]> git.mxchange.org Git - flightgear.git/blobdiff - src/AIModel/AIBallistic.cxx
Make sure that takeoff distance calculations are done in the correct frame of referen...
[flightgear.git] / src / AIModel / AIBallistic.cxx
index 94760bb7799216358df88c21d0657b735711dc3e..5e3b155095f1dc3147a81dbdbd2d80c7570387c3 100644 (file)
@@ -3,6 +3,8 @@
 // Written by David Culp, started November 2003.
 // - davidculp2@comcast.net
 //
+// With major additions by Mathias Froehlich & Vivian Meazza 2004-2008
+//
 // This program is free software; you can redistribute it and/or
 // modify it under the terms of the GNU General Public License as
 // published by the Free Software Foundation; either version 2 of the
 //
 // You should have received a copy of the GNU General Public License
 // along with this program; if not, write to the Free Software
-// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 
 #ifdef HAVE_CONFIG_H
 #  include <config.h>
 #endif
 
-#include <simgear/math/point3d.hxx>
-#include <math.h>
+#include <simgear/math/sg_random.h>
+#include <simgear/math/sg_geodesy.hxx>
+#include <simgear/scene/model/modellib.hxx>
+
+#include <Scenery/scenery.hxx>
 
 #include "AIBallistic.hxx"
 
+#include <Main/util.hxx>
+
+using namespace simgear;
+
+const double FGAIBallistic::slugs_to_kgs = 14.5939029372;
+const double FGAIBallistic::slugs_to_lbs = 32.1740485564;
 
-FGAIBallistic::FGAIBallistic(FGAIManager* mgr) {
-    manager = mgr;
-    _type_str = "ballistic";
-    _otype = otBallistic;
-    drag_area = 0.007;
-    life_timer = 0.0;
-       gravity = 32;
-//     buoyancy = 64;
-       }
+FGAIBallistic::FGAIBallistic(object_type ot) :
+    FGAIBase(ot),
+    _height(0.0),
+    _ht_agl_ft(0.0),
+    _azimuth(0.0),
+    _elevation(0.0),
+    _rotation(0.0),
+    _formate_to_ac(false),
+    _aero_stabilised(false),
+    _drag_area(0.007),
+    _life_timer(0.0),
+    _gravity(32.1740485564),
+    _buoyancy(0),
+    _wind(true),
+    _mass(0),
+    _random(false),
+    _load_resistance(0),
+    _solid(false),
+    _force_stabilised(false),
+    _slave_to_ac(false),
+    _slave_load_to_ac(false),
+    _contents_lb(0),
+    _report_collision(false),
+    _report_impact(false),
+    _external_force(false),
+    _impact_report_node(fgGetNode("/ai/models/model-impact", true)),
+    _old_height(0)
+
+{
+    no_roll = false;
+}
 
 FGAIBallistic::~FGAIBallistic() {
 }
 
+void FGAIBallistic::readFromScenario(SGPropertyNode* scFileNode) {
+    if (!scFileNode){
+        return;
+    }
+
+    FGAIBase::readFromScenario(scFileNode);
+
+    //setPath(scFileNode->getStringValue("model", "Models/Geometry/rocket.ac"));
+    setAzimuth(scFileNode->getDoubleValue("azimuth", 0.0));
+    setElevation(scFileNode->getDoubleValue("elevation", 0));
+    setDragArea(scFileNode->getDoubleValue("eda", 0.007));
+    setLife(scFileNode->getDoubleValue("life", 900.0));
+    setBuoyancy(scFileNode->getDoubleValue("buoyancy", 0));
+    setWind_from_east(scFileNode->getDoubleValue("wind_from_east", 0));
+    setWind_from_north(scFileNode->getDoubleValue("wind_from_north", 0));
+    setWind(scFileNode->getBoolValue("wind", false));
+    setRoll(scFileNode->getDoubleValue("roll", 0.0));
+    setCd(scFileNode->getDoubleValue("cd", 0.029));
+    //setMass(scFileNode->getDoubleValue("mass", 0.007));
+    setWeight(scFileNode->getDoubleValue("weight", 0.25));
+    setStabilisation(scFileNode->getBoolValue("aero-stabilized", false));
+    setNoRoll(scFileNode->getBoolValue("no-roll", false));
+    setRandom(scFileNode->getBoolValue("random", false));
+    setImpact(scFileNode->getBoolValue("impact", false));
+    setImpactReportNode(scFileNode->getStringValue("impact-reports"));
+    setName(scFileNode->getStringValue("name", "Rocket"));
+    setFuseRange(scFileNode->getDoubleValue("fuse-range", 0.0));
+    setSMPath(scFileNode->getStringValue("submodel-path", ""));
+    setSubID(scFileNode->getIntValue("SubID", 0));
+    setExternalForce(scFileNode->getBoolValue("external-force", false));
+    setForcePath(scFileNode->getStringValue("force-path", ""));
+    setForceStabilisation(scFileNode->getBoolValue("force-stabilized", false));
+    setXoffset(scFileNode->getDoubleValue("x-offset", 0.0));
+    setYoffset(scFileNode->getDoubleValue("y-offset", 0.0));
+    setZoffset(scFileNode->getDoubleValue("z-offset", 0.0));
+    setPitchoffset(scFileNode->getDoubleValue("pitch-offset", 0.0));
+    setRolloffset(scFileNode->getDoubleValue("roll-offset", 0.0));
+    setYawoffset(scFileNode->getDoubleValue("yaw-offset", 0.0));
+    setGroundOffset(scFileNode->getDoubleValue("ground-offset", 0.0));
+    setLoadOffset(scFileNode->getDoubleValue("load-offset", 0.0));
+    setSlaved(scFileNode->getBoolValue("slaved", false));
+    setSlavedLoad(scFileNode->getBoolValue("slaved-load", false));
+    setContentsNode(scFileNode->getStringValue("contents"));
+    setRandom(scFileNode->getBoolValue("random", false));
+}
+
+bool FGAIBallistic::init(bool search_in_AI_path) {
+    FGAIBase::init(search_in_AI_path);
+
+    _impact_reported = false;
+    _collision_reported = false;
+    invisible = false;
+
+    _elapsed_time += (sg_random() * 100);
 
