/* WARNING - Do not remove this header. This code is a templated version of the 'magic-software' spherical interpolation code by Dave Eberly. The original (un-hacked) code can be obtained from here: http://www.magic-software.com/gr_appr.htm This code is derived from linintp2.h/cpp and sphrintp.h/cpp. Dave Eberly says that the conditions for use are: * You may distribute the original source code to others at no charge. * You may modify the original source code and distribute it to others at no charge. The modified code must be documented to indicate that it is not part of the original package. * You may use this code for non-commercial purposes. You may also incorporate this code into commercial packages. However, you may not sell any of your source code which contains my original and/or modified source code. In such a case, you need to factor out my code and freely distribute it. * The original code comes with absolutely no warranty and no guarantee is made that the code is bug-free. This does not seem incompatible with GPL - so this modified version is hereby placed under GPL along with the rest of FlightGear. Christian Mayer */ #include #include "sphrintp.h" static const double PI = 4.0*atan(1.0); static const double TWOPI = 2.0*PI; //--------------------------------------------------------------------------- template SphereInterpolate::SphereInterpolate (int n, const double* x, const double* y, const double* z, const T* f) { // Assumes (x[i],y[i],z[i]) is unit length for all 0 <= i < n. // For complete spherical coverage, include the two antipodal points // (0,0,1,f(0,0,1)) and (0,0,-1,f(0,0,-1)) in the data set. cout << "Initialising spherical interpolator.\n"; cout << "[ 0%] Allocating memory \r"; theta = new double[3*n]; phi = new double[3*n]; func = new T[3*n]; // convert data to spherical coordinates int i; T empty; for (i = 0; i < n; i++) { GetSphericalCoords(x[i],y[i],z[i],theta[i],phi[i]); func[i] = f[i]; } // use periodicity to get wrap-around in the Delaunay triangulation cout << "[ 10%] copying vertices for wrap-around\r"; int j, k; for (i = 0, j = n, k = 2*n; i < n; i++, j++, k++) { theta[j] = theta[i]+TWOPI; theta[k] = theta[i]-TWOPI; phi[j] = phi[i]; phi[k] = phi[i]; func[j] = func[i]; func[k] = func[i]; } pInterp = new mgcLinInterp2D(3*n,theta,phi,func); cout << "[100%] Finished initialising spherical interpolator. \n"; } template SphereInterpolate::SphereInterpolate (int n, const sgVec2* p, const T* f) { // Assumes (x[i],y[i],z[i]) is unit length for all 0 <= i < n. // For complete spherical coverage, include the two antipodal points // (0,0,1,f(0,0,1)) and (0,0,-1,f(0,0,-1)) in the data set. cout << "Initialising spherical interpolator.\n"; cout << "[ 0%] Allocating memory \r"; theta = new double[3*n]; phi = new double[3*n]; func = new T[3*n]; // convert data to spherical coordinates cout << "[ 10%] copying vertices for wrap-around \r"; int i, j, k; for (i = 0, j = n, k = 2*n; i < n; i++, j++, k++) { phi[i] = p[i][0]; theta[i] = p[i][1]; func[i] = f[i]; // use periodicity to get wrap-around in the Delaunay triangulation phi[j] = phi[i]; phi[k] = phi[i]; theta[j] = theta[i]+TWOPI; theta[k] = theta[i]-TWOPI; func[j] = func[i]; func[k] = func[i]; } pInterp = new mgcLinInterp2D(3*n,theta,phi,func); cout << "[100%] Finished initialising spherical interpolator. \n"; } //--------------------------------------------------------------------------- template SphereInterpolate::~SphereInterpolate () { delete pInterp; delete[] theta; delete[] phi; delete[] func; } //--------------------------------------------------------------------------- template void SphereInterpolate::GetSphericalCoords (const double x, const double y, const double z, double& thetaAngle, double& phiAngle) const { // Assumes (x,y,z) is unit length. Returns -PI <= thetaAngle <= PI // and 0 <= phiAngle <= PI. if ( z < 1.0f ) { if ( z > -1.0f ) { thetaAngle = atan2(y,x); phiAngle = acos(z); } else { thetaAngle = -PI; phiAngle = PI; } } else { thetaAngle = -PI; phiAngle = 0.0f; } } //--------------------------------------------------------------------------- template int SphereInterpolate::Evaluate (const double x, const double y, const double z, T& f) const { // assumes (x,y,z) is unit length double thetaAngle, phiAngle; GetSphericalCoords(x,y,z,thetaAngle,phiAngle); return pInterp->Evaluate(thetaAngle,phiAngle,f); } //--------------------------------------------------------------------------- template int SphereInterpolate::Evaluate (const double thetaAngle, const double phiAngle, T& f) const { return pInterp->Evaluate(thetaAngle,phiAngle,f); } //---------------------------------------------------------------------------