************************************************ * * * FGFS Reconfigurable Aircraft Flight Model * * Input File Documentation * * Version 0.64, March 28, 2000 * * * * Authors: * * Jeff Scott (jscott@mail.com) * * Bipin Sehgal (bsehgal@uiuc.edu) * * Michael Selig (m-selig@uiuc.edu) * * Dept of Aero and Astro Engineering * * University of Illinois at Urbana-Champaign * * Urbana, IL * * http://amber.aae.uiuc.edu/~m-selig * * * ************************************************ ********************************************************************** This documentation includes: - Required and optional input lines. - Input line formats and conventions. Viewing this file in emacs makefile-mode with color makes this file easier to read. ********************************************************************** ********************************************************************** I. Conventions and Notations and Reading this Document: # ... Comments | Input line not yet implemented | Optional data | Sometimes indicates a feature not yet used, but proposed convention is indicated nevertheless. <...> Value or file name to be placed here || Input line disabled || Option disabled ... Repeat similar data -> Continue onto next line ********************************************************************** ********************************************************************** II. General Input Line Format: Examples input lines include Cm Cmo 0.194 # [] Bray pg 33 Cm Cm_a -2.12 # [/rad] Bray pg 33 CL CLfa CLfa.dat # [] Bray pg 50, Table 4.7 These follow the more general input line form keyword variableName | -> # [units] Each term of the input line will be discussed in turn. (1) KEYWORDS ============ There currently exist 15 types of variable keywords: init Initial values for equation of motion geometry Aircraft-specific geometric quantities controlSurface Control surface deflections and properties |controlsMixer Control surface mixer options mass Aircraft-specific mass properties engine Propulsion data CD Aerodynamic x-force quantities (longitudinal) CL Aerodynamic z-force quantities (longitudinal) Cm Aerodynamic m-moment quantities (longitudinal) CY Aerodynamic y-force quantities (lateral) Cl Aerodynamic l-moment quantities (lateral) Cn Aerodynamic n-moment quantities (lateral) |gear Landing gear model quantities ice Icing model parameters record Record desired quantites to file As each line of the input file is read, the code recognizes the keyword, enters the appropriate switch statement in the code, and proceeds to read the next term in the input line. (2) VARIABLE NAMES ================== The variable name indicates the form of the variable itself. This form may be a constant, a stability derivative (a specific form of a constant), or a variable-dimensional lookup table. More variable types can be easily prescribed by defining a new convention. The variable name may also indicate that the quantity is to be calculated from a hard-coded equation or set of equations provided at an appropriate location within the code. If the parameter name denotes a constant, a numerical value will follow the variable name. If a lookup table, the name of the table containing the data will follow. More than one value or file name can be specified if the code is intended to read in multiple pieces of data when implementing the particular switch in question (see also OPTIONAL data, section (3)). The conventions used for naming the variables are provided below. Several of these variable names are not currently used. 1) variable class _ denotes stability derivative to be multiplied by something f "function of" (indicates an m*n matrix data table is given) 2) timing