-bool FGAIBallistic::init() {
-   FGAIBase::init();
-   aero_stabilized = true;
-   hdg = azimuth;
-   pitch = elevation;
-   return true;
+    props->setStringValue("material/name", "");
+    props->setStringValue("name", _name.c_str());
+    props->setStringValue("submodels/path", _submodel.c_str());
+
+    // start with high value so that animations don't trigger yet
+    _ht_agl_ft = 1e10;
+    hdg = _azimuth;
+    pitch = _elevation;
+    roll = _rotation;
+
+    Transform();
+
+    return true;
 }
 
 void FGAIBallistic::bind() {
-//    FGAIBase::bind();
-   props->tie("sim/time/elapsed-sec",
-               SGRawValueMethods<FGAIBallistic,double>(*this,
-                                          &FGAIBallistic::_getTime));
+    //    FGAIBase::bind();
+
+    props->tie("sim/time/elapsed-sec",
+        SGRawValueMethods<FGAIBallistic,double>(*this,
+        &FGAIBallistic::_getTime));
+    props->tie("mass-slug",
+        SGRawValueMethods<FGAIBallistic,double>(*this,
+        &FGAIBallistic::getMass));
+    props->tie("material/load-resistance",
+                SGRawValuePointer<double>(&_load_resistance));
+    props->tie("material/solid",
+                SGRawValuePointer<bool>(&_solid));
+    props->tie("altitude-agl-ft",
+                SGRawValuePointer<double>(&_ht_agl_ft));
+    props->tie("controls/slave-to-ac",
+        SGRawValueMethods<FGAIBallistic,bool>
+        (*this, &FGAIBallistic::getSlaved, &FGAIBallistic::setSlaved));
+    props->tie("controls/invisible",
+        SGRawValuePointer<bool>(&invisible));
+
+    if(_external_force){
+        props->tie("controls/force_stabilized",
+            SGRawValuePointer<bool>(&_force_stabilised));
+        props->tie("position/global-x", 
+            SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getCartPosX, 0));
+        props->tie("position/global-y",
+            SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getCartPosY, 0));
+        props->tie("position/global-z",
+            SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getCartPosZ, 0));
+        props->tie("velocities/vertical-speed-fps",
+            SGRawValuePointer<double>(&vs));
+        props->tie("velocities/true-airspeed-kt",
+            SGRawValuePointer<double>(&speed));
+        props->tie("velocities/horizontal-speed-fps",
+            SGRawValuePointer<double>(&hs));
+        props->tie("position/altitude-ft",
+            SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getAltitude, &FGAIBase::_setAltitude));
+        props->tie("position/latitude-deg", 
+            SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getLatitude, &FGAIBase::_setLatitude));
+        props->tie("position/longitude-deg",
+            SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getLongitude, &FGAIBase::_setLongitude));
+        props->tie("orientation/hdg-deg",
+            SGRawValuePointer<double>(&hdg));
+        props->tie("orientation/pitch-deg",
+            SGRawValuePointer<double>(&pitch));
+        props->tie("orientation/roll-deg",
+            SGRawValuePointer<double>(&roll));
+        props->tie("controls/slave-load-to-ac",
+            SGRawValueMethods<FGAIBallistic,bool>
+            (*this, &FGAIBallistic::getSlavedLoad, &FGAIBallistic::setSlavedLoad));
+        props->tie("position/load-offset",
+            SGRawValueMethods<FGAIBallistic,double>
+            (*this, &FGAIBallistic::getLoadOffset, &FGAIBallistic::setLoadOffset));
+        props->tie("load/distance-to-hitch-ft",
+            SGRawValueMethods<FGAIBallistic,double>
+            (*this, &FGAIBallistic::getDistanceLoadToHitch));
+        props->tie("load/elevation-to-hitch-deg",
+            SGRawValueMethods<FGAIBallistic,double>
+            (*this, &FGAIBallistic::getElevLoadToHitch));
+        props->tie("load/bearing-to-hitch-deg",
+            SGRawValueMethods<FGAIBallistic,double>
+            (*this, &FGAIBallistic::getBearingLoadToHitch));
+    }
+
 }
 
