
10 // This program is distributed in the hope that it will be useful, but
11 // WITHOUT ANY WARRANTY; without even the implied warranty of
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 // General Public License for more details.
14 //
15 // You should have received a copy of the GNU General Public License
16 // along with this program; if not, write to the Free Software
17 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
18
19
20
21 #ifdef HAVE_CONFIG_H
22 #  include <config.h>
23 #endif
24
25 #include <math.h>
26 #include <stdlib.h>
27 #include <deque>
28 #include "radio.hxx"
29 #include <Scenery/scenery.hxx>
30
31 #define WITH_POINT_TO_POINT 1
32 #include "itm.cpp"
33
34
35 FGRadio::FGRadio() {
36         
37         /** radio parameters (which should probably be set for each radio via constructor) */
38         _receiver_sensitivity = -110.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD
39         
40         /** AM transmitter power in dBm.
41         *       Note this value is calculated from the typical final transistor stage output
42         *       small aircraft have portable transmitters which operate at 36 dBm output (4 Watts)
43         *       later store this value in aircraft description
44         *       ATC comms usually operate high power equipment, thus making the link asymetrical; this is ignored for now
45         **/
46         _transmitter_power = 43.0;
47         
48         /** pilot plane's antenna gain + AI aircraft antenna gain
49         *       real-life gain for conventional monopole/dipole antenna
50         **/
51         _antenna_gain = 2.0;
52         _propagation_model = 2; //  choose between models via option: realistic radio on/off
53         
54 }
55
56 FGRadio::~FGRadio() 
57 {
58 }
59
60
61 double FGRadio::getFrequency(int radio) {
62         double freq = 118.0;
63         switch (radio) {
64                 case 1:
65                         freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
66                         break;
67                 case 2:
68                         freq = fgGetDouble("/instrumentation/comm[1]/frequencies/selected-mhz");
69                         break;
70                 default:
71                         freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
72                         
73         }
74         return freq;
75 }
76
77
78
79
80 void FGRadio::receiveText(SGGeod tx_pos, double freq, string text,
81         int ground_to_air) {
82
83         /*
84         double comm1 = getFrequency(1);
85         double comm2 = getFrequency(2);
86         if ( (freq != comm1) &&  (freq != comm2) ) {
87                 cerr << "Frequency not tuned: " << freq << " Radio1: " << comm1 << " Radio2: " << comm2 << endl;
88                 return;
89         }
90         else {
91         */
92                 if ( _propagation_model == 0) {
93                         fgSetString("/sim/messages/atc", text.c_str());
94                 }
95                 else if ( _propagation_model == 1 ) {
96                         // free space, round earth
97                 }
98                 else if ( _propagation_model == 2 ) {
99                         // Use ITM propagation model
100                         double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
101                         if (signal <= 0.0) {
102                                 SG_LOG(SG_GENERAL, SG_BULK, "Signal below receiver minimum sensitivity: " << signal);
103                                 //cerr << "Signal below receiver minimum sensitivity: " << signal << endl;
104                                 return;
105                         }
106                         if ((signal > 0.0) && (signal < 12.0)) {
107                                 /** for low SNR values implement a way to make the conversation
108                                 *       hard to understand but audible
109                                 *       in the real world, the receiver AGC fails to capture the slope
110                                 *       and the signal, due to being amplitude modulated, decreases volume after demodulation
111                                 *       the workaround below is more akin to what would happen on a FM transmission
112                                 *       therefore the correct way would be to work on the volume
113                                 **/
114                                 /*
115                                 string hash_noise = " ";
116                                 int reps = (int) (fabs(floor(signal - 11.0)) * 2);
117                                 int t_size = text.size();
118                                 for (int n = 1; n <= reps; ++n) {
119                                         int pos = rand() % (t_size -1);
120                                         text.replace(pos,1, hash_noise);
121                                 }
122                                 */
123                                 double volume = (fabs(signal - 12.0) / 12);
124                                 double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
125                                 SG_LOG(SG_GENERAL, SG_BULK, "Usable signal at limit: " << signal);
126                                 //cerr << "Usable signal at limit: " << signal << endl;
127                                 fgSetDouble("/sim/sound/voices/voice/volume", volume);
128                                 fgSetString("/sim/messages/atc", text.c_str());
129                                 fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
130                         }
131                         else {
132                                 SG_LOG(SG_GENERAL, SG_BULK, "Signal completely readable: " << signal);
133                                 //cerr << "Signal completely readable: " << signal << endl;
134                                 fgSetString("/sim/messages/atc", text.c_str());