data (global simulator variables) Simtime current simulator time [s] dt current simulator time step [s] 3) aircraft state variables Dx_pilot x-location [ft] Dy_pilot y-location [ft] Dz_pilot z-location [ft] Dx_cg center of gravity x-location [ft] Dy_cg center of gravity y-location [ft] Dz_cg center of gravity z-location [ft] V_north x-velocity [ft/s] V_east y-velocity [ft/s] V_down z-velocity [ft/s] V_rel_wind total velocity [ft/s] Dynamic_pressure dynamic pressure [lb/ft^2] Alpha angle of attack [rad] Alpha_dot rate of change of alpha [rad/s] Beta sideslip angle [rad] Beta_dot rate of change of beta [rad] Gamma flight path angle [rad] P_body roll rate [rad/s] Q_body pitch rate [rad/s] R_body yaw rate [rad/s] Phi bank angle [rad] Theta pitch attitude angle [rad] Theta_dot rate change of theta [rad/s] Psi heading angle [rad] |long_trim |trim_inc M Mach number [] Re Reynolds number [] 4) atmosphere properties Density air density [slug/ft^3] 5) geometric variables bw wingspan [ft] cbar mean aerodynamic chord [ft] Sw wing planform area [ft^2] iw wing incidence angle [deg] bc canard span [ft] cc canard (mean) chord [ft] Sc canard area [ft^2] ic canard incidence angle [deg] bh horizontal tail span [ft] ch horizontal tail (mean) chord [ft] Sh horizontal tail area [ft^2] ih horizontal tail incidence angle [deg] bv vertical tail span (height) [ft] cv vertical tail (mean) chord [ft] iv vertical tail incidence angle [deg] Sv vertical tail area [ft^2] 6) control surface properties Sa aileron area [ft^2] Se elevator area [ft^2] Sf flap area [ft^2] Sr rudder area [ft^2] Lat_control roll control input [?] Long_control pitch control input [?] Rudder_pedal yaw control input [?] aileron aileron deflection [rad] elevator elevator deflection [rad] rudder rudder deflection [rad] |flap flap deflection [rad] 7) mass variables |Weight gross takeoff weight [lb] Mass aircraft mass (used by LaRC) [slug] I_xx roll inertia [slug-ft^2] I_yy pitch inertia [slug-ft^2] I_zz yaw inertia [slug-ft^2] I_xz lateral cross inertia [slug-ft^2] 8) engine/propulsion variables |thrust thrust [lb] simpleSingle simple single engine max thrust [lb] |Throttle_pct throttle input [] # ie, this is the stick |Throttle[3] throttle deflection [%] # this is what gets used to determine thrust 9) force/moment coefficients CD coefficient of drag [] CY coefficient of side-force [] CL coefficient of lift [] Cl coefficient of roll moment [] Cm coefficient of pitching moment [] Cn coefficient of yaw moment [] |CT coefficient of thrust [] 10) total forces/moments F_X_wind aerodynamic x-force in wind-axes [lb] F_Y_wind aerodynamic y-force in wind-axes [lb] F_Z_wind aerodynamic z-force in wind-axes [lb] F_X_aero aerodynamic x-force in body-axes [lb] F_Y_aero aerodynamic y-force in body-axes [lb] F_Z_aero aerodynamic z-force in body-axes [lb] F_X_engine propulsion x-force in body axes [lb] F_Y_engine propulsion y-force in body axes [lb] F_Z_engine propulsion z-force in body axes [lb] F_X_gear gear x-force in body axes [lb] F_Y_gear gear y-force in body axes [lb] F_Z_gear gear z-force in body axes [lb] F_X total x-force [lb] F_Y total y-force [lb] F_Z total z-force [lb] M_l_aero aero roll-moment in body-axes [ft-lb] M_m_aero aero pitch-moment in body-axes [ft-lb] M_n_aero aero yaw-moment in body-axes [ft-lb] M_l_engine prop roll-moment in body axes [ft-lb] M_m_engine prop pitch-moment in body axes [ft-lb] M_n_engine prop yaw-moment in body axes [ft-lb] M_l_gear gear roll-moment in body axes [ft-lb] M_m_gear gear pitch-moment in body axes [ft-lb] M_n_gear gear yaw-moment in body axes [ft-lb] M_l_rp total roll-moment [ft-lb] M_m_rp total pitch-moment [ft-lb] M_n_rp total yaw-moment [ft-lb] 11) landing gear properties |cgear gear damping constant [?] |kgear gear spring constant [?] |muGear gear rolling friction coef [?] |strutLength gear strut length [ft] 12) icing model parameters iceTime time when icing begins [s] transientTime time period over which eta increases to final [s] eta_final icing severity factor at end of transient time [-] kCA icing constants for associated aero coef. [-] (see IV) 13) subscripts o value for all angles = 0 (alfa, beta, etc) a angle of attack adot rate change in angle alpha beta sideslip angle |betadot rate change in beta p roll rate q pitch rate r yaw rate |pdot rate change in p |qdot rate change in q |rdot rate change in r |udot rate change in x-velocity da aileron deflection de elevator deflection dr rudder deflection df flap deflection |df2 flap deflection for second set |df3 flap deflection for third set max maximum min minimum (3) | [OPTIONAL DATA] ===================== An input line may also be used to provide optional data that will be used if provided but is not necessary for the code to operate. As with the variable data described in section (2), multiple values or data files may be provided if the code is written to use them. (4) # [COMMENTS] ================ Appended comments should be provided with each input line to indicate units on the variable in question and to indicate the source the data was drawn from. ********************************************************************** ********************************************************************** III. Sample Input Lines: CONSTANTS ========= geometry bw # geometric parameter, wingspan Cm Cm_a # stability derivative, d(Cm)/d(alpha) controlSurface de # max and min elevator deflections LOOKUP TABLES ============= CD CDfCL # CD(CL), drag polar data file Cm Cmfade # Cm(alpha,delta_e), moment data file HARD-CODED EQUATION =================== CD CDfCL # CD(CL), drag calculated in code based on CL ********************************************************************** ********************************************************************** IV. Input Line Definitions: Of all the possible permutations of variable names described above in section II, only some are curently implemented in the code. These are described below. Comments, denoted by '#,' are used to define the lines and to indicate examples of the data if additional clarity is needed for unique situations. Again, those lines beginning with '|' are not currently implemented in the code, but indicate planned conventions in later versions. # Key Variable Data Units Description Where Defined #------------------------------------------------------------------------------------ init Dx_pilot # [ft] initial x-position ls_generic.h init Dy_pilot # [ft] initial y-position ls_generic.h init Dz_pilot # [ft] initial z-position ls_generic.h init Dx_cg # [ft] initial cg x_location ls_generic.h init Dy_cg # [ft] initial cg y_location ls_generic.h init Dz_cg # [ft] initial cg z_location ls_generic.h |init V_north # [ft/s] initial x-velocity ls_generic.h |init V_east # [ft/s] initial y-velocity ls_generic.h |init V_down # [ft/s] initial z-velocity ls_generic.h init P_body # [rad/s] initial roll rate ls_generic.h init Q_body # [rad/s] initial pitch rate ls_generic.h init R_body # [rad/s] initial yaw rate ls_generic.h init Phi # [rad] initial bank angle ls_generic.h init Theta # [rad] initial pitch attitude angle ls_generic.h init Psi # [rad] initial heading angle ls_generic.h geometry bw # [ft] wingspan uiuc_aircraft.h geometry cbar # [ft] wing mean aero chord uiuc_aircraft.h geometry Sw # [ft^2] wing reference area uiuc_aircraft.h |geometry iw # [deg] wing incidence angle