 void FGAIBallistic::unbind() {
-//    FGAIBase::unbind();
-   props->untie("sim/time/elapsed-sec");
+    //    FGAIBase::unbind();
+
+    props->untie("sim/time/elapsed-sec");
+    props->untie("mass-slug");
+    props->untie("material/load-resistance");
+    props->untie("material/solid");
+    props->untie("altitude-agl-ft");
+    props->untie("controls/slave-to-ac");
+    props->untie("controls/invisible");
+
+    if(_external_force){
+        props->untie("position/global-y");
+        props->untie("position/global-x");
+        props->untie("position/global-z");
+        props->untie("velocities/vertical-speed-fps");
+        props->untie("velocities/true-airspeed-kt");
+        props->untie("velocities/horizontal-speed-fps");
+        props->untie("position/altitude-ft");
+        props->untie("position/latitude-deg");
+        props->untie("position/longitude-deg");
+        props->untie("position/ht-agl-ft");
+        props->untie("orientation/hdg-deg");
+        props->untie("orientation/pitch-deg");
+        props->untie("orientation/roll-deg");
+        props->untie("controls/force_stabilized");
+        props->untie("position/load-offset");
+        props->untie("load/distance-to-hitch-ft");
+        props->untie("load/elevation-to-hitch-deg");
+        props->untie("load/bearing-to-hitch-deg");
+    }
 }
 
 void FGAIBallistic::update(double dt) {
-   FGAIBase::update(dt);
-   Run(dt);
-   Transform();
+    FGAIBase::update(dt);
+    _setUserPos();
+
+    if (_slave_to_ac){
+        slaveToAC(dt);
+        Transform();
+        setHitchVelocity(dt);
+    } else if (_formate_to_ac){
+        formateToAC(dt);
+        Transform();
+        setHitchVelocity(dt);
+    } else if (!invisible){
+    Run(dt);
+    Transform();
 }
 
+}
 
 void FGAIBallistic::setAzimuth(double az) {
-   hdg = azimuth = az;
+    hdg = _azimuth = az;
 }
 
-
 void FGAIBallistic::setElevation(double el) {
-   pitch = elevation = el;
+    pitch = _elevation = el;
 }
 
+void FGAIBallistic::setRoll(double rl) {
+    roll = _rotation = rl;
+}
 
-void FGAIBallistic::setStabilization(bool val) {
-   aero_stabilized = val;
+void FGAIBallistic::setStabilisation(bool val) {
+    _aero_stabilised = val;
+}
+
+void FGAIBallistic::setForceStabilisation(bool val) {
+    _force_stabilised = val;
+}
+
+void FGAIBallistic::setNoRoll(bool nr) {
+    no_roll = nr;
 }
 
 void FGAIBallistic::setDragArea(double a) {
-   drag_area = a;
+    _drag_area = a;
 }
 
 void FGAIBallistic::setLife(double seconds) {
-   life = seconds;
+    life = seconds;
 }
 
 void FGAIBallistic::setBuoyancy(double fpss) {
-   buoyancy = fpss;
+    _buoyancy = fpss;
 }
 
 void FGAIBallistic::setWind_from_east(double fps) {
-   wind_from_east = fps;
+    _wind_from_east = fps;
 }
 
 void FGAIBallistic::setWind_from_north(double fps) {
-   wind_from_north = fps;
+    _wind_from_north = fps;
 }
 
 void FGAIBallistic::setWind(bool val) {
-   wind = val;
+    _wind = val;
 }
-void FGAIBallistic::Run(double dt) {
 
-   life_timer += dt;
-   if (life_timer > life) setDie(true); 
-
-   double speed_north_deg_sec;
-   double speed_east_deg_sec;
-   double wind_speed_from_north_deg_sec;
-   double wind_speed_from_east_deg_sec;
-      
-   // the two drag calculations below assume sea-level density, 
-   // mass of 0.03 slugs,  drag coeff of 0.295
-   // adjust speed due to drag 
-   speed -= 0.0116918 * drag_area * speed * speed * dt;
-   if ( speed < 0.0 ) speed = 0.0;
-   vs = sin( pitch * SG_DEGREES_TO_RADIANS ) * speed;
-   hs = cos( pitch * SG_DEGREES_TO_RADIANS ) * speed;
-
-   // convert horizontal speed (fps) to degrees per second
-   speed_north_deg_sec = cos(hdg / SG_RADIANS_TO_DEGREES) * hs / ft_per_deg_lat;
-   speed_east_deg_sec  = sin(hdg / SG_RADIANS_TO_DEGREES) * hs / ft_per_deg_lon;
-   
-   // convert wind speed (fps) to degrees per second
-   
-   if (!wind){
-      wind_from_north = 0;
-      wind_from_east = 0;
-         }
-
-   wind_speed_from_north_deg_sec = wind_from_north / ft_per_deg_lat;
-   wind_speed_from_east_deg_sec  = wind_from_east / ft_per_deg_lon;
-   
-   // set new position
-//   pos.setlat( pos.lat() + (speed_north_deg_sec * dt)  );
-//   pos.setlon( pos.lon() + (speed_east_deg_sec * dt)  ); 
-   // set new position
-   
-   pos.setlat( pos.lat() + (speed_north_deg_sec - wind_speed_from_north_deg_sec) * dt );
-   pos.setlon( pos.lon() + (speed_east_deg_sec - wind_speed_from_east_deg_sec) * dt ); 
-
-   // adjust vertical speed for acceleration of gravity
-   vs -= (gravity - buoyancy) * dt;
-   
-   // adjust altitude (feet)
-   altitude += vs * dt;
-   pos.setelev(altitude * SG_FEET_TO_METER); 
-
-   // recalculate pitch (velocity vector) if aerostabilized
-   if (aero_stabilized) pitch = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES;
-
-   // recalculate total speed
-   speed = sqrt( vs * vs + hs * hs);
-
-   // set destruction flag if altitude less than sea level -1000
-   if (altitude < -1000.0) setDie(true);
+void FGAIBallistic::setCd(double c) {
+    _Cd = c;
+}
 
