]> git.mxchange.org Git - flightgear.git/blobdiff - src/FDM/JSBSim/FGAuxiliary.cpp
Updated to match changes in radiostack.[ch]xx
[flightgear.git] / src / FDM / JSBSim / FGAuxiliary.cpp
index 232e05f09fcbc94c7fcb74db04056a54d9a4ecda..698c7faab654b4bf97aac98e4f0328a8ef9e45e9 100644 (file)
@@ -1,18 +1,18 @@
-/*******************************************************************************
-
+/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  Module:       FGAuxiliary.cpp
- Author:       Jon Berndt
+ Author:       Tony Peden, Jon Berndt
  Date started: 01/26/99
  Purpose:      Calculates additional parameters needed by the visual system, etc.
  Called by:    FGSimExec
-
  ------------- Copyright (C) 1999  Jon S. Berndt (jsb@hal-pc.org) -------------
-
  This program is free software; you can redistribute it and/or modify it under
  the terms of the GNU General Public License as published by the Free Software
  Foundation; either version 2 of the License, or (at your option) any later
  version.
-
  This program is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
  FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 
 FUNCTIONAL DESCRIPTION
 --------------------------------------------------------------------------------
-This class calculates various auxiliary parameters, mostly used by the visual
-system
+This class calculates various auxiliary parameters.
 
+REFERENCES
+  Anderson, John D. "Introduction to Flight", 3rd Edition, McGraw-Hill, 1989
+                    pgs. 112-126
 HISTORY
 --------------------------------------------------------------------------------
 01/26/99   JSB   Created
 
-********************************************************************************
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 INCLUDES
-*******************************************************************************/
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
 
 #include "FGAuxiliary.h"
 #include "FGTranslation.h"
@@ -48,28 +50,260 @@ INCLUDES
 #include "FGAircraft.h"
 #include "FGPosition.h"
 #include "FGOutput.h"
+#include "FGInertial.h"
+#include "FGMatrix33.h"
+#include "FGColumnVector3.h"
+#include "FGColumnVector4.h"
+#include "FGPropertyManager.h"
+
+static const char *IdSrc = "$Id$";
+static const char *IdHdr = ID_AUXILIARY;
+
+/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+CLASS IMPLEMENTATION
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
 
-/*******************************************************************************
-************************************ CODE **************************************
-*******************************************************************************/
 
 FGAuxiliary::FGAuxiliary(FGFDMExec* fdmex) : FGModel(fdmex)
 {
   Name = "FGAuxiliary";
+  vcas = veas = mach = qbar = pt = 0;
+  psl = rhosl = 1;
+  earthPosAngle = 0.0;
+  
+  vPilotAccelN.InitMatrix();
+  
+  Debug(0);
 }
 
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 FGAuxiliary::~FGAuxiliary()
 {
+  Debug(1);
 }
 