uiuc_aircraft.h |geometry bc # [ft] canard span uiuc_aircraft.h |geometry cc # [ft] canard chord uiuc_aircraft.h |geometry Sc # [sq-ft] canard area uiuc_aircraft.h |geometry ic # [deg] canard incidence angle uiuc_aircraft.h |geometry bh # [ft] horizontal tail span uiuc_aircraft.h |geometry ch # [ft] horizontal tail chord uiuc_aircraft.h |geometry Sh # [sq-ft] horizontal tail area uiuc_aircraft.h |geometry ih # [deg] horiz tail incidence angle uiuc_aircraft.h |geometry bv # [ft] vertical tail span uiuc_aircraft.h |geometry cv # [ft] vertical tail chord uiuc_aircraft.h |geometry Sv # [sq-ft] vertical tail area uiuc_aircraft.h |geometry iv # [deg] vert tail incidence angle uiuc_aircraft.h |controlSurface Se # [ft^2] elevator area uiuc_aircraft.h |controlSurface Sa # [ft^2] aileron area uiuc_aircraft.h |controlSurface Sr # [ft^2] rudder area uiuc_aircraft.h |controlSurface Sf # [ft^2] flap area uiuc_aircraft.h controlSurface de # [deg] max/min elev deflections uiuc_aircraft.h controlSurface da # [deg] max/min ail deflections uiuc_aircraft.h controlSurface dr # [deg] max/min rud deflections uiuc_aircraft.h |controlSurface df # [deg] max/min flap deflections uiuc_aircraft.h # Note: Currently demin is not used in the code, and the max/min is +-demax. |controlsMixer nomix # [] no controls mixing uiuc_aircraft.h |mass Weight # [lb] gross takeoff weight (not used) mass Mass # [slug] gross takeoff mass ls_generic.h mass I_xx # [slug-ft^2] roll inertia ls_generic.h mass I_yy # [slug-ft^2] pitch inertia ls_generic.h mass I_zz # [slug-ft^2] yaw inertia ls_generic.h mass I_xz # [slug-ft^2] lateral cross inertia ls_generic.h # maximum and minimum engine thrust [lb] uiuc_aircraft.h |engine thrust # simple single engine maximum thrust [lb] uiuc_aircraft.h engine simpleSingle engine c172 # use Cessna 172 engine model of Tony Peden CL CLo # [] lift coef for all angles = 0 uiuc_aircraft.h CL CL_a # [/rad] lift curve slope, d(CL)/d(alpha) uiuc_aircraft.h CL CL_adot # [/rad] d(CL)/d(alpha)/da(time) uiuc_aircraft.h CL CL_q # [/rad] d(CL)/delta(q) uiuc_aircraft.h CL CL_de # [/rad] d(CL)/d(de) uiuc_aircraft.h # CL(alpha), conversion for CL, for alpha [] uiuc_aircraft.h CL CLfa # CL(alpha,delta_e), conversion for CL, for alpha, for delta_e [] uiuc_aircraft.h CL CLfade |CL CLfCT # CL(thrust coef) uiuc_aircraft.h |CL CLfRe # CL(Reynolds #), equation uiuc_aircraft.h |CL CL_afaM # CL_alpha(alpha,Mach #) uiuc_aircraft.h # these are sample examples that might be used in later versions of the code # note that CD terms must come after CL for induced drag to be computed CD CDo # [] drag coef for all angles = 0 uiuc_aircraft.h CD CDK # [] constant, as in CD=CDo+K*CL^2 uiuc_aircraft.h CD CD_a # [/rad] d(CD)/d(alpha) uiuc_aircraft.h CD CD_de # [/rad] d(CD)/d(delta_e) uiuc_aircraft.h # CD(alpha), conversion for CD, for alpha [] uiuc_aircraft.h CD CDfa # CD(alpha,delta_e), conversion for CD, for alpha, for delta_e [] uiuc_aircraft.h CD CDfade Cm Cmo # [] pitch mom coef for all angles=0 uiuc_aircraft.h Cm Cm_a # [/rad] d(Cm)/d(alpha) uiuc_aircraft.h Cm Cm_adot # [/rad] d(Cm)/d(alpha)/d(time) uiuc_aircraft.h Cm Cm_q # [/rad] d(Cm)/d(q) uiuc_aircraft.h Cm Cm_de # [/rad] d(Cm)/d(de) uiuc_aircraft.h |Cm Cmfa # [] Cm(alpha) uiuc_aircraft.h Cm Cmfade # [] Cm(alpha,delta_e) uiuc_aircraft.h # Cm(alpha,delta_e), conversion for Cm, for alpha, for delta_e [] uiuc_aircraft.h Cm Cmfade CY CYo # [] side-force coef for all angles=0 uiuc_aircraft.h CY CY_beta # [/rad] d(CY)/d(beta) uiuc_aircraft.h CY CY_p # [/rad] d(CY)/d(p) uiuc_aircraft.h CY CY_r # [/rad] d(CY)/d(r) uiuc_aircraft.h CY CY_da # [/rad] d(CY)/d(delta_a) uiuc_aircraft.h CY CY_dr # [/rad] d(CY)/d(delta_r) uiuc_aircraft.h # CY(alpha,delta_a), conversion for CY, for alpha, for delta_a [] uiuc_aircraft.h CY CYfada # CY(beta,delta_r), conversion for CY, for beta, for delta_r [] uiuc_aircraft.h CY CYfbetadr Cl Clo # [] roll mom coef for all angles=0 uiuc_aircraft.h Cl Cl_beta # [/rad] d(Cl)/d(beta) uiuc_aircraft.h Cl Cl_betafCL # [/rad] Cl_beta(CL) equation uiuc_aircraft.h Cl Cl_p # [/rad] d(Cl)/d(p) uiuc_aircraft.h Cl Cl_r # [/rad] d(Cl)/d(r) uiuc_aircraft.h Cl Cl_rfCL # [/rad] Cl_r(CL) equation uiuc_aircraft.h Cl Cl_da # [/rad] d(Cl)/d(delta_a) uiuc_aircraft.h Cl Cl_dr # [/rad] d(Cl)/d(delta_r) uiuc_aircraft.h Cl Clfada # [] Cl(alpha,delta_a), equation uiuc_aircraft.h # Cl(alpha,delta_a), conversion for Cl, for alpha, for delta_a [] uiuc_aircraft.h Cl Clfada # Cl(beta,delta_r), conversion for Cl, for beta, for delta_r [] uiuc_aircraft.h Cl Clfbetadr Cn Cno # [] yaw mom coef for all angles=0 uiuc_aircraft.h Cn Cn_beta # [/rad] d(Cn)/d(beta) uiuc_aircraft.h Cn Cn_betafCL # [/rad] Cn_beta(CL) equation uiuc_aircraft.h Cn Cn_p # [/rad] d(Cn)/d(p) uiuc_aircraft.h Cn Cn_pfCL # [/rad] Cn_p(CL) equation uiuc_aircraft.h Cn Cn_r # [/rad] d(Cn)/d(r) uiuc_aircraft.h Cn Cn_rfCL # [/rad] Cn_r(CL) equation uiuc_aircraft.h Cn Cn_da # [/rad] d(Cn)/d(da) uiuc_aircraft.h Cn Cn_dr # [/rad] d(Cn)/d(dr) uiuc_aircraft.h Cn Cn_drfCL # [/rad] Cn_dr(CL) equation uiuc_aircraft.h # Cn(alpha,delta_a), conversion for Cn, for alpha, for delta_a [] uiuc_aircraft.h Cn Cnfada # Cn(beta,delta_r), conversion for Cn, for beta, for delta_r [] uiuc_aircraft.h Cn Cnfbetadr =============================CONVERSION CODES================================ To calculate the aero forces, angles (eg, alfa, beta, elevator deflection, etc) must be in radians. To convert input data in degree to radian, use a conversion code of 1. To use no conversion, use a conversion code of 0. ------------------------------------------------ conversion1 conversion2 conversion3 Action ------------------------------------------------ 0 no conversion (multiply by 1) 1 convert degrees to radians ============================================================================= |gear kgear # [] gear spring constant(s) uiuc_aircraft.h |gear muRoll # [] gear rolling friction coef(s) uiuc_aircraft.h |gear cgear # [] gear damping constant(s) uiuc_aircraft.h |gear strutLength # [ft] gear strut length uiuc_aircraft.h ice iceTime # [s] time when icing begins uiuc_aircraft.h ice transientTime # [s] period for eta to reach eta_final uiuc_aircraft.h ice eta_final # [] icing severity factor uiuc_aircraft.h ice kCDo # [] icing constant for CDo uiuc_aircraft.h ice kCDK # [] icing constant for CDK uiuc_aircraft.h ice kCD_a # [] icing constant for CD_a uiuc_aircraft.h |ice kCD_q # [] icing constant for CD_q uiuc_aircraft.h ice kCD_de # [] icing constant for CD_de uiuc_aircraft.h |ice kCD_dr # [] icing constant for CD_dr uiuc_aircraft.h |ice kCD_df # [] icing constant for CD_df uiuc_aircraft.h |ice kCD_adf # [] icing constant for CD_adf uiuc_aircraft.h ice kCLo # [] icing constant for CLo uiuc_aircraft.h ice kCL_a # [] icing constant for CL_a uiuc_aircraft.h ice kCL_adot # [] icing constant for CL_adot uiuc_aircraft.h ice kCL_q # [] icing constant for CL_q uiuc_aircraft.h ice kCL_de # [] icing constant for CL_de uiuc_aircraft.h |ice kCL_df # [] icing constant for CL_df uiuc_aircraft.h |ice kCL_adf # [] icing constant for CL_adf uiuc_aircraft.h ice kCmo # [] icing constant for Cmo uiuc_aircraft.h ice kCm_a # [] icing constant for Cm_a uiuc_aircraft.h ice kCm_adot # [] icing constant for Cm_adot uiuc_aircraft.h ice kCm_q # [] icing constant for Cm_q uiuc_aircraft.h |ice kCm_r # [] icing constant for Cm_r uiuc_aircraft.h