]> git.mxchange.org Git - flightgear.git/blobdiff - src/FDM/JSBSim/models/FGAtmosphere.cpp
Bugfix: no automatic runway selection with --parkpos=
[flightgear.git] / src / FDM / JSBSim / models / FGAtmosphere.cpp
index 5da2bb0b569cf6e2bcf21cfcb4c478ef2858d8cb..12fb084a70f879c384bcf25f3962d8d0f4f37a9f 100644 (file)
@@ -7,7 +7,7 @@
  Purpose:      Models the atmosphere
  Called by:    FGSimExec
 
- ------------- Copyright (C) 1999  Jon S. Berndt (jsb@hal-pc.org) -------------
+ ------------- Copyright (C) 1999  Jon S. Berndt (jon@jsbsim.org) -------------
 
  This program is free software; you can redistribute it and/or modify it under
  the terms of the GNU Lesser General Public License as published by the Free Software
@@ -48,23 +48,26 @@ INCLUDES
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
 
 #include "FGAtmosphere.h"
-#include <FGState.h>
-#include <FGFDMExec.h>
 #include "FGAircraft.h"
 #include "FGPropagate.h"
 #include "FGInertial.h"
-#include <input_output/FGPropertyManager.h>
+#include "FGAuxiliary.h"
+#include "FGFDMExec.h"
+#include "input_output/FGPropertyManager.h"
+#include <iostream>
+#include <cstdlib>
+
+using namespace std;
 
 namespace JSBSim {
 
-static const char *IdSrc = "$Id$";
+static const char *IdSrc = "$Id: FGAtmosphere.cpp,v 1.38 2010/09/16 11:01:24 jberndt Exp $";
 static const char *IdHdr = ID_ATMOSPHERE;
 
 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 CLASS IMPLEMENTATION
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
 
-
 FGAtmosphere::FGAtmosphere(FGFDMExec* fdmex) : FGModel(fdmex)
 {
   Name = "FGAtmosphere";
@@ -72,23 +75,46 @@ FGAtmosphere::FGAtmosphere(FGFDMExec* fdmex) : FGModel(fdmex)
   h = 0.0;
   psiw = 0.0;
   htab[0]=0;
-  htab[1]=36089.239;
-  htab[2]=65616.798;
-  htab[3]=104986.878;
-  htab[4]=154199.475;
-  htab[5]=170603.675;
-  htab[6]=200131.234;
-  htab[7]=259186.352; //ft.
+  htab[1]= 36089.0;
+  htab[2]= 65617.0;
+  htab[3]=104987.0;
+  htab[4]=154199.0;
+  htab[5]=167322.0;
+  htab[6]=232940.0;
+  htab[7]=278385.0; //ft.
 
   MagnitudedAccelDt = MagnitudeAccel = Magnitude = 0.0;
-//   turbType = ttNone;
-  turbType = ttStandard;
-//   turbType = ttBerndt;
-  TurbGain = 0.0;
-  TurbRate = 1.0;
+//  SetTurbType( ttCulp );
+  SetTurbType( ttNone );
+  TurbGain = 1.0;
+  TurbRate = 10.0;
+  Rhythmicity = 0.1;
+  spike = target_time = strength = 0.0;
+  wind_from_clockwise = 0.0;
+  SutherlandConstant = 198.72; // deg Rankine
+  Beta = 2.269690E-08; // slug/(sec ft R^0.5)
 
   T_dev_sl = T_dev = delta_T = 0.0;
   StandardTempOnly = false;
+  first_pass = true;
+  vGustNED.InitMatrix();
+  vTurbulenceNED.InitMatrix();
+
+  // Milspec turbulence model
+  windspeed_at_20ft = 0.;
+  probability_of_exceedence_index = 0;
+  POE_Table = new FGTable(7,12);
+  // this is Figure 7 from p. 49 of MIL-F-8785C
+  // rows: probability of exceedance curve index, cols: altitude in ft
+  *POE_Table
+           << 500.0 << 1750.0 << 3750.0 << 7500.0 << 15000.0 << 25000.0 << 35000.0 << 45000.0 << 55000.0 << 65000.0 << 75000.0 << 80000.0
+    << 1   <<   3.2 <<    2.2 <<    1.5 <<    0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0
+    << 2   <<   4.2 <<    3.6 <<    3.3 <<    1.6 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0
+    << 3   <<   6.6 <<    6.9 <<    7.4 <<    6.7 <<     4.6 <<     2.7 <<     0.4 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0
+    << 4   <<   8.6 <<    9.6 <<   10.6 <<   10.1 <<     8.0 <<     6.6 <<     5.0 <<     4.2 <<     2.7 <<     0.0 <<     0.0 <<     0.0
+    << 5   <<  11.8 <<   13.0 <<   16.0 <<   15.1 <<    11.6 <<     9.7 <<     8.1 <<     8.2 <<     7.9 <<     4.9 <<     3.2 <<     2.1
+    << 6   <<  15.6 <<   17.6 <<   23.0 <<   23.6 <<    22.1 <<    20.0 <<    16.0 <<    15.1 <<    12.1 <<     7.9 <<     6.2 <<     5.1
+    << 7   <<  18.7 <<   21.5 <<   28.4 <<   30.2 <<    30.7 <<    31.0 <<    25.2 <<    23.1 <<    17.5 <<    10.7 <<     8.4 <<     7.2;
 
   bind();
   Debug(0);
@@ -98,7 +124,6 @@ FGAtmosphere::FGAtmosphere(FGFDMExec* fdmex) : FGModel(fdmex)
 
