]> git.mxchange.org Git - flightgear.git/blobdiff - src/Environment/environment_ctrl.cxx
Merge branch 'next' of gitorious.org:fg/flightgear into next
[flightgear.git] / src / Environment / environment_ctrl.cxx
index c94cacb20051a771367cb9413b88bee86574ae4b..6efcbde3ee747f3eb69bc90e32afcbfb4339fa56 100644 (file)
@@ -34,6 +34,7 @@
 #include <Main/fg_props.hxx>
 #include <Main/util.hxx>
 
+#include "atmosphere.hxx"
 #include "fgmetar.hxx"
 #include "environment_ctrl.hxx"
 
@@ -44,6 +45,10 @@ public:
        virtual bool passAirport(FGAirport* aApt) const {
                return aApt->getMetar();
        }
+  
+  // permit heliports and seaports too
+  virtual FGPositioned::Type maxType() const
+  { return FGPositioned::SEAPORT; }
 };
 
 static AirportWithMetar airportWithMetarFilter;
@@ -133,35 +138,51 @@ FGInterpolateEnvironmentCtrl::init ()
 void
 FGInterpolateEnvironmentCtrl::reinit ()
 {
-// TODO: do we really need to throw away the old tables on reinit? Better recycle
-       unsigned int i;
-       for (i = 0; i < _boundary_table.size(); i++)
-               delete _boundary_table[i];
-       for (i = 0; i < _aloft_table.size(); i++)
-               delete _aloft_table[i];
-       _boundary_table.clear();
-       _aloft_table.clear();
        init();
 }
 
 void
 FGInterpolateEnvironmentCtrl::read_table (const SGPropertyNode * node, vector<bucket *> &table)
 {
-       for (int i = 0; i < node->nChildren(); i++) {
+       double last_altitude_ft = 0.0;
+       double sort_required = false;
+       size_t i;
+
+       for (i = 0; i < (size_t)node->nChildren(); i++) {
                const SGPropertyNode * child = node->getChild(i);
                if ( strcmp(child->getName(), "entry") == 0
                 && child->getStringValue("elevation-ft", "")[0] != '\0'
                 && ( child->getDoubleValue("elevation-ft") > 0.1 || i == 0 ) )
        {
-                       bucket * b = new bucket;
+                       bucket * b;
+                       if( i < table.size() ) {
+                               // recycle existing bucket
+                               b = table[i];
+                       } else {
+                               // more nodes than buckets in table, add a new one
+                               b = new bucket;
+                               table.push_back(b);
+                       }
                        if (i > 0)
                                b->environment.copy(table[i-1]->environment);
                        b->environment.read(child);
                        b->altitude_ft = b->environment.get_elevation_ft();
-                       table.push_back(b);
+
+                       // check, if altitudes are in ascending order
+                       if( b->altitude_ft < last_altitude_ft )
+                               sort_required = true;
+                       last_altitude_ft = b->altitude_ft;
                }
        }
-       sort(table.begin(), table.end(), bucket::lessThan);
+       // remove leftover buckets
+       while( table.size() > i ) {
+               bucket * b = *(table.end() - 1);
+               delete b;
+               table.pop_back();
+       }
+
+       if( sort_required )
+               sort(table.begin(), table.end(), bucket::lessThan);
 }
 
 void
@@ -181,6 +202,8 @@ FGInterpolateEnvironmentCtrl::update (double delta_time_sec)
                        do_interpolate(_boundary_table, altitude_agl_ft, _environment);
                        return;
                } else if ((boundary_limit + boundary_transition) >= altitude_agl_ft) {
+                       //TODO: this is 500ft above the top altitude of boundary layer
+                       //shouldn't this be +/-250 ft off of the top altitude?
                                                                // both tables
                        do_interpolate(_boundary_table, altitude_agl_ft, &env1);
                        do_interpolate(_aloft_table, altitude_ft, &env2);
@@ -246,20 +269,25 @@ FGInterpolateEnvironmentCtrl::bucket::lessThan(bucket *a, bucket *b)
 ////////////////////////////////////////////////////////////////////////
 