ice kCm_de # [] icing constant for Cm_de uiuc_aircraft.h |ice kCm_df # [] icing constant for Cm_df uiuc_aircraft.h ice kCYo # [] icing constant for CYo uiuc_aircraft.h ice kCY_beta # [] icing constant for CY_beta uiuc_aircraft.h ice kCY_p # [] icing constant for CY_p uiuc_aircraft.h ice kCY_r # [] icing constant for CY_r uiuc_aircraft.h ice kCY_da # [] icing constant for CY_da uiuc_aircraft.h ice kCY_dr # [] icing constant for CY_dr uiuc_aircraft.h ice kClo # [] icing constant for Clo uiuc_aircraft.h ice kCl_beta # [] icing constant for Cl_beta uiuc_aircraft.h ice kCl_p # [] icing constant for Cl_p uiuc_aircraft.h ice kCl_r # [] icing constant for Cl_r uiuc_aircraft.h ice kCl_da # [] icing constant for Cl_da uiuc_aircraft.h ice kCl_dr # [] icing constant for Cl_dr uiuc_aircraft.h ice kCno # [] icing constant for Cno uiuc_aircraft.h ice kCn_beta # [] icing constant for Cn_beta uiuc_aircraft.h ice kCn_p # [] icing constant for Cn_p uiuc_aircraft.h ice kCn_r # [] icing constant for Cn_r uiuc_aircraft.h ice kCn_da # [] icing constant for Cn_da uiuc_aircraft.h ice kCn_dr # [] icing constant for Cn_dr uiuc_aircraft.h record Dx_pilot # [ft] x-location ls_generic.h record Dy_pilot # [ft] y-loaction ls_generic.h record Dz_pilot # [ft] z-location ls_generic.h record Dx_cg # [ft] cg x_location ls_generic.h record Dy_cg # [ft] cg y_location ls_generic.h record Dz_cg # [ft] cg z_location ls_generic.h record V_north # [ft/s] x-velocity ls_generic.h record V_east # [ft/s] y-velocity ls_generic.h record V_down # [ft/s] z-velocity ls_generic.h record V_rel_wind # [ft/s] total velocity ls_generic.h record Dynamic_pressure # [lb/ft^2] dynamic pressure ls_generic.h record Alpha # [rad] angle of attack ls_generic.h record Alpha_dot # [rad/s] rate of change of alpha ls_generic.h record Beta # [rad] sideslip angle ls_generic.h record Beta_dot # [rad/s] rate of change of beta ls_generic.h record Gamma # [rad] flight path angle ls_generic.h record P_body # [rad] roll rate ls_generic.h record Q_body # [rad] pitch rate ls_generic.h record R_body # [rad] yaw rate ls_generic.h record Phi # [rad] bank angle ls_generic.h record Theta # [rad] pitch attitude angle ls_generic.h record Theta_dot # [rad] rate change of theta ls_generic.h record Psi # [rad] heading angle ls_generic.h |record long_trim |record trim_inc record Density # [slug/ft^3] air density ls_generic.h record Mass # [slug] aircraft mass ls_generic.h record Simtime # [s] current sim time global record dt # [s] current time step global record Long_control # [] pitch input ls_cockpit.h record Lat_control # [] roll input ls_cockpit.h record Rudder_pedal # [] yaw input ls_cockpit.h |record Throttle_pct # [%] throttle input ls_cockpit.h record elevator # [rad] elevator deflection uiuc_aircraft.h record aileron # [rad] aileron deflection uiuc_aircraft.h record rudder # [rad] rudder deflection uiuc_aircraft.h |record Throttle[3] # [%] throttle deflection ls_cockpit.h record CDfaI # [] CD(alpha) uiuc_aircraft.h record CDfadeI # [] CD(alpha,delta_e) uiuc_aircraft.h record CD # [] drag coefficient uiuc_aircraft.h record CLfaI # [] CL(alpha) uiuc_aircraft.h record CLfadeI # [] CL(alpha,delta_e) uiuc_aircraft.h record CL # [] lift coefficient uiuc_aircraft.h record CmfadeI # [] Cm(alpha,delta_e) uiuc_aircraft.h record Cm # [] pitch moment coefficient uiuc_aircraft.h record CYfadaI # [] CY(alpha,delta_a) uiuc_aircraft.h record CYfbetadrI # [] CY(beta,delta_r) uiuc_aircraft.h record CY # [] side-force coefficient uiuc_aircraft.h record ClfadaI # [] Cl(alpha,delta_a) uiuc_aircraft.h record ClfbetadrI # [] Cl(beta,delta_r) uiuc_aircraft.h record Cl # [] roll moment coefficient uiuc_aircraft.h record