 FGAtmosphere::~FGAtmosphere()
 {
-  unbind();
   Debug(1);
 }
 
@@ -106,7 +131,7 @@ FGAtmosphere::~FGAtmosphere()
 
 bool FGAtmosphere::InitModel(void)
 {
-  FGModel::InitModel();
+  if (!FGModel::InitModel()) return false;
 
   UseInternal();  // this is the default
 
@@ -130,8 +155,10 @@ bool FGAtmosphere::Run(void)
   if (FGModel::Run()) return true;
   if (FDMExec->Holding()) return false;
 
+  RunPreFunctions();
+
   T_dev = 0.0;
-  h = Propagate->Geth();
+  h = Propagate->GetAltitudeASL();
 
   if (!useExternal) {
     Calculate(h);
@@ -140,6 +167,8 @@ bool FGAtmosphere::Run(void)
     CalculateDerived();
   }
 
+  RunPostFunctions();
+
   Debug(2);
   return false;
 }
@@ -151,9 +180,8 @@ bool FGAtmosphere::Run(void)
 void FGAtmosphere::Calculate(double altitude)
 {
   double slope, reftemp, refpress;
-  int i = 0;
+  int i = lastIndex;
 
-  i = lastIndex;
   if (altitude < htab[lastIndex]) {
     if (altitude <= 0) {
       i = 0;
@@ -173,52 +201,57 @@ void FGAtmosphere::Calculate(double altitude)
   }
 
   switch(i) {
-  case 1:     // 36089 ft.
+  case 0: // Sea level
+    slope     = -0.00356616; // R/ft.
+    reftemp   = 518.67;   // in degrees Rankine, 288.15 Kelvin
+    refpress  = 2116.22;    // psf
+    //refdens   = 0.00237767;  // slugs/cubic ft.
+    break;
+  case 1:     // 36089 ft. or 11 km
     slope     = 0;
-    reftemp   = 389.97;
-    refpress  = 472.452;
+    reftemp   = 389.97; // in degrees Rankine, 216.65 Kelvin
+    refpress  = 472.763;
     //refdens   = 0.000706032;
     break;
-  case 2:     // 65616 ft.
+  case 2:     // 65616 ft. or 20 km
     slope     = 0.00054864;
-    reftemp   = 389.97;
+    reftemp   = 389.97; // in degrees Rankine, 216.65 Kelvin
     refpress  = 114.636;
     //refdens   = 0.000171306;
     break;
-  case 3:     // 104986 ft.
-    slope     = 0.00153619;
-    reftemp   = 411.57;
-    refpress  = 8.36364;
+  case 3:     // 104986 ft. or 32 km
+    slope     = 0.001536192;
+    reftemp   = 411.57; // in degrees Rankine, 228.65 Kelvin
+    refpress  = 18.128;
     //refdens   = 1.18422e-05;
     break;
-  case 4:     // 154199 ft.
+  case 4:     // 154199 ft. 47 km
     slope     = 0;
-    reftemp   = 487.17;
-    refpress  = 0.334882;
+    reftemp   = 487.17; // in degrees Rankine, 270.65 Kelvin
+    refpress  = 2.316;
     //refdens   = 4.00585e-7;
     break;
-  case 5:     // 170603 ft.
-    slope     = -0.00109728;
-    reftemp   = 487.17;
-    refpress  = 0.683084;
+  case 5:     // 167322 ft. or 51 km
+    slope     = -0.001536192;
+    reftemp   = 487.17; // in degrees Rankine, 270.65 Kelvin
+    refpress  = 1.398;
     //refdens   = 8.17102e-7;
     break;
-  case 6:     // 200131 ft.
-    slope     = -0.00219456;
-    reftemp   = 454.17;
-    refpress  = 0.00684986;
+  case 6:     // 232940 ft. or 71 km
+    slope     = -0.00109728;
+    reftemp   = 386.368; // in degrees Rankine, 214.649 Kelvin
+    refpress  = 0.0826;
     //refdens   = 8.77702e-9;
     break;
-  case 7:     // 259186 ft.
+  case 7:     // 278385 ft. or 84.8520 km
     slope     = 0;
-    reftemp   = 325.17;
-    refpress  = 0.000122276;
+    reftemp   = 336.5; // in degrees Rankine, 186.94 Kelvin
+    refpress  = 0.00831;
     //refdens   = 2.19541e-10;
     break;
-  case 0:
   default:     // sea level
     slope     = -0.00356616; // R/ft.
-    reftemp   = 518.67;    // R
+    reftemp   = 518.67;   // in degrees Rankine, 288.15 Kelvin
     refpress  = 2116.22;    // psf
     //refdens   = 0.00237767;  // slugs/cubic ft.
     break;
@@ -249,26 +282,33 @@ void FGAtmosphere::Calculate(double altitude)
     intPressure = refpress*pow(intTemperature/reftemp,-Inertial->SLgravity()/(slope*Reng));
     intDensity = intPressure/(Reng*intTemperature);
   }
-
+  
   lastIndex=i;
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 // Calculate parameters derived from T, P and rho
+// Sum gust and turbulence values in NED frame into the wind vector.
 