 FGMetarCtrl::FGMetarCtrl( SGSubsystem * environmentCtrl )
-       : _environmentCtrl(environmentCtrl),
-       station_elevation_ft(0.0),
+       :
        metar_valid(false),
        setup_winds_aloft(true),
+       wind_interpolation_required(true),
+       metar_sealevel_temperature(15.0),
+       metar_sealevel_dewpoint(5.0),
        // Interpolation constant definitions.
-       EnvironmentUpdatePeriodSec( 0.2 ),
        MaxWindChangeKtsSec( 0.2 ),
        MaxVisChangePercentSec( 0.05 ),
-       MaxPressureChangeInHgSec( 0.0033 ),
+       MaxPressureChangeInHgSec( 0.0005 ), // approx 1hpa/min
+       MaxTemperatureChangeDegcSec(10.0/60.0), // approx 10degc/min
        MaxCloudAltitudeChangeFtSec( 20.0 ),
        MaxCloudThicknessChangeFtSec( 50.0 ),
        MaxCloudInterpolationHeightFt( 5000.0 ),
-       MaxCloudInterpolationDeltaFt( 4000.0 )
+       MaxCloudInterpolationDeltaFt( 4000.0 ),
+       _environmentCtrl(environmentCtrl)
 {
+       windModulator = new FGBasicWindModulator();
+
        metar_base_n = fgGetNode( "/environment/metar", true );
        station_id_n = metar_base_n->getNode("station-id", true );
        station_elevation_n = metar_base_n->getNode("station-elevation-ft", true );
@@ -268,7 +296,7 @@ FGMetarCtrl::FGMetarCtrl( SGSubsystem * environmentCtrl )
        base_wind_range_from_n = metar_base_n->getNode("base-wind-range-from", true );
        base_wind_range_to_n = metar_base_n->getNode("base-wind-range-to", true );
        base_wind_speed_n = metar_base_n->getNode("base-wind-speed-kt", true );
-       base_wind_dir_n   = metar_base_n->getNode("base-wind-dir-deg", true );
+       base_wind_dir_n = metar_base_n->getNode("base-wind-dir-deg", true );
        gust_wind_speed_n = metar_base_n->getNode("gust-wind-speed-kt", true );
        temperature_n = metar_base_n->getNode("temperature-degc", true );
        dewpoint_n = metar_base_n->getNode("dewpoint-degc", true );
@@ -279,15 +307,18 @@ FGMetarCtrl::FGMetarCtrl( SGSubsystem * environmentCtrl )
        hail_n = metar_base_n->getNode("hail-norm", true );
        snow_n = metar_base_n->getNode("snow-norm", true );
        snow_cover_n = metar_base_n->getNode("snow-cover", true );
+       magnetic_variation_n = fgGetNode( "/environment/magnetic-variation-deg", true );
        ground_elevation_n = fgGetNode( "/position/ground-elev-m", true );
        longitude_n = fgGetNode( "/position/longitude-deg", true );
        latitude_n = fgGetNode( "/position/latitude-deg", true );
        environment_clouds_n = fgGetNode("/environment/clouds");
 
-       boundary_wind_speed_n = fgGetNode("/environment/config/boundary/entry/wind-speed-kt");
-       boundary_wind_from_heading_n = fgGetNode("/environment/config/boundary/entry/wind-from-heading-deg");
-       boundary_visibility_n = fgGetNode("/environment/config/boundary/entry/visibility-m");
-       boundary_sea_level_pressure_n = fgGetNode("/environment/config/boundary/entry/pressure-sea-level-inhg");
+       boundary_wind_speed_n = fgGetNode("/environment/config/boundary/entry/wind-speed-kt", true );
+       boundary_wind_from_heading_n = fgGetNode("/environment/config/boundary/entry/wind-from-heading-deg", true );
+       boundary_visibility_n = fgGetNode("/environment/config/boundary/entry/visibility-m", true );
+       boundary_sea_level_pressure_n = fgGetNode("/environment/config/boundary/entry/pressure-sea-level-inhg", true );
+       boundary_sea_level_temperature_n = fgGetNode("/environment/config/boundary/entry/temperature-sea-level-degc", true );
+       boundary_sea_level_dewpoint_n = fgGetNode("/environment/config/boundary/entry/dewpoint-sea-level-degc", true );
 }
 