+void FGAIBallistic::setMass(double m) {
+    _mass = m;
 }
 
+void FGAIBallistic::setWeight(double w) {
+    _weight_lb = w;
+}
+void FGAIBallistic::setRandom(bool r) {
+    _random = r;
+}
+
+void FGAIBallistic::setImpact(bool i) {
+    _report_impact = i;
+}
+
+void FGAIBallistic::setCollision(bool c) {
+    _report_collision = c;
+}
+
+void FGAIBallistic::setExternalForce(bool f) {
+    _external_force = f;
+}
+
+void FGAIBallistic::setImpactReportNode(const string& path) {
+
+    if (!path.empty())
+        _impact_report_node = fgGetNode(path.c_str(), true);
+}
+
+void FGAIBallistic::setName(const string& n) {
+    _name = n;
+}
+
+void FGAIBallistic::setSMPath(const string& s) {
+    _submodel = s;
+}
+
+void FGAIBallistic::setFuseRange(double f) {
+    _fuse_range = f;
+}
+
+void FGAIBallistic::setSubID(int i) {
+    _subID = i;
+}
+
+void FGAIBallistic::setSubmodel(const string& s) {
+    _submodel = s;
+}
+
+void FGAIBallistic::setGroundOffset(double g) {
+    _ground_offset = g;
+}
+
+void FGAIBallistic::setLoadOffset(double l) {
+    _load_offset = l;
+}
+
+double FGAIBallistic::getLoadOffset() const {
+    return _load_offset;
+}
+
+void FGAIBallistic::setSlaved(bool s) {
+    _slave_to_ac = s;
+}
+
+void FGAIBallistic::setFormate(bool f) {
+    _formate_to_ac = f;
+}
+
+void FGAIBallistic::setContentsNode(const string& path) {
+    if (!path.empty()) {
+        _contents_node = fgGetNode(path.c_str(), true);
+    }
+}
+
+bool FGAIBallistic::getSlaved() const {
+    return _slave_to_ac;
+}  
+
+double FGAIBallistic::getMass() const {
+    return _mass;
+}
+
+double FGAIBallistic::getContents() {
+    if(_contents_node) 
+        _contents_lb = _contents_node->getChild("level-lbs",0,1)->getDoubleValue();
+    return _contents_lb;
+}
+
+void FGAIBallistic::setContents(double c) {
+    if(_contents_node) 
+        _contents_lb = _contents_node->getChild("level-gal_us",0,1)->setDoubleValue(c);
+}
+
+void FGAIBallistic::setSlavedLoad(bool l) {
+    _slave_load_to_ac = l;
+}
+
+bool FGAIBallistic::getSlavedLoad() const {
+    return _slave_load_to_ac;
+}
+
+void FGAIBallistic::setForcePath(const string& p) {
+    _force_path = p;
+    if (!_force_path.empty()) {
+        SGPropertyNode *fnode = fgGetNode(_force_path.c_str(), 0, true );
+        _force_node = fnode->getChild("force-lb", 0, true);
+        _force_azimuth_node = fnode->getChild("force-azimuth-deg", 0, true);
+        _force_elevation_node = fnode->getChild("force-elevation-deg", 0, true);
+    }
+}
+
+bool FGAIBallistic::getHtAGL(){
+
+    if (getGroundElevationM(SGGeod::fromGeodM(pos, 10000),
+                            _elevation_m, &_material)) {
+            _ht_agl_ft = pos.getElevationFt() - _elevation_m * SG_METER_TO_FEET;
+            if (_material) {
+                const vector<string>& names = _material->get_names();
+
+                _solid = _material->get_solid();
+                _load_resistance = _material->get_load_resistance();
+                _frictionFactor =_material->get_friction_factor();
+                if (!names.empty())
+                    props->setStringValue("material/name", names[0].c_str());
+                else
+                    props->setStringValue("material/name", "");
+                /*cout << "material " << mat_name 
+                << " solid " << _solid 
+                << " load " << _load_resistance
+                << " frictionFactor " << frictionFactor
+                << endl;*/
+            }
+            return true;
+    } else {
+        return false;
+    }
+
+}
+
+double FGAIBallistic::getRecip(double az){
+    // calculate the reciprocal of the input azimuth 
+    if(az - 180 < 0){
+        return az + 180;
+    } else {
+        return az - 180; 
+    }
+}
+
+void FGAIBallistic::setPch(double e, double dt, double coeff){
+    double c = dt / (coeff + dt);
+    pitch = (e * c) + (pitch * (1 - c));
+}
+
+void FGAIBallistic::setBnk(double r, double dt, double coeff){
+    double c = dt / (coeff + dt);
+    roll = (r * c) + (roll * (1 - c));
+}
+
+void FGAIBallistic::setHt(double h, double dt, double coeff){
+    double c = dt / (coeff + dt);
+    _height = (h * c) + (_height * (1 - c));
+}
+
+void FGAIBallistic::setHdg(double az, double dt, double coeff){
+    double recip = getRecip(hdg);
+    double c = dt / (coeff + dt);
+    //we need to ensure that we turn the short way to the new hdg
+    if (az < recip && az < hdg && hdg > 180) {
+        hdg = ((az + 360) * c) + (hdg * (1 - c));
+    } else if (az > recip && az > hdg && hdg <= 180){
+        hdg = ((az - 360) * c) + (hdg * (1 - c));
+    } else {
+        hdg = (az * c) + (hdg * (1 - c));
+    }
+    }
+
+double  FGAIBallistic::getTgtXOffset() const {
+    return _tgt_x_offset;
+}
+
+double  FGAIBallistic::getTgtYOffset() const {
+    return _tgt_y_offset;
+} 
+
+double  FGAIBallistic::getTgtZOffset() const {
+    return _tgt_z_offset;
+}
+
+void FGAIBallistic::setTgtXOffset(double x){
+    _tgt_x_offset = x;
+}
+
+void FGAIBallistic::setTgtYOffset(double y){
+    _tgt_y_offset = y;
+}
+
+void FGAIBallistic::setTgtZOffset(double z){
+    _tgt_z_offset = z;
+}
+
+void FGAIBallistic::slaveToAC(double dt){
+
+    setHitchPos();
+    pos.setLatitudeDeg(hitchpos.getLatitudeDeg());
+    pos.setLongitudeDeg(hitchpos.getLongitudeDeg());
+    pos.setElevationFt(hitchpos.getElevationFt());
+    setHeading(manager->get_user_heading());
+    setPitch(manager->get_user_pitch() + _pitch_offset);
+    setBank(manager->get_user_roll() + _roll_offset);
+    setSpeed(manager->get_user_speed());
+    //update the mass (slugs)