 void FGAtmosphere::CalculateDerived(void)
 {
   T_dev = (*temperature) - GetTemperature(h);
-  density_altitude = h + T_dev * 66.7;
 
-  if (turbType == ttStandard) {
-    Turbulence();
-    vWindNED += vTurbulence;
-  }
-  if (vWindNED(1) != 0.0) psiw = atan2( vWindNED(2), vWindNED(1) );
+  if (T_dev == 0.0) density_altitude = h;
+  else              density_altitude = 518.67/0.00356616 * (1.0 - pow(GetDensityRatio(),0.235));
+
+  if (turbType != ttNone) Turbulence();
+
+  vTotalWindNED = vWindNED + vGustNED + vTurbulenceNED;
+
+   // psiw (Wind heading) is the direction the wind is blowing towards
+  if (vWindNED(eX) != 0.0) psiw = atan2( vWindNED(eY), vWindNED(eX) );
   if (psiw < 0) psiw += 2*M_PI;
 
   soundspeed = sqrt(SHRatio*Reng*(*temperature));
+
+  intViscosity = Beta * pow(intTemperature, 1.5) / (SutherlandConstant + intTemperature);
+  intKinematicViscosity = intViscosity / intDensity;
 }
 
 
@@ -323,12 +363,53 @@ static inline double square_signed (double value)
         return value * value;
 }
 
+/// simply square a value
+static inline double sqr(double x) { return x*x; }
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+//
+// psi is the angle that the wind is blowing *towards*
+
+void FGAtmosphere::SetWindspeed(double speed)
+{
+  if (vWindNED.Magnitude() == 0.0) {
+    psiw = 0.0;
+    vWindNED(eNorth) = speed;
+  } else {
+    vWindNED(eNorth) = speed * cos(psiw);
+    vWindNED(eEast) = speed * sin(psiw);
+    vWindNED(eDown) = 0.0;
+  }
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+double FGAtmosphere::GetWindspeed(void) const
+{
+  return vWindNED.Magnitude();
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+//
+// psi is the angle that the wind is blowing *towards*
+
+void FGAtmosphere::SetWindPsi(double dir)
+{
+  double mag = GetWindspeed();
+  psiw = dir;
+  SetWindspeed(mag);  
+}
+
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 void FGAtmosphere::Turbulence(void)
 {
+  double DeltaT = rate*FDMExec->GetDeltaT();
+
   switch (turbType) {
   case ttStandard: {
+    // TurbGain = TurbGain * TurbGain * 100.0; // what is this!?
+
     vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX));
     vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX));
     vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX));
@@ -338,8 +419,9 @@ void FGAtmosphere::Turbulence(void)
                                 // away from the peaks
     MagnitudedAccelDt = ((MagnitudedAccelDt - Magnitude) /
                          (1 + fabs(Magnitude)));
-    MagnitudeAccel    += MagnitudedAccelDt*rate*TurbRate*State->Getdt();
-    Magnitude         += MagnitudeAccel*rate*State->Getdt();
+    MagnitudeAccel    += MagnitudedAccelDt*TurbRate*DeltaT;
+    Magnitude         += MagnitudeAccel*DeltaT;
+    Magnitude          = fabs(Magnitude);
 
     vDirectiondAccelDt.Normalize();
 
@@ -347,21 +429,28 @@ void FGAtmosphere::Turbulence(void)
     vDirectiondAccelDt(eX) = square_signed(vDirectiondAccelDt(eX));
     vDirectiondAccelDt(eY) = square_signed(vDirectiondAccelDt(eY));
 
-    vDirectionAccel += vDirectiondAccelDt*rate*TurbRate*State->Getdt();
+    vDirectionAccel += vDirectiondAccelDt*TurbRate*DeltaT;
     vDirectionAccel.Normalize();
-    vDirection      += vDirectionAccel*rate*State->Getdt();
+    vDirection      += vDirectionAccel*DeltaT;
 
     vDirection.Normalize();
 