 FGMetarCtrl::~FGMetarCtrl ()
@@ -296,35 +327,39 @@ FGMetarCtrl::~FGMetarCtrl ()
 
 void FGMetarCtrl::bind ()
 {
-  fgTie("/environment/metar/valid", this, &FGMetarCtrl::get_valid );
-  fgTie("/environment/params/metar-updates-environment", this, &FGMetarCtrl::get_enabled, &FGMetarCtrl::set_enabled );
-  fgTie("/environment/params/metar-updates-winds-aloft", this, &FGMetarCtrl::get_setup_winds_aloft, &FGMetarCtrl::set_setup_winds_aloft );
+       fgTie("/environment/metar/valid", this, &FGMetarCtrl::get_valid );
+       fgTie("/environment/params/metar-updates-environment", this, &FGMetarCtrl::get_enabled, &FGMetarCtrl::set_enabled );
+       fgTie("/environment/params/metar-updates-winds-aloft", this, &FGMetarCtrl::get_setup_winds_aloft, &FGMetarCtrl::set_setup_winds_aloft );
 }
 
 void FGMetarCtrl::unbind ()
 {
-  fgUntie("/environment/metar/valid");
-  fgUntie("/environment/params/metar-updates-environment");
-  fgUntie("/environment/params/metar-updates-winds-aloft");
+       fgUntie("/environment/metar/valid");
+       fgUntie("/environment/params/metar-updates-environment");
+       fgUntie("/environment/params/metar-updates-winds-aloft");
 }
 
 // use a "command" to set station temp at station elevation
-static void set_temp_at_altitude( float temp_degc, float altitude_ft ) {
+static void set_temp_at_altitude( double temp_degc, double altitude_ft ) {
        SGPropertyNode args;
        SGPropertyNode *node = args.getNode("temp-degc", 0, true);
-       node->setFloatValue( temp_degc );
+       node->setDoubleValue( temp_degc );
        node = args.getNode("altitude-ft", 0, true);
-       node->setFloatValue( altitude_ft );
-       globals->get_commands()->execute("set-outside-air-temp-degc", &args);
+       node->setDoubleValue( altitude_ft );
+       globals->get_commands()->execute( altitude_ft == 0.0 ? 
+               "set-sea-level-air-temp-degc" : 
+               "set-outside-air-temp-degc", &args);
 }
 
-static void set_dewpoint_at_altitude( float dewpoint_degc, float altitude_ft ) {
+static void set_dewpoint_at_altitude( double dewpoint_degc, double altitude_ft ) {
        SGPropertyNode args;
        SGPropertyNode *node = args.getNode("dewpoint-degc", 0, true);
-       node->setFloatValue( dewpoint_degc );
+       node->setDoubleValue( dewpoint_degc );
        node = args.getNode("altitude-ft", 0, true);
-       node->setFloatValue( altitude_ft );
-       globals->get_commands()->execute("set-dewpoint-temp-degc", &args);
+       node->setDoubleValue( altitude_ft );
+       globals->get_commands()->execute( altitude_ft == 0.0 ?
+               "set-dewpoint-sea-level-air-temp-degc" :
+               "set-dewpoint-temp-degc", &args);
 }
 
 /*
@@ -376,10 +411,8 @@ static void setupWind( bool setup_aloft, double dir, double speed, double gust )
                setupWindBranch( "aloft", dir, speed, gust );
 }
 