135                         }
136                         
137                 }
138                 
139         //}
140         
141 }
142
143 /***  Implement radio attenuation               
144           based on the Longley-Rice propagation model
145 ***/
146 double FGRadio::ITM_calculate_attenuation(SGGeod pos, double freq,
147                                int transmission_type) {
148
149         
150         
151         /** ITM default parameters 
152                 TODO: take them from tile materials (especially for sea)?
153         **/
154         double eps_dielect=15.0;
155         double sgm_conductivity = 0.005;
156         double eno = 301.0;
157         double frq_mhz;
158         if( (freq < 118.0) || (freq > 137.0) )
159                 frq_mhz = 125.0;        // sane value, middle of bandplan
160         else
161                 frq_mhz = freq;
162         int radio_climate = 5;          // continental temperate
163         int pol=1;      // assuming vertical polarization although this is more complex in reality
164         double conf = 0.90;     // 90% of situations and time, take into account speed
165         double rel = 0.90;      
166         double dbloss;
167         char strmode[150];
168         int errnum;
169         
170         double tx_pow = _transmitter_power;
171         double ant_gain = _antenna_gain;
172         double signal = 0.0;
173         
174         if(transmission_type == 1)
175                 tx_pow = _transmitter_power + 6.0;
176
177         if((transmission_type == 1) || (transmission_type == 3))
178                 ant_gain = _antenna_gain + 3.0; //pilot plane's antenna gain + ground station antenna gain
179         
180         double link_budget = tx_pow - _receiver_sensitivity + ant_gain; 
181
182         FGScenery * scenery = globals->get_scenery();
183         
184         double own_lat = fgGetDouble("/position/latitude-deg");
185         double own_lon = fgGetDouble("/position/longitude-deg");
186         double own_alt_ft = fgGetDouble("/position/altitude-ft");
187         double own_alt= own_alt_ft * SG_FEET_TO_METER;
188         
189         
190         //cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
191         
192         SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
193         SGGeod max_own_pos = SGGeod::fromDegM( own_lon, own_lat, SG_MAX_ELEVATION_M );
194         SGGeoc center = SGGeoc::fromGeod( max_own_pos );
195         SGGeoc own_pos_c = SGGeoc::fromGeod( own_pos );
196         
197         /**     position of sender radio antenna (HAAT)
198                         sender can be aircraft or ground station
199         **/
200         double ATC_HAAT = 30.0;
201         double Aircraft_HAAT = 5.0;
202         double sender_alt_ft,sender_alt;
203         double transmitter_height=0.0;
204         double receiver_height=0.0;
205         SGGeod sender_pos = pos;
206         
207         sender_alt_ft = sender_pos.getElevationFt();
208         sender_alt = sender_alt_ft * SG_FEET_TO_METER;
209         SGGeod max_sender_pos = SGGeod::fromGeodM( pos, SG_MAX_ELEVATION_M );
210         SGGeoc sender_pos_c = SGGeoc::fromGeod( sender_pos );
211         //cerr << "ITM:: sender Lat: " << parent->getLatitude() << ", Lon: " << parent->getLongitude() << ", Alt: " << sender_alt << endl;
212         
213         double point_distance= 90.0; // regular SRTM is 90 meters
214         double course = SGGeodesy::courseRad(own_pos_c, sender_pos_c);
215         double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
216         double probe_distance = 0.0;
217         /** If distance larger than this value (300 km), assume reception imposssible */
218         if (distance_m > 300000)
219                 return -1.0;
220         /** If above 8000 meters, consider LOS mode and calculate free-space att */
221         if (own_alt > 8000) {
222                 dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
223                 SG_LOG(SG_GENERAL, SG_BULK,
224                         "LOS-mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation");
225                 //cerr << "LOS-mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation" << endl;
226                 signal = link_budget - dbloss;
227                 return signal;
228         }
229         
230                 
231         double max_points = distance_m / point_distance;
232         deque<double> _elevations;
233
234         double elevation_under_pilot = 0.0;
235         if (scenery->get_elevation_m( max_own_pos, elevation_under_pilot, NULL )) {
236                 receiver_height = own_alt - elevation_under_pilot + 3; //assume antenna located 3 meters above ground