                                 // Diminish turbulence within three wingspans
                                 // of the ground
-    vTurbulence = TurbGain * Magnitude * vDirection;
+    vTurbulenceNED = TurbGain * Magnitude * vDirection;
     double HOverBMAC = Auxiliary->GetHOverBMAC();
     if (HOverBMAC < 3.0)
-        vTurbulence *= (HOverBMAC / 3.0) * (HOverBMAC / 3.0);
+        vTurbulenceNED *= (HOverBMAC / 3.0) * (HOverBMAC / 3.0);
 
-    vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection;
+    // I don't believe these next two statements calculate the proper gradient over
+    // the aircraft body. One reason is because this has no relationship with the
+    // orientation or velocity of the aircraft, which it must have. What is vTurbulenceGrad
+    // supposed to represent? And the direction and magnitude of the turbulence can change,
+    // so both accelerations need to be accounted for, no?
 
+    // Need to determine the turbulence change in body axes between two time points.
+
+    vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection;
     vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad;
 
     if (Aircraft->GetWingSpan() > 0) {
@@ -383,51 +472,230 @@ void FGAtmosphere::Turbulence(void)
                                 // actually felt by the plane, now
                                 // that we've used them to calculate
                                 // moments.
-    vTurbulence(eX) = 0.0;
-    vTurbulence(eY) = 0.0;
+                                // Why? (JSB)
+//    vTurbulenceNED(eX) = 0.0;
+//    vTurbulenceNED(eY) = 0.0;
 
     break;
   }
-  case ttBerndt: {
-    vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX));
-    vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX));
-    vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX));
-
-
-    MagnitudedAccelDt = 1 - 2.0*(double(rand())/double(RAND_MAX)) - Magnitude;
-    MagnitudeAccel    += MagnitudedAccelDt*rate*State->Getdt();
-    Magnitude         += MagnitudeAccel*rate*State->Getdt();
+  case ttBerndt: { // This is very experimental and incomplete at the moment.
+
+    vDirectiondAccelDt(eX) = GaussianRandomNumber();
+    vDirectiondAccelDt(eY) = GaussianRandomNumber();
+    vDirectiondAccelDt(eZ) = GaussianRandomNumber();
+/*
+    MagnitudedAccelDt = GaussianRandomNumber();
+    MagnitudeAccel    += MagnitudedAccelDt * DeltaT;
+    Magnitude         += MagnitudeAccel * DeltaT;
+*/
+    Magnitude         += GaussianRandomNumber() * DeltaT;
 
     vDirectiondAccelDt.Normalize();
-    vDirectionAccel += vDirectiondAccelDt*rate*State->Getdt();
+    vDirectionAccel += TurbRate * vDirectiondAccelDt * DeltaT;
     vDirectionAccel.Normalize();
-    vDirection      += vDirectionAccel*rate*State->Getdt();
+    vDirection      += vDirectionAccel*DeltaT;
 
-                                // Diminish z-vector within two wingspans
-                                // of the ground
+    // Diminish z-vector within two wingspans of the ground
     double HOverBMAC = Auxiliary->GetHOverBMAC();
-    if (HOverBMAC < 2.0)
-        vDirection(eZ) *= HOverBMAC / 2.0;
+    if (HOverBMAC < 2.0) vDirection(eZ) *= HOverBMAC / 2.0;
 
     vDirection.Normalize();
 
-    vTurbulence = TurbGain*Magnitude * vDirection;
+    vTurbulenceNED = TurbGain*Magnitude * vDirection;
     vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection;
 
-    vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad;
-    vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan();
+    vBodyTurbGrad = Propagate->GetTl2b() * vTurbulenceGrad;
+    vTurbPQR(eP) = vBodyTurbGrad(eY) / Aircraft->GetWingSpan();
     if (Aircraft->GetHTailArm() > 0)
-      vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm();
+      vTurbPQR(eQ) = vBodyTurbGrad(eZ) / Aircraft->GetHTailArm();
     else
-      vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0;
+      vTurbPQR(eQ) = vBodyTurbGrad(eZ) / 10.0;
 
     if (Aircraft->GetVTailArm() > 0)
-      vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm();
+      vTurbPQR(eR) = vBodyTurbGrad(eX) / Aircraft->GetVTailArm();
     else
       vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0;
 