-double FGMetarCtrl::interpolate_val(double currentval, double requiredval, double dt)
+double FGMetarCtrl::interpolate_val(double currentval, double requiredval, double dval )
 {
-       double dval = EnvironmentUpdatePeriodSec * dt;
-
        if (fabs(currentval - requiredval) < dval) return requiredval;
        if (currentval < requiredval) return (currentval + dval);
        if (currentval > requiredval) return (currentval - dval);
@@ -390,6 +423,7 @@ void
 FGMetarCtrl::init ()
 {
        first_update = true;
+       wind_interpolation_required = true;
 }
 
 void
@@ -398,19 +432,51 @@ FGMetarCtrl::reinit ()
        init();
 }
 
+static inline double convert_to_360( double d )
+{
+       if( d < 0.0 ) return d + 360.0;
+       if( d >= 360.0 ) return d - 360.0;
+       return d;
+}
+
+static inline double convert_to_180( double d )
+{
+       return d > 180.0 ? d - 360.0 : d;
+}
+
+// Return the sea level pressure for a metar observation, in inHg.
+// This is different from QNH because it accounts for the current
+// temperature at the observation point.
+// metarPressure in inHg
+// fieldHt in ft
+// fieldTemp in C
+
+static double reducePressureSl(double metarPressure, double fieldHt,
+                               double fieldTemp)
+{
+       double elev = fieldHt * SG_FEET_TO_METER;
+       double fieldPressure
+               = FGAtmo::fieldPressure(elev, metarPressure * atmodel::inHg);
+       double slPressure = P_layer(0, elev, fieldPressure,
+               fieldTemp + atmodel::freezing, atmodel::ISA::lam0);
+       return slPressure / atmodel::inHg;
+}
+
 void
 FGMetarCtrl::update(double dt)
 {
        if( dt <= 0 || !metar_valid ||!enabled)
                return;
 
+       windModulator->update(dt);
        // Interpolate the current configuration closer to the actual METAR
 
        bool reinit_required = false;
        bool layer_rebuild_required = false;
+       double station_elevation_ft = station_elevation_n->getDoubleValue();
 
        if (first_update) {
-               double dir = base_wind_dir_n->getDoubleValue();
+               double dir = base_wind_dir_n->getDoubleValue()+magnetic_variation_n->getDoubleValue();
                double speed = base_wind_speed_n->getDoubleValue();
                double gust = gust_wind_speed_n->getDoubleValue();
                setupWind(setup_winds_aloft, dir, speed, gust);
@@ -418,8 +484,14 @@ FGMetarCtrl::update(double dt)
                double metarvis = min_visibility_n->getDoubleValue();
                fgDefaultWeatherValue("visibility-m", metarvis);
 
+               set_temp_at_altitude(temperature_n->getDoubleValue(), station_elevation_ft);
+               set_dewpoint_at_altitude(dewpoint_n->getDoubleValue(), station_elevation_ft);
+
                double metarpressure = pressure_n->getDoubleValue();
-               fgDefaultWeatherValue("pressure-sea-level-inhg", metarpressure);
+               fgDefaultWeatherValue("pressure-sea-level-inhg",
+                       reducePressureSl(metarpressure,
+                       station_elevation_ft,
+                       temperature_n->getDoubleValue()));
 
                // We haven't already loaded a METAR, so apply it immediately.
                vector<SGPropertyNode_ptr> layers = clouds_n->getChildren("layer");
@@ -444,62 +516,100 @@ FGMetarCtrl::update(double dt)
                layer_rebuild_required = true;
 