+    _mass = (_weight_lb + getContents()) / slugs_to_lbs;
+
+    /*cout <<"_mass "<<_mass <<" " << getContents() 
+    <<" " << getContents() / slugs_to_lbs << endl;*/
+}
+
+void FGAIBallistic::Run(double dt) {
+    _life_timer += dt;
+
+    // if life = -1 the object does not die
+    if (_life_timer > life && life != -1)
+        setDie(true);
+
+    //set the contents in the appropriate tank or other property in the parent to zero
+    setContents(0);
+
+    //randomise Cd by +- 5%
+    if (_random)
+        _Cd = _Cd * 0.95 + (0.05 * sg_random());
+
+    // Adjust Cd by Mach number. The equations are based on curves
+    // for a conventional shell/bullet (no boat-tail).
+    double Cdm;
+
+    if (Mach < 0.7)
+        Cdm = 0.0125 * Mach + _Cd;
+    else if (Mach < 1.2 )
+        Cdm = 0.3742 * pow(Mach, 2) - 0.252 * Mach + 0.0021 + _Cd;
+    else
+        Cdm = 0.2965 * pow(Mach, -1.1506) + _Cd;
+
+    //cout << "Mach " << Mach << " Cdm " << Cdm << "// ballistic speed kts "<< speed <<  endl;
+
+    // drag = Cd * 0.5 * rho * speed * speed * drag_area;
+    // rho is adjusted for altitude in void FGAIBase::update,
+    // using Standard Atmosphere (sealevel temperature 15C)
+    // acceleration = drag/mass;
+    // adjust speed by drag
+    speed -= (Cdm * 0.5 * rho * speed * speed * _drag_area/_mass) * dt;
+
+    // don't let speed become negative
+    if ( speed < 0.0 )
+        speed = 0.0;
+
+    double speed_fps = speed * SG_KT_TO_FPS;
+    //double hs;
+
+    // calculate vertical and horizontal speed components
+    if (speed == 0.0) {
+        hs = vs = 0.0;
+    } else {
+        vs = sin( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps;
+        hs = cos( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps;
+    }
+
+    //resolve horizontal speed into north and east components:
+    double speed_north_fps = cos(_azimuth / SG_RADIANS_TO_DEGREES) * hs;
+    double speed_east_fps = sin(_azimuth / SG_RADIANS_TO_DEGREES) * hs;
+
+    // convert horizontal speed (fps) to degrees per second
+    double speed_north_deg_sec = speed_north_fps / ft_per_deg_lat;
+    double speed_east_deg_sec  = speed_east_fps / ft_per_deg_lon;
+
+    // if wind not required, set to zero
+    if (!_wind) {
+        _wind_from_north = 0;
+        _wind_from_east = 0;
+    } else {
+        _wind_from_north = manager->get_wind_from_north();
+        _wind_from_east = manager->get_wind_from_east();
+    }
+
+    //calculate velocity due to external force
+    double force_speed_north_deg_sec = 0;
+    double force_speed_east_deg_sec = 0;
+//    double vs_force_fps = 0;
+    double hs_force_fps = 0;
+    double v_force_acc_fpss = 0;
+    double force_speed_north_fps = 0;
+    double force_speed_east_fps = 0;
+    double h_force_lbs = 0;
+    double normal_force_lbs = 0;
+    double normal_force_fpss = 0;
+    double static_friction_force_lbs = 0;
+    double dynamic_friction_force_lbs = 0;
+    double friction_force_speed_north_fps = 0;
+    double friction_force_speed_east_fps = 0;
+    double friction_force_speed_north_deg_sec = 0;
+    double friction_force_speed_east_deg_sec = 0;
+    double force_elevation_deg = 0;
+
+    if (_external_force) {
+        SGPropertyNode *n = fgGetNode(_force_path.c_str(), true);
+        double force_lbs            = n->getChild("force-lb", 0, true)->getDoubleValue();
+        force_elevation_deg         = n->getChild("force-elevation-deg", 0, true)->getDoubleValue();
+        double force_azimuth_deg    = n->getChild("force-azimuth-deg", 0, true)->getDoubleValue();
+
+        //resolve force into vertical and horizontal components:
+        double v_force_lbs = force_lbs * sin( force_elevation_deg * SG_DEGREES_TO_RADIANS );
+        h_force_lbs = force_lbs * cos( force_elevation_deg * SG_DEGREES_TO_RADIANS );
+
+        //ground interaction 
+
+        if (getHtAGL()){
+            double deadzone = 0.1;
+
+            if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid){
+                normal_force_lbs = (_mass * slugs_to_lbs) - v_force_lbs;
+
+                if ( normal_force_lbs < 0 )
+                    normal_force_lbs = 0;
+
+                pos.setElevationFt(0 + _ground_offset);
+                if (vs < 0) 
+                    vs = -vs * 0.5;
+
+                // calculate friction
+                // we assume a static Coefficient of Friction (mu) of 0.62 (wood on concrete)
+                double mu = 0.62;
+
+                static_friction_force_lbs = mu * normal_force_lbs * _frictionFactor;
+
+                //adjust horizontal force. We assume that a speed of <= 5 fps is static 
+                if (h_force_lbs <= static_friction_force_lbs && hs <= 5){
+                    h_force_lbs = hs = 0;
+                    speed_north_fps = speed_east_fps = 0;
+                } else
+                    dynamic_friction_force_lbs = (static_friction_force_lbs * 0.95);
+
+                //ignore wind when on the ground for now
+                //TODO fix this
+                _wind_from_north = 0;
+                _wind_from_east = 0;
+
+            }
+
+        }
+
+        //acceleration = (force(lbsf)/mass(slugs))
+        v_force_acc_fpss = v_force_lbs/_mass;
+        normal_force_fpss = normal_force_lbs/_mass;
+        double h_force_acc_fpss = h_force_lbs/_mass;
+        double dynamic_friction_acc_fpss = dynamic_friction_force_lbs/_mass;
+
+        // velocity = acceleration * dt
+        hs_force_fps = h_force_acc_fpss * dt;
+        double friction_force_fps = dynamic_friction_acc_fpss * dt;
+
+        //resolve horizontal speeds into north and east components:
+        force_speed_north_fps   = cos(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps;
+        force_speed_east_fps    = sin(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps;
+
+        friction_force_speed_north_fps = cos(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps;
+        friction_force_speed_east_fps  = sin(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps;
+
+        // convert horizontal speed (fps) to degrees per second
+        force_speed_north_deg_sec = force_speed_north_fps / ft_per_deg_lat;
+        force_speed_east_deg_sec  = force_speed_east_fps / ft_per_deg_lon;
+
+        friction_force_speed_north_deg_sec = friction_force_speed_north_fps / ft_per_deg_lat;
+        friction_force_speed_east_deg_sec  = friction_force_speed_east_fps / ft_per_deg_lon;
+    }
+
+    // convert wind speed (fps) to degrees lat/lon per second
+    double wind_speed_from_north_deg_sec = _wind_from_north / ft_per_deg_lat;
+    double wind_speed_from_east_deg_sec  = _wind_from_east / ft_per_deg_lon;
+
+    //recombine the horizontal velocity components
+    hs = sqrt(((speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps) 
+        * (speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps))
+        + ((speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps) 
+        * (speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps)));
+
+    if (hs <= 0.00001)
+        hs = 0;
+
+    // adjust vertical speed for acceleration of gravity, buoyancy, and vertical force
+    vs -= (_gravity - _buoyancy - v_force_acc_fpss - normal_force_fpss) * dt;
+
+    if (vs <= 0.00001 && vs >= -0.00001)
+        vs = 0;
+
+    // set new position
+    if(_slave_load_to_ac) {
+        setHitchPos();
+        pos.setLatitudeDeg(hitchpos.getLatitudeDeg());
+        pos.setLongitudeDeg(hitchpos.getLongitudeDeg());
+        pos.setElevationFt(hitchpos.getElevationFt());
+
+        if (getHtAGL()){
+            double deadzone = 0.1;
+
+            if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid){
+                pos.setElevationFt(0 + _ground_offset);
+            } else {
+                pos.setElevationFt(hitchpos.getElevationFt() + _load_offset);
+            }
+
+        }
+    } else {
+        pos.setLatitudeDeg( pos.getLatitudeDeg()
+            + (speed_north_deg_sec - wind_speed_from_north_deg_sec 
+            + force_speed_north_deg_sec + friction_force_speed_north_deg_sec) * dt );
+        pos.setLongitudeDeg( pos.getLongitudeDeg()
+            + (speed_east_deg_sec - wind_speed_from_east_deg_sec 
+            + force_speed_east_deg_sec + friction_force_speed_east_deg_sec) * dt );
+        pos.setElevationFt(pos.getElevationFt() + vs * dt);
+    }
+
+    // recalculate total speed
+    if ( vs == 0 && hs == 0)
+        speed = 0;
+    else
+        speed = sqrt( vs * vs + hs * hs) / SG_KT_TO_FPS;
+
+    // recalculate elevation and azimuth (velocity vectors)
+    _elevation = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES;
+    _azimuth =  atan2((speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps), 
+        (speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps))
+        * SG_RADIANS_TO_DEGREES;
+
+    // rationalise azimuth
+    if (_azimuth < 0)
+        _azimuth += 360;
+
+    if (_aero_stabilised) { // we simulate rotational moment of inertia by using a filter
+        const double coeff = 0.9;
+
+        // we assume a symetrical MI about the pitch and yaw axis
+        setPch(_elevation, dt, coeff);
+        setHdg(_azimuth, dt, coeff);
+    } else if (_force_stabilised) { // we simulate rotational moment of inertia by using a filter
+        const double coeff = 0.9;
+        double ratio = h_force_lbs/(_mass * slugs_to_lbs);
+
+        if (ratio >  1) ratio =  1;
+        if (ratio < -1) ratio = -1;
+
+        double force_pitch = acos(ratio) * SG_RADIANS_TO_DEGREES;
+
+        if (force_pitch <= force_elevation_deg)
+            force_pitch = force_elevation_deg;
+
+        // we assume a symetrical MI about the pitch and yaw axis
+        setPch(force_pitch,dt, coeff);
+        setHdg(_azimuth, dt, coeff);
+    }
+
+    //do impacts and collisions
+    if (_report_impact && !_impact_reported)
+        handle_impact();
+
+    if (_report_collision && !_collision_reported)
+        handle_collision();
+
+    // set destruction flag if altitude less than sea level -1000
+    if (altitude_ft < -1000.0 && life != -1)
+        setDie(true);
+
+}  // end Run
+
 double FGAIBallistic::_getTime() const {
-   return life_timer;
+    return _life_timer;
+}
+
+void FGAIBallistic::handle_impact() {
+
+    // try terrain intersection
+    if(!getHtAGL()) 
+        return;
+
+    if (_ht_agl_ft <= 0) {
+        SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: terrain impact");
+        report_impact(_elevation_m);
+        _impact_reported = true;
+
+        if (life == -1){
+            invisible = true;
+        } else if (_subID == 0)  // kill the AIObject if there is no subsubmodel
+            setDie(true);
+    }
+}
+
+void FGAIBallistic::handle_collision()
+{
+    const FGAIBase *object = manager->calcCollision(pos.getElevationFt(),
+            pos.getLatitudeDeg(),pos.getLongitudeDeg(), _fuse_range);
+
+    if (object) {
+        SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: object hit");
+        report_impact(pos.getElevationM(), object);
+        _collision_reported = true;
+    }
+}
+
+void FGAIBallistic::report_impact(double elevation, const FGAIBase *object)
+{
+    _impact_lat    = pos.getLatitudeDeg();
+    _impact_lon    = pos.getLongitudeDeg();