     break;
   }
+  case ttCulp: { 
+
+    vTurbPQR(eP) = wind_from_clockwise;
+    if (TurbGain == 0.0) return;
+  
+    // keep the inputs within allowable limts for this model
+    if (TurbGain < 0.0) TurbGain = 0.0;
+    if (TurbGain > 1.0) TurbGain = 1.0;
+    if (TurbRate < 0.0) TurbRate = 0.0;
+    if (TurbRate > 30.0) TurbRate = 30.0;
+    if (Rhythmicity < 0.0) Rhythmicity = 0.0;
+    if (Rhythmicity > 1.0) Rhythmicity = 1.0;
+
+    // generate a sine wave corresponding to turbulence rate in hertz
+    double time = FDMExec->GetSimTime();
+    double sinewave = sin( time * TurbRate * 6.283185307 );
+
+    double random = 0.0;
+    if (target_time == 0.0) {
+      strength = random = 1 - 2.0*(double(rand())/double(RAND_MAX));
+      target_time = time + 0.71 + (random * 0.5);
+    }
+    if (time > target_time) {
+      spike = 1.0;
+      target_time = 0.0;
+    }    
+
+    // max vertical wind speed in fps, corresponds to TurbGain = 1.0
+    double max_vs = 40;
+
+    vTurbulenceNED(1) = vTurbulenceNED(2) = vTurbulenceNED(3) = 0.0;
+    double delta = strength * max_vs * TurbGain * (1-Rhythmicity) * spike;
+
+    // Vertical component of turbulence.
+    vTurbulenceNED(3) = sinewave * max_vs * TurbGain * Rhythmicity;
+    vTurbulenceNED(3)+= delta;
+    double HOverBMAC = Auxiliary->GetHOverBMAC();
+    if (HOverBMAC < 3.0)
+        vTurbulenceNED(3) *= HOverBMAC * 0.3333;
+    // Yaw component of turbulence.
+    vTurbulenceNED(1) = sin( delta * 3.0 );
+    vTurbulenceNED(2) = cos( delta * 3.0 );
+
+    // Roll component of turbulence. Clockwise vortex causes left roll.
+    vTurbPQR(eP) += delta * 0.04;
+
+    spike = spike * 0.9;
+    break;
+  }
+  case ttMilspec:
+  case ttTustin: {
+    // an index of zero means turbulence is disabled
+    if (probability_of_exceedence_index == 0) {
+      vTurbulenceNED(1) = vTurbulenceNED(2) = vTurbulenceNED(3) = 0.0;
+      vTurbPQR(1) = vTurbPQR(2) = vTurbPQR(3) = 0.0;
+      return;
+    }
+
+    // Turbulence model according to MIL-F-8785C (Flying Qualities of Piloted Aircraft)
+    double
+      h = Propagate->GetDistanceAGL(),
+      V = Auxiliary->GetVt(), // true airspeed in ft/s
+      b_w = Aircraft->GetWingSpan(),
+      L_u, L_w, sig_u, sig_w;
+
+    // clip height functions at 10 ft
+    if (h <= 10.) h = 10;
+
+    // Scale lengths L and amplitudes sigma as function of height
+    if (h <= 1000) {
+      L_u = h/pow(0.177 + 0.000823*h, 1.2); // MIL-F-8785c, Fig. 10, p. 55
+      L_w = h;
+      sig_w = 0.1*windspeed_at_20ft;
+      sig_u = sig_w/pow(0.177 + 0.000823*h, 0.4); // MIL-F-8785c, Fig. 11, p. 56
+    } else if (h <= 2000) {
+      // linear interpolation between low altitude and high altitude models
+      L_u = L_w = 1000 + (h-1000.)/1000.*750.;
+      sig_u = sig_w = 0.1*windspeed_at_20ft
+                    + (h-1000.)/1000.*(POE_Table->GetValue(probability_of_exceedence_index, h) - 0.1*windspeed_at_20ft);
+    } else {
+      L_u = L_w = 1750.; //  MIL-F-8785c, Sec. 3.7.2.1, p. 48
+      sig_u = sig_w = POE_Table->GetValue(probability_of_exceedence_index, h);
+    }
+
+    // keep values from last timesteps
+    // TODO maybe use deque?
+    static double
+      xi_u_km1 = 0, nu_u_km1 = 0,
+      xi_v_km1 = 0, xi_v_km2 = 0, nu_v_km1 = 0, nu_v_km2 = 0,
+      xi_w_km1 = 0, xi_w_km2 = 0, nu_w_km1 = 0, nu_w_km2 = 0,
+      xi_p_km1 = 0, nu_p_km1 = 0,
+      xi_q_km1 = 0, xi_r_km1 = 0;
+
+
+    double
+      T_V = DeltaT, // for compatibility of nomenclature
+      sig_p = 1.9/sqrt(L_w*b_w)*sig_w, // Yeager1998, eq. (8)
+      sig_q = sqrt(M_PI/2/L_w/b_w), // eq. (14)
+      sig_r = sqrt(2*M_PI/3/L_w/b_w), // eq. (17)
+      L_p = sqrt(L_w*b_w)/2.6, // eq. (10)
+      tau_u = L_u/V, // eq. (6)
+      tau_w = L_w/V, // eq. (3)
+      tau_p = L_p/V, // eq. (9)
+      tau_q = 4*b_w/M_PI/V, // eq. (13)
+      tau_r =3*b_w/M_PI/V, // eq. (17)
+      nu_u = GaussianRandomNumber(),
+      nu_v = GaussianRandomNumber(),
+      nu_w = GaussianRandomNumber(),
+      nu_p = GaussianRandomNumber(),
+      xi_u, xi_v, xi_w, xi_p, xi_q, xi_r;
+
+    // values of turbulence NED velocities