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 bool FGAuxiliary::Run()
 {
+  double A,B,D;
+
   if (!FGModel::Run()) {
+    GetState();
+    if (mach < 1) {   //calculate total pressure assuming isentropic flow
+      pt=p*pow((1 + 0.2*mach*mach),3.5);
+    } else {
+      // shock in front of pitot tube, we'll assume its normal and use
+      // the Rayleigh Pitot Tube Formula, i.e. the ratio of total
+      // pressure behind the shock to the static pressure in front
+
+      B = 5.76*mach*mach/(5.6*mach*mach - 0.8);
+
+      // The denominator above is zero for Mach ~ 0.38, for which
+      // we'll never be here, so we're safe
+
+      D = (2.8*mach*mach-0.4)*0.4167;
+      pt = p*pow(B,3.5)*D;
+    }
+
+    A = pow(((pt-p)/psl+1),0.28571);
+    vcas = sqrt(7*psl/rhosl*(A-1));
+    veas = sqrt(2*qbar/rhosl);
+
+    // Pilot sensed accelerations are calculated here. This is used
+    // for the coordinated turn ball instrument. Motion base platforms sometimes
+    // use the derivative of pilot sensed accelerations as the driving parameter,
+    // rather than straight accelerations.
+    //
+    // The theory behind pilot-sensed calculations is presented:
+    //
+    // For purposes of discussion and calculation, assume for a minute that the
+    // pilot is in space and motionless in inertial space. She will feel
+    // no accelerations. If the aircraft begins to accelerate along any axis or
+    // axes (without rotating), the pilot will sense those accelerations. If
+    // any rotational moment is applied, the pilot will sense an acceleration
+    // due to that motion in the amount:
+    //
+    // [wdot X R]  +  [w X (w X R)]
+    //   Term I          Term II
+    //
+    // where:
+    //
+    // wdot = omegadot, the rotational acceleration rate vector
+    // w    = omega, the rotational rate vector
+    // R    = the vector from the aircraft CG to the pilot eyepoint
+    //
+    // The sum total of these two terms plus the acceleration of the aircraft
+    // body axis gives the acceleration the pilot senses in inertial space.
+    // In the presence of a large body such as a planet, a gravity field also
+    // provides an accelerating attraction. This acceleration can be transformed
+    // from the reference frame of the planet so as to be expressed in the frame
+    // of reference of the aircraft. This gravity field accelerating attraction
+    // is felt by the pilot as a force on her tushie as she sits in her aircraft
+    // on the runway awaiting takeoff clearance.
+    //
+    // In JSBSim the acceleration of the body frame in inertial space is given
+    // by the F = ma relation. If the vForces vector is divided by the aircraft
+    // mass, the acceleration vector is calculated. The term wdot is equivalent
+    // to the JSBSim vPQRdot vector, and the w parameter is equivalent to vPQR.
+    // The radius R is calculated below in the vector vToEyePt.
+    
+    vPilotAccel.InitMatrix();   
+    if ( Translation->GetVt() > 1 ) {
+      vToEyePt = Aircraft->GetXYZep() - MassBalance->GetXYZcg();
+      vToEyePt *= inchtoft;
+      vPilotAccel =  Aerodynamics->GetForces() 
+                  +  Propulsion->GetForces()
+                  +  GroundReactions->GetForces();
+      vPilotAccel /= MassBalance->GetMass();
+      vPilotAccel += Rotation->GetPQRdot() * vToEyePt;
+      vPilotAccel += Rotation->GetPQR() * (Rotation->GetPQR() * vToEyePt);
+      //vPilotAccel(2)*=-1;
+      vPilotAccelN = vPilotAccel/Inertial->gravity();
+    }
+    earthPosAngle += State->Getdt()*Inertial->omega();
+    return false;
   } else {
+    return true;
   }
-  return false;
 }
 