237         }
238
239         double elevation_under_sender = 0.0;
240         if (scenery->get_elevation_m( max_sender_pos, elevation_under_sender, NULL )) {
241                 transmitter_height = sender_alt - elevation_under_sender;
242         }
243         else {
244                 transmitter_height = sender_alt;
245         }
246         
247         if(transmission_type == 1) 
248                 transmitter_height += ATC_HAAT;
249         else
250                 transmitter_height += Aircraft_HAAT;
251         
252         SG_LOG(SG_GENERAL, SG_BULK,
253                         "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters");
254         cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl;
255         
256         unsigned int e_size = (deque<unsigned>::size_type)max_points;
257         
258         while (_elevations.size() <= e_size) {
259                 probe_distance += point_distance;
260                 SGGeod probe = SGGeod::fromGeoc(center.advanceRadM( course, probe_distance ));
261                 
262                 double elevation_m = 0.0;
263         
264                 if (scenery->get_elevation_m( probe, elevation_m, NULL )) {
265                         if((transmission_type == 3) || (transmission_type == 4)) {
266                                 _elevations.push_back(elevation_m);
267                         }
268                         else {
269                                  _elevations.push_front(elevation_m);
270                         }
271                 }
272                 else {
273                         if((transmission_type == 3) || (transmission_type == 4)) {
274                                 _elevations.push_back(elevation_m);
275                         }
276                         else {
277                         _elevations.push_front(0.0);
278                         }
279                 }
280         }
281         if((transmission_type == 3) || (transmission_type == 4)) {
282                 _elevations.push_front(elevation_under_pilot);
283                 _elevations.push_back(elevation_under_sender);
284         }
285         else {
286                 _elevations.push_back(elevation_under_pilot);
287                 _elevations.push_front(elevation_under_sender);
288         }
289         
290         
291         double max_alt_between=0.0;
292         for( deque<double>::size_type i = 0; i < _elevations.size(); i++ ) {
293                 if (_elevations[i] > max_alt_between) {
294                         max_alt_between = _elevations[i];
295                 }
296         }
297         
298         double num_points= (double)_elevations.size();
299         //cerr << "ITM:: Max alt between: " << max_alt_between << ", num points:" << num_points << endl;
300         _elevations.push_front(point_distance);
301         _elevations.push_front(num_points -1);
302         int size = _elevations.size();
303         double itm_elev[size];
304         for(int i=0;i<size;i++) {
305                 itm_elev[i]=_elevations[i];
306                 //cerr << "ITM:: itm_elev: " << _elevations[i] << endl;
307         }
308
309         
310         /** first Fresnel zone radius
311                 frequency in the middle of the bandplan, more accuracy is not necessary
312         */
313         double fz_clr= 8.657 * sqrt(distance_m / 0.125);
314         
315         // TODO: If we clear the first Fresnel zone, we are into line of sight territory
316
317         // else we need to calculate point to point link loss
318         if((transmission_type == 3) || (transmission_type == 4)) {
319                 // the sender and receiver roles are switched
320                 point_to_point(itm_elev, receiver_height, transmitter_height,
321                         eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
322                         pol, conf, rel, dbloss, strmode, errnum);
323                 
324         }
325         else {
326
327                 point_to_point(itm_elev, transmitter_height, receiver_height,
328                         eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
329                         pol, conf, rel, dbloss, strmode, errnum);
330         }
331         SG_LOG(SG_GENERAL, SG_BULK,
332                         "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
333         cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
334         
335         //if (errnum == 4)      // if parameters are outside sane values for lrprop, the alternative method is used
336         //      return -1;
337         signal = link_budget - dbloss;
338         return signal;
339
340 }