+
+    if (turbType == ttTustin) {
+      // the following is the Tustin formulation of Yeager's report
+      double
+        omega_w = V/L_w, // hidden in nomenclature p. 3
+        omega_v = V/L_u, // this is defined nowhere
+        C_BL  = 1/tau_u/tan(T_V/2/tau_u), // eq. (19)
+        C_BLp = 1/tau_p/tan(T_V/2/tau_p), // eq. (22)
+        C_BLq = 1/tau_q/tan(T_V/2/tau_q), // eq. (24)
+        C_BLr = 1/tau_r/tan(T_V/2/tau_r); // eq. (26)
+
+      xi_u = -(1 - C_BL*tau_u)/(1 + C_BL*tau_u)*xi_u_km1
+           + sig_u*sqrt(2*tau_u/T_V)/(1 + C_BL*tau_u)*(nu_u + nu_u_km1); // eq. (18)
+      xi_v = -2*(sqr(omega_v) - sqr(C_BL))/sqr(omega_v + C_BL)*xi_v_km1
+           - sqr(omega_v - C_BL)/sqr(omega_v + C_BL) * xi_v_km2
+           + sig_u*sqrt(3*omega_v/T_V)/sqr(omega_v + C_BL)*(
+                 (C_BL + omega_v/sqrt(3.))*nu_v
+               + 2/sqrt(3.)*omega_v*nu_v_km1
+               + (omega_v/sqrt(3.) - C_BL)*nu_v_km2); // eq. (20) for v
+      xi_w = -2*(sqr(omega_w) - sqr(C_BL))/sqr(omega_w + C_BL)*xi_w_km1
+           - sqr(omega_w - C_BL)/sqr(omega_w + C_BL) * xi_w_km2
+           + sig_w*sqrt(3*omega_w/T_V)/sqr(omega_w + C_BL)*(
+                 (C_BL + omega_w/sqrt(3.))*nu_w
+               + 2/sqrt(3.)*omega_w*nu_w_km1
+               + (omega_w/sqrt(3.) - C_BL)*nu_w_km2); // eq. (20) for w
+      xi_p = -(1 - C_BLp*tau_p)/(1 + C_BLp*tau_p)*xi_p_km1
+           + sig_p*sqrt(2*tau_p/T_V)/(1 + C_BLp*tau_p) * (nu_p + nu_p_km1); // eq. (21)
+      xi_q = -(1 - 4*b_w*C_BLq/M_PI/V)/(1 + 4*b_w*C_BLq/M_PI/V) * xi_q_km1
+           + C_BLq/V/(1 + 4*b_w*C_BLq/M_PI/V) * (xi_w - xi_w_km1); // eq. (23)
+      xi_r = - (1 - 3*b_w*C_BLr/M_PI/V)/(1 + 3*b_w*C_BLr/M_PI/V) * xi_r_km1
+           + C_BLr/V/(1 + 3*b_w*C_BLr/M_PI/V) * (xi_v - xi_v_km1); // eq. (25)
+
+    } else if (turbType == ttMilspec) {
+      // the following is the MIL-STD-1797A formulation
+      // as cited in Yeager's report
+      xi_u = (1 - T_V/tau_u)  *xi_u_km1 + sig_u*sqrt(2*T_V/tau_u)*nu_u;  // eq. (30)
+      xi_v = (1 - 2*T_V/tau_u)*xi_v_km1 + sig_u*sqrt(4*T_V/tau_u)*nu_v;  // eq. (31)
+      xi_w = (1 - 2*T_V/tau_w)*xi_w_km1 + sig_w*sqrt(4*T_V/tau_w)*nu_w;  // eq. (32)
+      xi_p = (1 - T_V/tau_p)  *xi_p_km1 + sig_p*sqrt(2*T_V/tau_p)*nu_p;  // eq. (33)
+      xi_q = (1 - T_V/tau_q)  *xi_q_km1 + M_PI/4/b_w*(xi_w - xi_w_km1);  // eq. (34)
+      xi_r = (1 - T_V/tau_r)  *xi_r_km1 + M_PI/3/b_w*(xi_v - xi_v_km1);  // eq. (35)
+    }
+
+    // rotate by wind azimuth and assign the velocities
+    double cospsi = cos(psiw), sinpsi = sin(psiw);
+    vTurbulenceNED(1) =  cospsi*xi_u + sinpsi*xi_v;
+    vTurbulenceNED(2) = -sinpsi*xi_u + cospsi*xi_v;
+    vTurbulenceNED(3) = xi_w;
+
+    vTurbPQR(1) =  cospsi*xi_p + sinpsi*xi_q;
+    vTurbPQR(2) = -sinpsi*xi_p + cospsi*xi_q;
+    vTurbPQR(3) = xi_r;
+
+    // vTurbPQR is in the body fixed frame, not NED
+    vTurbPQR = Propagate->GetTl2b()*vTurbPQR;
+
+    // hand on the values for the next timestep
+    xi_u_km1 = xi_u; nu_u_km1 = nu_u;
+    xi_v_km2 = xi_v_km1; xi_v_km1 = xi_v; nu_v_km2 = nu_v_km1; nu_v_km1 = nu_v;
+    xi_w_km2 = xi_w_km1; xi_w_km1 = xi_w; nu_w_km2 = nu_w_km1; nu_w_km1 = nu_w;
+    xi_p_km1 = xi_p; nu_p_km1 = nu_p;
+    xi_q_km1 = xi_q;
+    xi_r_km1 = xi_r;
+
+  }
   default:
     break;
   }
@@ -459,6 +727,9 @@ void FGAtmosphere::bind(void)
 {
   typedef double (FGAtmosphere::*PMF)(int) const;
   typedef double (FGAtmosphere::*PMFv)(void) const;
+  typedef int (FGAtmosphere::*PMFt)(void) const;
+  typedef void   (FGAtmosphere::*PMFd)(int,double);
+  typedef void   (FGAtmosphere::*PMFi)(int);
   PropertyManager->Tie("atmosphere/T-R", this, (PMFv)&FGAtmosphere::GetTemperature);
   PropertyManager->Tie("atmosphere/rho-slugs_ft3", this, (PMFv)&FGAtmosphere::GetDensity);
   PropertyManager->Tie("atmosphere/P-psf", this, (PMFv)&FGAtmosphere::GetPressure);
@@ -471,38 +742,53 @@ void FGAtmosphere::bind(void)
   PropertyManager->Tie("atmosphere/sigma", this, &FGAtmosphere::GetDensityRatio);
   PropertyManager->Tie("atmosphere/delta", this, &FGAtmosphere::GetPressureRatio);