+    _impact_elev   = elevation;
+    _impact_speed  = speed * SG_KT_TO_MPS;
+    _impact_hdg    = hdg;
+    _impact_pitch  = pitch;
+    _impact_roll   = roll;
+
+    SGPropertyNode *n = props->getNode("impact", true);
+    if (object)
+        n->setStringValue("type", object->getTypeString());
+    else
+        n->setStringValue("type", "terrain");
+
+    n->setDoubleValue("longitude-deg", _impact_lon);
+    n->setDoubleValue("latitude-deg", _impact_lat);
+    n->setDoubleValue("elevation-m", _impact_elev);
+    n->setDoubleValue("heading-deg", _impact_hdg);
+    n->setDoubleValue("pitch-deg", _impact_pitch);
+    n->setDoubleValue("roll-deg", _impact_roll);
+    n->setDoubleValue("speed-mps", _impact_speed);
+
+    _impact_report_node->setStringValue(props->getPath());
+}
+
+SGVec3d FGAIBallistic::getCartUserPos() const {
+    SGVec3d cartUserPos = SGVec3d::fromGeod(userpos);
+    return cartUserPos;
+}
+
+SGVec3d FGAIBallistic::getCartHitchPos() const{
+
+    // convert geodetic positions to geocentered
+    SGVec3d cartuserPos = getCartUserPos();
+    SGVec3d cartPos = getCartPos();
+
+    // Transform to the right coordinate frame, configuration is done in
+    // the x-forward, y-right, z-up coordinates (feet), computation
+    // in the simulation usual body x-forward, y-right, z-down coordinates
+    // (meters) )
+    SGVec3d _off(_x_offset * SG_FEET_TO_METER,
+        _y_offset * SG_FEET_TO_METER,
+        -_z_offset * SG_FEET_TO_METER);
+
+    // Transform the user position to the horizontal local coordinate system.
+    SGQuatd hlTrans = SGQuatd::fromLonLat(userpos);
+
+    // and postrotate the orientation of the user model wrt the horizontal
+    // local frame
+    hlTrans *= SGQuatd::fromYawPitchRollDeg(
+        manager->get_user_heading(),
+        manager->get_user_pitch(),
+        manager->get_user_roll());
+
+    // The offset converted to the usual body fixed coordinate system
+    // rotated to the earth-fixed coordinates axis
+    SGVec3d off = hlTrans.backTransform(_off);
+
+    // Add the position offset of the user model to get the geocentered position
+    SGVec3d offsetPos = cartuserPos + off;
+
+    return offsetPos;
+}
+
+void FGAIBallistic::setHitchPos(){
+    // convert the hitch geocentered position to geodetic
+    SGVec3d carthitchPos = getCartHitchPos();
+
+    SGGeodesy::SGCartToGeod(carthitchPos, hitchpos);
+}
+
+double FGAIBallistic::getDistanceLoadToHitch() const {
+    //calculate the distance load to hitch 
+    SGVec3d carthitchPos = getCartHitchPos();
+    SGVec3d cartPos = getCartPos();
+
+    SGVec3d diff = carthitchPos - cartPos;
+    double distance = norm(diff);
+    return distance * SG_METER_TO_FEET;
+}
+
+void FGAIBallistic::setHitchVelocity(double dt) {
+    //calculate the distance from the previous hitch position
+    SGVec3d carthitchPos = getCartHitchPos();
+    SGVec3d diff = carthitchPos - _oldcarthitchPos;
+
+    double distance = norm(diff);
+
+    //calculate speed knots
+    speed = (distance/dt) * SG_MPS_TO_KT;
+
+    //now calulate the angle between the old and current hitch positions (degrees)
+    double angle = 0;
+    double daltM = hitchpos.getElevationM() - oldhitchpos.getElevationM();
+
+    if (fabs(distance) < SGLimits<float>::min()) {
+        angle = 0;
+    } else {
+        double sAngle = daltM/distance;
+        sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
+        angle = SGMiscd::rad2deg(asin(sAngle));
+    }
+
+    _elevation = angle;
+
+    //calculate the bearing of the new hitch position from the old
+    double az1, az2, dist;
+
+    geo_inverse_wgs_84(oldhitchpos, hitchpos, &az1, &az2, &dist);
+
+    _azimuth = az1;
+
+    // and finally store the new values
+    _oldcarthitchPos = carthitchPos;
+    oldhitchpos = hitchpos;
+}
+
+double FGAIBallistic::getElevLoadToHitch() const {
+    // now the angle, positive angles are upwards
+    double distance = getDistanceLoadToHitch() * SG_FEET_TO_METER;
+    double angle = 0;
+    double daltM = hitchpos.getElevationM() - pos.getElevationM();
+
+    if (fabs(distance) < SGLimits<float>::min()) {
+        angle = 0;
+    } else {
+        double sAngle = daltM/distance;
+        sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
+        angle = SGMiscd::rad2deg(asin(sAngle));
+    }
+
+    return angle;
+}
+
+double FGAIBallistic::getBearingLoadToHitch() const {
+    //calculate the bearing and range of the second pos from the first
+    double az1, az2, distance;
+
+    geo_inverse_wgs_84(pos, hitchpos, &az1, &az2, &distance);
+
+    return az1;
+}
+
+double FGAIBallistic::getRelBrgHitchToUser() const {
+    //calculate the relative bearing 
+    double az1, az2, distance;
+
+    geo_inverse_wgs_84(hitchpos, userpos, &az1, &az2, &distance);
+
+    double rel_brg = az1 - hdg;
+
+    if (rel_brg > 180)
+        rel_brg -= 360;
+
+    return rel_brg;
+}
+
+double FGAIBallistic::getElevHitchToUser() const {
+
+    //calculate the distance from the user position
+    SGVec3d carthitchPos = getCartHitchPos();
+    SGVec3d cartuserPos = getCartUserPos();
+
+    SGVec3d diff = cartuserPos - carthitchPos;
+
+    double distance = norm(diff);
+    double angle = 0;
+
+    double daltM = userpos.getElevationM() - hitchpos.getElevationM();
+
+    // now the angle, positive angles are upwards
+    if (fabs(distance) < SGLimits<float>::min()) {
+        angle = 0;
+    } else {
+        double sAngle = daltM/distance;
+        sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
+        angle = SGMiscd::rad2deg(asin(sAngle));
+    }
+
+    return angle;
 }
 