        } else {
-               // Generate interpolated values between the METAR and the current
-               // configuration.
-
-               // Pick up the METAR wind values and convert them into a vector.
-               double metar[2];
-               double metar_speed = base_wind_speed_n->getDoubleValue();
-               double metar_heading = base_wind_dir_n->getDoubleValue();
-
-               metar[0] = metar_speed * sin(metar_heading * SG_DEGREES_TO_RADIANS );
-               metar[1] = metar_speed * cos(metar_heading * SG_DEGREES_TO_RADIANS);
-
-               // Convert the current wind values and convert them into a vector
-               double current[2];
-               double speed = boundary_wind_speed_n->getDoubleValue();
-               double dir_from = boundary_wind_from_heading_n->getDoubleValue();;
-
-               current[0] = speed * sin(dir_from * SG_DEGREES_TO_RADIANS );
-               current[1] = speed * cos(dir_from * SG_DEGREES_TO_RADIANS );
-
-               // Determine the maximum component-wise value that the wind can change.
-               // First we determine the fraction in the X and Y component, then
-               // factor by the maximum wind change.
-               double x = fabs(current[0] - metar[0]);
-               double y = fabs(current[1] - metar[1]);
-
-               // only interpolate if we have a difference
-               if (x + y > 0) {
-                       double dx = x / (x + y);
-                       double dy = 1 - dx;
-
-                       double maxdx = dx * MaxWindChangeKtsSec;
-                       double maxdy = dy * MaxWindChangeKtsSec;
-
-                       // Interpolate each component separately.
-                       current[0] = interpolate_val(current[0], metar[0], maxdx);
-                       current[1] = interpolate_val(current[1], metar[1], maxdy);
-
-                       // Now convert back to polar coordinates.
-                       if ((current[0] == 0.0) && (current[1] == 0.0)) {
-                               // Special case where there is no wind (otherwise atan2 barfs)
-                               speed = 0.0;
-                       } else {
-                               // Some real wind to convert back from. Work out the speed
-                               // and direction value in degrees.
-                               speed = sqrt((current[0] * current[0]) + (current[1] * current[1]));
-                               dir_from = (atan2(current[0], current[1]) * SG_RADIANS_TO_DEGREES );
-
-                               // Normalize the direction.
-                               if (dir_from < 0.0)
-                                       dir_from += 360.0;
-
-                               SG_LOG( SG_GENERAL, SG_DEBUG, "Wind : " << dir_from << "@" << speed);
+               if( wind_interpolation_required ) {
+                       // Generate interpolated values between the METAR and the current
+                       // configuration.
+
+                       // Pick up the METAR wind values and convert them into a vector.
+                       double metar[2];
+                       double metar_speed = base_wind_speed_n->getDoubleValue();
+                       double metar_heading = base_wind_dir_n->getDoubleValue()+magnetic_variation_n->getDoubleValue();
+
+                       metar[0] = metar_speed * sin(metar_heading * SG_DEGREES_TO_RADIANS );
+                       metar[1] = metar_speed * cos(metar_heading * SG_DEGREES_TO_RADIANS);
+
+                       // Convert the current wind values and convert them into a vector
+                       double current[2];
+                       double speed = boundary_wind_speed_n->getDoubleValue();
+                       double dir_from = boundary_wind_from_heading_n->getDoubleValue();;
+
+                       current[0] = speed * sin(dir_from * SG_DEGREES_TO_RADIANS );
+                       current[1] = speed * cos(dir_from * SG_DEGREES_TO_RADIANS );
+
+                       // Determine the maximum component-wise value that the wind can change.
+                       // First we determine the fraction in the X and Y component, then
+                       // factor by the maximum wind change.
+                       double x = fabs(current[0] - metar[0]);
+                       double y = fabs(current[1] - metar[1]);
+
+                       // only interpolate if we have a difference
+                       if (x + y > 0.01 ) {
+                               double dx = x / (x + y);
+                               double dy = 1 - dx;
+
+                               double maxdx = dx * MaxWindChangeKtsSec;
+                               double maxdy = dy * MaxWindChangeKtsSec;
+
+                               // Interpolate each component separately.
+                               current[0] = interpolate_val(current[0], metar[0], maxdx*dt);
+                               current[1] = interpolate_val(current[1], metar[1], maxdy*dt);
+
+                               // Now convert back to polar coordinates.
+                               if ((fabs(current[0]) > 0.1) || (fabs(current[1]) > 0.1)) {
+                                       // Some real wind to convert back from. Work out the speed
+                                       // and direction value in degrees.
+                                       speed = sqrt((current[0] * current[0]) + (current[1] * current[1]));
+                                       dir_from = (atan2(current[0], current[1]) * SG_RADIANS_TO_DEGREES );
+
+                                       // Normalize the direction.
+                                       if (dir_from < 0.0)
+                                               dir_from += 360.0;
+
+                                       SG_LOG( SG_GENERAL, SG_DEBUG, "Wind : " << dir_from << "@" << speed);
+                               } else {
+                                       // Special case where there is no wind (otherwise atan2 barfs)
+                                       speed = 0.0;
+                               }
+                               double gust = gust_wind_speed_n->getDoubleValue();
+                               setupWind(setup_winds_aloft, dir_from, speed, gust);
+                               reinit_required = true;
+                       } else { 
+                               wind_interpolation_required = false;
+                       }
+               } else { // if(wind_interpolation_required)
+                       // interpolation of wind vector is finished, apply wind
+                       // variations and gusts for the boundary layer only
+
+
+                       bool wind_modulated = false;
+
+                       // start with the main wind direction
+                       double wind_dir = base_wind_dir_n->getDoubleValue()+magnetic_variation_n->getDoubleValue();
+                       double min = convert_to_180(base_wind_range_from_n->getDoubleValue()+magnetic_variation_n->getDoubleValue());
+                       double max = convert_to_180(base_wind_range_to_n->getDoubleValue()+magnetic_variation_n->getDoubleValue());
+                       if( max > min ) {
+                               // if variable winds configured, modulate the wind direction
+                               double f = windModulator->get_direction_offset_norm();
+                               wind_dir = min+(max-min)*f;
+                               double old = convert_to_180(boundary_wind_from_heading_n->getDoubleValue());
+                               wind_dir = convert_to_360(fgGetLowPass(old, wind_dir, dt ));
+                               wind_modulated = true;
+                       }
+                       
+                       // start with main wind speed
+                       double wind_speed = base_wind_speed_n->getDoubleValue();
+                       max = gust_wind_speed_n->getDoubleValue();
+                       if( max > wind_speed ) {
+                               // if gusts are configured, modulate wind magnitude
+                               double f = windModulator->get_magnitude_factor_norm();
+                               wind_speed = wind_speed+(max-wind_speed)*f;
+                               wind_speed = fgGetLowPass(boundary_wind_speed_n->getDoubleValue(), wind_speed, dt );
+                               wind_modulated = true;
+                       }
+                       if( wind_modulated ) {
+                               setupWind(false, wind_dir, wind_speed, max);
+                               reinit_required = true;
                        }
-                       double gust = gust_wind_speed_n->getDoubleValue();
-                       setupWind(setup_winds_aloft, dir_from, speed, gust);
-                       reinit_required = true;
                }
 