   PropertyManager->Tie("atmosphere/a-ratio", this, &FGAtmosphere::GetSoundSpeedRatio);
-  PropertyManager->Tie("atmosphere/psiw-rad", this, &FGAtmosphere::GetWindPsi);
+  PropertyManager->Tie("atmosphere/psiw-rad", this, &FGAtmosphere::GetWindPsi, &FGAtmosphere::SetWindPsi);
   PropertyManager->Tie("atmosphere/delta-T", this, &FGAtmosphere::GetDeltaT, &FGAtmosphere::SetDeltaT);
   PropertyManager->Tie("atmosphere/T-sl-dev-F", this, &FGAtmosphere::GetSLTempDev, &FGAtmosphere::SetSLTempDev);
   PropertyManager->Tie("atmosphere/density-altitude", this, &FGAtmosphere::GetDensityAltitude);
+
+  PropertyManager->Tie("atmosphere/wind-north-fps", this, eNorth, (PMF)&FGAtmosphere::GetWindNED,
+                                                          (PMFd)&FGAtmosphere::SetWindNED);
+  PropertyManager->Tie("atmosphere/wind-east-fps",  this, eEast, (PMF)&FGAtmosphere::GetWindNED,
+                                                          (PMFd)&FGAtmosphere::SetWindNED);
+  PropertyManager->Tie("atmosphere/wind-down-fps",  this, eDown, (PMF)&FGAtmosphere::GetWindNED,
+                                                          (PMFd)&FGAtmosphere::SetWindNED);
+  PropertyManager->Tie("atmosphere/wind-mag-fps", this, &FGAtmosphere::GetWindspeed,
+                                                        &FGAtmosphere::SetWindspeed);
+  PropertyManager->Tie("atmosphere/total-wind-north-fps", this, eNorth, (PMF)&FGAtmosphere::GetTotalWindNED);
+  PropertyManager->Tie("atmosphere/total-wind-east-fps",  this, eEast,  (PMF)&FGAtmosphere::GetTotalWindNED);
+  PropertyManager->Tie("atmosphere/total-wind-down-fps",  this, eDown,  (PMF)&FGAtmosphere::GetTotalWindNED);
+
+  PropertyManager->Tie("atmosphere/gust-north-fps", this, eNorth, (PMF)&FGAtmosphere::GetGustNED,
+                                                          (PMFd)&FGAtmosphere::SetGustNED);
+  PropertyManager->Tie("atmosphere/gust-east-fps",  this, eEast, (PMF)&FGAtmosphere::GetGustNED,
+                                                          (PMFd)&FGAtmosphere::SetGustNED);
+  PropertyManager->Tie("atmosphere/gust-down-fps",  this, eDown, (PMF)&FGAtmosphere::GetGustNED,
+                                                          (PMFd)&FGAtmosphere::SetGustNED);
+
+  PropertyManager->Tie("atmosphere/turb-north-fps", this, eNorth, (PMF)&FGAtmosphere::GetTurbNED,
+                                                          (PMFd)&FGAtmosphere::SetTurbNED);
+  PropertyManager->Tie("atmosphere/turb-east-fps",  this, eEast, (PMF)&FGAtmosphere::GetTurbNED,
+                                                          (PMFd)&FGAtmosphere::SetTurbNED);
+  PropertyManager->Tie("atmosphere/turb-down-fps",  this, eDown, (PMF)&FGAtmosphere::GetTurbNED,
+                                                          (PMFd)&FGAtmosphere::SetTurbNED);
+
   PropertyManager->Tie("atmosphere/p-turb-rad_sec", this,1, (PMF)&FGAtmosphere::GetTurbPQR);
   PropertyManager->Tie("atmosphere/q-turb-rad_sec", this,2, (PMF)&FGAtmosphere::GetTurbPQR);
   PropertyManager->Tie("atmosphere/r-turb-rad_sec", this,3, (PMF)&FGAtmosphere::GetTurbPQR);
-}
-
-//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  PropertyManager->Tie("atmosphere/turb-type", this, (PMFt)&FGAtmosphere::GetTurbType, (PMFi)&FGAtmosphere::SetTurbType);
+  PropertyManager->Tie("atmosphere/turb-rate", this, &FGAtmosphere::GetTurbRate, &FGAtmosphere::SetTurbRate);
+  PropertyManager->Tie("atmosphere/turb-gain", this, &FGAtmosphere::GetTurbGain, &FGAtmosphere::SetTurbGain);
+  PropertyManager->Tie("atmosphere/turb-rhythmicity", this, &FGAtmosphere::GetRhythmicity,
+                                                            &FGAtmosphere::SetRhythmicity);
+
+  PropertyManager->Tie("atmosphere/turbulence/milspec/windspeed_at_20ft_AGL-fps",
+                       this, &FGAtmosphere::GetWindspeed20ft,
+                             &FGAtmosphere::SetWindspeed20ft);
+  PropertyManager->Tie("atmosphere/turbulence/milspec/severity",
+                       this, &FGAtmosphere::GetProbabilityOfExceedence,
+                             &FGAtmosphere::SetProbabilityOfExceedence);
 