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+double FGAuxiliary::GetHeadWind(void)
+{
+  double psiw,vw,psi;
+
+  psiw = Atmosphere->GetWindPsi();
+  psi = Rotation->Getpsi();
+  vw = Atmosphere->GetWindNED().Magnitude();
+
+  return vw*cos(psiw - psi);
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+double FGAuxiliary::GetCrossWind(void)
+{
+  double psiw,vw,psi;
+
+  psiw = Atmosphere->GetWindPsi();
+  psi = Rotation->Getpsi();
+  vw = Atmosphere->GetWindNED().Magnitude();
+
+  return  vw*sin(psiw - psi);
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+void FGAuxiliary::bind(void)
+{
+  typedef double (FGAuxiliary::*PMF)(int) const;
+  PropertyManager->Tie("velocities/vc-fps", this,
+                       &FGAuxiliary::GetVcalibratedFPS);
+  PropertyManager->Tie("velocities/vc-kts", this,
+                       &FGAuxiliary::GetVcalibratedKTS);
+  PropertyManager->Tie("velocities/ve-fps", this,
+                       &FGAuxiliary::GetVequivalentFPS);
+  PropertyManager->Tie("velocities/ve-kts", this,
+                       &FGAuxiliary::GetVequivalentKTS);
+  PropertyManager->Tie("accelerations/a-pilot-x-ft_sec2", this,1,
+                       (PMF)&FGAuxiliary::GetPilotAccel);
+  PropertyManager->Tie("accelerations/a-pilot-y-ft_sec2", this,2,
+                       (PMF)&FGAuxiliary::GetPilotAccel);
+  PropertyManager->Tie("accelerations/a-pilot-z-ft_sec2", this,3,
+                       (PMF)&FGAuxiliary::GetPilotAccel);
+  PropertyManager->Tie("accelerations/n-pilot-x-norm", this,1,
+                       (PMF)&FGAuxiliary::GetNpilot);
+  PropertyManager->Tie("accelerations/n-pilot-y-norm", this,2,
+                       (PMF)&FGAuxiliary::GetNpilot);
+  PropertyManager->Tie("accelerations/n-pilot-z-norm", this,3,
+                       (PMF)&FGAuxiliary::GetNpilot);
+  PropertyManager->Tie("position/epa-rad", this,
+                       &FGAuxiliary::GetEarthPositionAngle);
+  /* PropertyManager->Tie("atmosphere/headwind-fps", this,
+                       &FGAuxiliary::GetHeadWind,
+                       true);
+  PropertyManager->Tie("atmosphere/crosswind-fps", this,
+                       &FGAuxiliary::GetCrossWind,
+                       true); */
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+void FGAuxiliary::unbind(void)
+{
+  PropertyManager->Untie("velocities/vc-fps");
+  PropertyManager->Untie("velocities/vc-kts");
+  PropertyManager->Untie("velocities/ve-fps");
+  PropertyManager->Untie("velocities/ve-kts");
+  PropertyManager->Untie("accelerations/a-pilot-x-ft_sec2");
+  PropertyManager->Untie("accelerations/a-pilot-y-ft_sec2");
+  PropertyManager->Untie("accelerations/a-pilot-z-ft_sec2");
+  PropertyManager->Untie("accelerations/n-pilot-x-norm");
+  PropertyManager->Untie("accelerations/n-pilot-y-norm");
+  PropertyManager->Untie("accelerations/n-pilot-z-norm");
+  PropertyManager->Untie("position/epa-rad");
+  /* PropertyManager->Untie("atmosphere/headwind-fps");
+  PropertyManager->Untie("atmosphere/crosswind-fps"); */
+
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+void FGAuxiliary::GetState(void)
+{
+  qbar = Translation->Getqbar();
+  mach = Translation->GetMach();
+  p = Atmosphere->GetPressure();
+  rhosl = Atmosphere->GetDensitySL();
+  psl = Atmosphere->GetPressureSL();
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+//    The bitmasked value choices are as follows:
+//    unset: In this case (the default) JSBSim would only print
+//       out the normally expected messages, essentially echoing
+//       the config files as they are read. If the environment
+//       variable is not set, debug_lvl is set to 1 internally
+//    0: This requests JSBSim not to output any messages
+//       whatsoever.
+//    1: This value explicity requests the normal JSBSim
+//       startup messages
+//    2: This value asks for a message to be printed out when
+//       a class is instantiated
+//    4: When this value is set, a message is displayed when a
+//       FGModel object executes its Run() method
+//    8: When this value is set, various runtime state variables
+//       are printed out periodically
+//    16: When set various parameters are sanity checked and
+//       a message is printed out when they go out of bounds
+
+void FGAuxiliary::Debug(int from)
+{
+  if (debug_lvl <= 0) return;
+
+  if (debug_lvl & 1) { // Standard console startup message output
+    if (from == 0) { // Constructor
+
+    }
+  }
+  if (debug_lvl & 2 ) { // Instantiation/Destruction notification
+    if (from == 0) cout << "Instantiated: FGAuxiliary" << endl;
+    if (from == 1) cout << "Destroyed:    FGAuxiliary" << endl;
+  }
+  if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
+  }
+  if (debug_lvl & 8 ) { // Runtime state variables
+  }
+  if (debug_lvl & 16) { // Sanity checking
+  }
+  if (debug_lvl & 64) {
+    if (from == 0) { // Constructor
+      cout << IdSrc << endl;
+      cout << IdHdr << endl;
+    }
+  }
+}