                // Now handle the visibility. We convert both visibility values
@@ -513,7 +623,7 @@ FGMetarCtrl::update(double dt)
                        double currentxval = log(1000.0 + vis);
                        double metarxval = log(1000.0 + metarvis);
 
-                       currentxval = interpolate_val(currentxval, metarxval, MaxVisChangePercentSec);
+                       currentxval = interpolate_val(currentxval, metarxval, MaxVisChangePercentSec*dt);
 
                        // Now convert back from an X-value to a straightforward visibility.
                        vis = exp(currentxval) - 1000.0;
@@ -523,12 +633,28 @@ FGMetarCtrl::update(double dt)
 
                double pressure = boundary_sea_level_pressure_n->getDoubleValue();
                double metarpressure = pressure_n->getDoubleValue();
-               if( pressure != metarpressure ) {
-                       pressure = interpolate_val( pressure, metarpressure, MaxPressureChangeInHgSec );
+               double newpressure = reducePressureSl(metarpressure,
+                       station_elevation_ft,
+                       temperature_n->getDoubleValue());
+               if( pressure != newpressure ) {
+                       pressure = interpolate_val( pressure, newpressure, MaxPressureChangeInHgSec*dt );
                        fgDefaultWeatherValue("pressure-sea-level-inhg", pressure);
                        reinit_required = true;
                }
 