-void FGAtmosphere::unbind(void)
-{
-  PropertyManager->Untie("atmosphere/T-R");
-  PropertyManager->Untie("atmosphere/rho-slugs_ft3");
-  PropertyManager->Untie("atmosphere/P-psf");
-  PropertyManager->Untie("atmosphere/a-fps");
-  PropertyManager->Untie("atmosphere/T-sl-R");
-  PropertyManager->Untie("atmosphere/rho-sl-slugs_ft3");
-  PropertyManager->Untie("atmosphere/P-sl-psf");
-  PropertyManager->Untie("atmosphere/a-sl-fps");
-  PropertyManager->Untie("atmosphere/delta-T");
-  PropertyManager->Untie("atmosphere/T-sl-dev-F");
-  PropertyManager->Untie("atmosphere/density-altitude");
-  PropertyManager->Untie("atmosphere/theta");
-  PropertyManager->Untie("atmosphere/sigma");
-  PropertyManager->Untie("atmosphere/delta");
-  PropertyManager->Untie("atmosphere/a-ratio");
-  PropertyManager->Untie("atmosphere/psiw-rad");
-  PropertyManager->Untie("atmosphere/p-turb-rad_sec");
-  PropertyManager->Untie("atmosphere/q-turb-rad_sec");
-  PropertyManager->Untie("atmosphere/r-turb-rad_sec");
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -543,14 +829,16 @@ void FGAtmosphere::Debug(int from)
   if (debug_lvl & 16) { // Sanity checking
   }
   if (debug_lvl & 128) { // Turbulence
-    if (frame == 0 && from == 2) {
-      cout << "vTurbulence(X), vTurbulence(Y), vTurbulence(Z), "
+    if (first_pass && from == 2) {
+      first_pass = false;
+      cout << "vTurbulenceNED(X), vTurbulenceNED(Y), vTurbulenceNED(Z), "
            << "vTurbulenceGrad(X), vTurbulenceGrad(Y), vTurbulenceGrad(Z), "
            << "vDirection(X), vDirection(Y), vDirection(Z), "
            << "Magnitude, "
            << "vTurbPQR(P), vTurbPQR(Q), vTurbPQR(R), " << endl;
-    } else if (from == 2) {
-      cout << vTurbulence << ", " << vTurbulenceGrad << ", " << vDirection << ", " << Magnitude << ", " << vTurbPQR << endl;
+    } 
+    if (from == 2) {
+      cout << vTurbulenceNED << ", " << vTurbulenceGrad << ", " << vDirection << ", " << Magnitude << ", " << vTurbPQR << endl;
     }
   }
   if (debug_lvl & 64) {