CnfadaI # [] Cn(alpha,delta_a) uiuc_aircraft.h record CnfbetadrI # [] Cn(beta,delta_r) uiuc_aircraft.h record Cn # [] yaw moment coefficient uiuc_aircraft.h record F_X_wind # [lb] aero x-force in wind-axes ls_generic.h record F_Y_wind # [lb] aero y-force in wind-axes ls_generic.h record F_Z_wind # [lb] aero z-force in wind-axes ls_generic.h record F_X_aero # [lb] aero x-force in body-axes ls_generic.h record F_Y_aero # [lb] aero y-force in body-axes ls_generic.h record F_Z_aero # [lb] aero z-force in body-axes ls_generic.h record F_X_engine # [lb] prop x-force in body-axes ls_generic.h record F_Y_engine # [lb] prop y-force in body-axes ls_generic.h record F_Z_engine # [lb] prop z-force in body-axes ls_generic.h record F_X_gear # [lb] gear x-force in body-axes ls_generic.h record F_Y_gear # [lb] gear y-force in body-axes ls_generic.h record F_Z_gear # [lb] gear z-force in body-axes ls_generic.h record F_X # [lb] total x-force in body-axes ls_generic.h record F_Y # [lb] total y-force in body-axes ls_generic.h record F_Z # [lb] total z-force in body-axes ls_generic.h record M_l_aero # [ft-lb] aero roll mom in body axes ls_generic.h record M_m_aero # [ft-lb] aero pitch mom in body axes ls_generic.h record M_n_aero # [ft-lb] aero yaw mom in body axes ls_generic.h record M_l_engine # [ft-lb] prop roll mom in body axes ls_generic.h record M_m_engine # [ft-lb] prop pitch mom in body axes ls_generic.h record M_n_engine # [ft-lb] prop yaw mom in body axes ls_generic.h record M_l_gear # [ft-lb] gear roll mom in body axes ls_generic.h record M_m_gear # [ft-lb] gear pitch mom in body axes ls_generic.h record M_n_gear # [ft-lb] gear yaw mom in body axes ls_generic.h record M_l_rp # [ft-lb] total roll mom in body axes ls_generic.h record M_m_rp # [ft-lb] total pitch mom in body axes ls_generic.h record M_n_rp # [ft-lb] total yaw mom in body axes ls_generic.h ********************************************************************** ********************************************************************** V. Mandatory Input: The following data is required for the simulator to function; otherwise either the UIUC Aero Model or LaRCsim parts of the code will probably crash. 1) initial aircraft state (LaRCsim) Dx_pilot x-location [ft] Dy_pilot y-location [ft] Dz_pilot z-location [ft] (items below causing conflict with Flight Gear) |V_north x-velocity [ft/s] |V_east y-velocity [ft/s] |V_down z-velocity [ft/s] P_body roll rate [rad/s] Q_body pitch rate [rad/s] R_body yaw rate [rad/s] Phi bank angle [rad] Theta pitch attitude angle [rad] Psi heading angle [rad] 2) aircraft geometry (UIUC Aero Model) bw wingspan [ft] cbar mean aerodynamic chord [ft] Sw wing planform area [ft^2] 3) engine properties (UIUC Engine Model) (some engine model must be specified, such as...) engine simpleSingle engine c172 4) mass variables (LaRCsim) Mass aircraft mass [slug] I_xx roll inertia [slug-ft^2] I_yy pitch inertia [slug-ft^2] I_zz yaw inertia [slug-ft^2] I_xz lateral cross inertia [slug-ft^2] 5) aerodynamic force/moment components (Aero Model) CLo lift coef for all angles = 0 [] CL_a lift curve slope, d(CL)/d(alpha) [/rad] CDo drag coef for all angles = 0 [] CDK constant, as in CD=CDo+K*CL^2 [] CD_a d(CD)/d(alpha) [/rad] Cmo pitch mom coef for all angles=0 [] Cm_a d(Cm)/d(alpha) [/rad] CY_beta d(CY)/d(beta) [/rad] Cl_beta d(Cl)/d(beta) [/rad] Cn_beta d(Cn)/d(beta) [/rad] 7) gear properties (none yet) With the current version, the C172 model gear model is used for *ALL* aircraft. This can produce some interesting effects with heavy aircraft (eg, Convair model), and light aircraft (eg, Pioneer UAV) **********************************************************************