+               {
+                       double temperature = boundary_sea_level_temperature_n->getDoubleValue();
+                       double dewpoint = boundary_sea_level_dewpoint_n->getDoubleValue();
+                       if( metar_sealevel_temperature != temperature ) {
+                               temperature = interpolate_val( temperature, metar_sealevel_temperature, MaxTemperatureChangeDegcSec*dt );
+                               set_temp_at_altitude( temperature, 0.0 );
+                       }
+                       if( metar_sealevel_dewpoint != dewpoint ) {
+                               dewpoint = interpolate_val( dewpoint, metar_sealevel_dewpoint, MaxTemperatureChangeDegcSec*dt );
+                               set_dewpoint_at_altitude( dewpoint, 0.0 );
+                       }
+               }
+
                // Set the cloud layers by interpolating over the METAR versions.
                vector<SGPropertyNode_ptr> layers = clouds_n->getChildren("layer");
                vector<SGPropertyNode_ptr>::const_iterator layer;
@@ -577,7 +703,7 @@ FGMetarCtrl::update(double dt)
                        } else {
                                // Interpolate the other values in the usual way
                                if (current_alt != required_alt) {
-                                       current_alt = interpolate_val(current_alt, required_alt, MaxCloudAltitudeChangeFtSec);
+                                       current_alt = interpolate_val(current_alt, required_alt, MaxCloudAltitudeChangeFtSec*dt);
                                        target->setDoubleValue("elevation-ft", current_alt);
                                }
 
@@ -586,16 +712,13 @@ FGMetarCtrl::update(double dt)
                                if (current_thickness != required_thickness) {
                                        current_thickness = interpolate_val(current_thickness,
                                                                                                 required_thickness,
-                                                                                                MaxCloudThicknessChangeFtSec);
+                                                                                                MaxCloudThicknessChangeFtSec*dt);
                                        thickness->setDoubleValue(current_thickness);
                                }
                        }
                }
        }
 
-       set_temp_at_altitude(temperature_n->getDoubleValue(), station_elevation_ft);
-       set_dewpoint_at_altitude(dewpoint_n->getDoubleValue(), station_elevation_ft);
-
        // Force an update of the 3D clouds
        if( layer_rebuild_required )
                fgSetInt("/environment/rebuild-layers", 1 );
@@ -629,6 +752,8 @@ void FGMetarCtrl::set_metar( const char * metar_string )
                return;
        }
 
+       wind_interpolation_required = true;
+
        min_visibility_n->setDoubleValue( m->getMinVisibility().getVisibility_m() );
        max_visibility_n->setDoubleValue( m->getMaxVisibility().getVisibility_m() );
 
@@ -676,6 +801,15 @@ void FGMetarCtrl::set_metar( const char * metar_string )
 
        station_elevation_n->setDoubleValue( station_elevation_ft );
 
+       {       // calculate sea level temperature and dewpoint
+               FGEnvironment dummy; // instantiate a dummy so we can leech a method
+               dummy.set_elevation_ft( station_elevation_ft );
+               dummy.set_temperature_degc( temperature_n->getDoubleValue() );
+               dummy.set_dewpoint_degc( dewpoint_n->getDoubleValue() );
+               metar_sealevel_temperature = dummy.get_temperature_sea_level_degc();
+               metar_sealevel_dewpoint = dummy.get_dewpoint_sea_level_degc();
+       }
+
        vector<SGMetarCloud> cv = m->getClouds();
        vector<SGMetarCloud>::const_iterator cloud, cloud_end = cv.end();
 
@@ -746,13 +880,12 @@ void MetarThread::run()
                        break;
                }
 
-                       metar_fetcher->fetch( airport_id );
+               metar_fetcher->fetch( airport_id );
        }
 }
 #endif
 