+void FGAIBallistic::setTgtOffsets(double dt, double coeff){
+    double c = dt / (coeff + dt);
+
+    _x_offset = (_tgt_x_offset * c) + (_x_offset * (1 - c));
+    _y_offset = (_tgt_y_offset * c) + (_y_offset * (1 - c));
+    _z_offset = (_tgt_z_offset * c) + (_z_offset * (1 - c));
+}
+
+void FGAIBallistic::formateToAC(double dt){
+
+    setTgtOffsets(dt, 25);
+    setHitchPos();
+    setHitchVelocity(dt);
+
+    // elapsed time has a random initialisation so that each 
+    // wingman moves differently
+    _elapsed_time += dt;
+
+    // we derive a sine based factor to give us smoothly 
+    // varying error between -1 and 1
+    double factor  = sin(SGMiscd::deg2rad(_elapsed_time * 10));
+    double r_angle = 5 * factor;
+    double p_angle = 2.5 * factor;
+    double h_angle = 5 * factor;
+    double h_feet  = 3 * factor;
+
+    pos.setLatitudeDeg(hitchpos.getLatitudeDeg());
+    pos.setLongitudeDeg(hitchpos.getLongitudeDeg());
+
+    if (getHtAGL()){
+
+        if(_ht_agl_ft <= 10) {
+            _height = userpos.getElevationFt();
+        } else if (_ht_agl_ft > 10 && _ht_agl_ft <= 150 ) {
+            setHt(userpos.getElevationFt(), dt, 1.0);
+        } else if (_ht_agl_ft > 150 && _ht_agl_ft <= 250) {
+            setHt(hitchpos.getElevationFt()+ h_feet, dt, 0.75);
+        } else
+            setHt(hitchpos.getElevationFt()+ h_feet, dt, 0.5);
+
+        pos.setElevationFt(_height);
+    }
+
+    // these calculations are unreliable at slow speeds
+    if(speed >= 10) {
+        setHdg(_azimuth + h_angle, dt, 0.9);
+        setPch(_elevation + p_angle + _pitch_offset, dt, 0.9);
+
+        if (roll <= 115 && roll >= -115)
+            setBnk(manager->get_user_roll() + r_angle + _roll_offset, dt, 0.5);
+        else
+            roll = manager->get_user_roll() + r_angle + _roll_offset;
+
+    } else {
+        setHdg(manager->get_user_heading(), dt, 0.9);
+        setPch(manager->get_user_pitch() + _pitch_offset, dt, 0.9);
+        setBnk(manager->get_user_roll() + _roll_offset, dt, 0.9);
+    }
+
+    setSpeed(speed);
+}
+// end AIBallistic