-FGMetarFetcher::FGMetarFetcher()
-  : 
+FGMetarFetcher::FGMetarFetcher() : 
 #if defined(ENABLE_THREADS)
        metar_thread(NULL),
 #endif
@@ -760,16 +893,17 @@ FGMetarFetcher::FGMetarFetcher()
        search_timer(0.0),
        error_timer(0.0),
        _stale_count(0),
-       _error_count(0)
+       _error_count(0),
+       enabled(false)
 {
        longitude_n = fgGetNode( "/position/longitude-deg", true );
        latitude_n  = fgGetNode( "/position/latitude-deg", true );
-       enable_n = fgGetNode( "/environment/params/real-world-weather-fetch", true );
+       enable_n    = fgGetNode( "/environment/params/real-world-weather-fetch", true );
 
        proxy_host_n = fgGetNode("/sim/presets/proxy/host", true);
        proxy_port_n = fgGetNode("/sim/presets/proxy/port", true);
        proxy_auth_n = fgGetNode("/sim/presets/proxy/authentication", true);
-       max_age_n       = fgGetNode("/environment/params/metar-max-age-min", true);
+       max_age_n    = fgGetNode("/environment/params/metar-max-age-min", true);
 
        output_n         = fgGetNode("/environment/metar/data", true );
 #if defined(ENABLE_THREADS)
@@ -798,6 +932,22 @@ void FGMetarFetcher::init ()
        _stale_count = 0;
        _error_count = 0;
        current_airport_id.clear();
+       /* Torsten Dreyer:
+          hack to stop startup.nas complaining if metar arrives after nasal-dir-initialized
+          is fired. Immediately fetch and wait for the METAR before continuing. This gets the
+          /environment/metar/xxx properties filled before nasal-dir is initialized.
+          Maybe the runway selection should happen here to make startup.nas obsolete?
+       */
+       const char * startup_airport = fgGetString("/sim/startup/options/airport");
+       if( *startup_airport ) {
+               FGAirport * a = FGAirport::getByIdent( startup_airport );
+               if( a ) {
+                       SGGeod pos = SGGeod::fromDeg(a->getLongitude(), a->getLatitude());
+                       a = FGAirport::findClosest(pos, 10000.0, &airportWithMetarFilter);
+                       current_airport_id = a->getId();
+                       fetch( current_airport_id );
+               }
+       }
 }
 
 void FGMetarFetcher::reinit ()
@@ -825,8 +975,19 @@ void FGMetarFetcher::update (double delta_time_sec)
                _error_count = 0;
        }
 
-       if( enable_n->getBoolValue() == false ) 
+       if( enable_n->getBoolValue() == false ) {
+               enabled = false;
                return;
+       }
+
+       // we were just enabled, reset all timers to 
+       // trigger immediate metar fetch
+       if( !enabled ) {
+               search_timer = 0.0;
+               fetch_timer = 0.0;
+               error_timer = error_timer_sec;
+               enabled = true;
+       }
 
        FGAirport * a = NULL;
 
@@ -857,6 +1018,9 @@ void FGMetarFetcher::update (double delta_time_sec)
 
 void FGMetarFetcher::fetch( const string & id )
 {
+       if( enable_n->getBoolValue() == false ) 
+               return;
+
        SGSharedPtr<FGMetar> result = NULL;
 
        // fetch current metar data
@@ -878,11 +1042,16 @@ void FGMetarFetcher::fetch( const string & id )
                        }
                } else {
                        _stale_count = 0;
-                       }
+               }
 
        } catch (const sg_io_exception& e) {
                SG_LOG( SG_GENERAL, SG_WARN, "Error fetching live weather data: " << e.getFormattedMessage().c_str() );
                result = NULL;
+               // remove METAR flag from the airport
+               FGAirport * a = FGAirport::findByIdent( id );
+               if( a ) a->setMetar( false );
+               // immediately schedule a new search
+               search_timer = 0.0;
        }
 
        // write the metar to the property node, the rest is done by the methods tied to this property