]> git.mxchange.org Git - flightgear.git/blobdiff - src/FDM/JSBSim/models/FGAtmosphere.cpp
Bugfix: no automatic runway selection with --parkpos=
[flightgear.git] / src / FDM / JSBSim / models / FGAtmosphere.cpp
index 8acb17c1b42056c7c112169b7023c5294727a8f8..12fb084a70f879c384bcf25f3962d8d0f4f37a9f 100644 (file)
@@ -48,11 +48,11 @@ INCLUDES
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
 
 #include "FGAtmosphere.h"
-#include "FGState.h"
-#include "FGFDMExec.h"
 #include "FGAircraft.h"
 #include "FGPropagate.h"
 #include "FGInertial.h"
+#include "FGAuxiliary.h"
+#include "FGFDMExec.h"
 #include "input_output/FGPropertyManager.h"
 #include <iostream>
 #include <cstdlib>
@@ -61,7 +61,7 @@ using namespace std;
 
 namespace JSBSim {
 
-static const char *IdSrc = "$Id$";
+static const char *IdSrc = "$Id: FGAtmosphere.cpp,v 1.38 2010/09/16 11:01:24 jberndt Exp $";
 static const char *IdHdr = ID_ATMOSPHERE;
 
 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -100,6 +100,22 @@ FGAtmosphere::FGAtmosphere(FGFDMExec* fdmex) : FGModel(fdmex)
   vGustNED.InitMatrix();
   vTurbulenceNED.InitMatrix();
 
+  // Milspec turbulence model
+  windspeed_at_20ft = 0.;
+  probability_of_exceedence_index = 0;
+  POE_Table = new FGTable(7,12);
+  // this is Figure 7 from p. 49 of MIL-F-8785C
+  // rows: probability of exceedance curve index, cols: altitude in ft
+  *POE_Table
+           << 500.0 << 1750.0 << 3750.0 << 7500.0 << 15000.0 << 25000.0 << 35000.0 << 45000.0 << 55000.0 << 65000.0 << 75000.0 << 80000.0
+    << 1   <<   3.2 <<    2.2 <<    1.5 <<    0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0
+    << 2   <<   4.2 <<    3.6 <<    3.3 <<    1.6 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0
+    << 3   <<   6.6 <<    6.9 <<    7.4 <<    6.7 <<     4.6 <<     2.7 <<     0.4 <<     0.0 <<     0.0 <<     0.0 <<     0.0 <<     0.0
+    << 4   <<   8.6 <<    9.6 <<   10.6 <<   10.1 <<     8.0 <<     6.6 <<     5.0 <<     4.2 <<     2.7 <<     0.0 <<     0.0 <<     0.0
+    << 5   <<  11.8 <<   13.0 <<   16.0 <<   15.1 <<    11.6 <<     9.7 <<     8.1 <<     8.2 <<     7.9 <<     4.9 <<     3.2 <<     2.1
+    << 6   <<  15.6 <<   17.6 <<   23.0 <<   23.6 <<    22.1 <<    20.0 <<    16.0 <<    15.1 <<    12.1 <<     7.9 <<     6.2 <<     5.1
+    << 7   <<  18.7 <<   21.5 <<   28.4 <<   30.2 <<    30.7 <<    31.0 <<    25.2 <<    23.1 <<    17.5 <<    10.7 <<     8.4 <<     7.2;
+
   bind();
   Debug(0);
 }
@@ -277,7 +293,9 @@ void FGAtmosphere::Calculate(double altitude)
 void FGAtmosphere::CalculateDerived(void)
 {
   T_dev = (*temperature) - GetTemperature(h);
-  density_altitude = h + T_dev * 66.7;
+
+  if (T_dev == 0.0) density_altitude = h;
+  else              density_altitude = 518.67/0.00356616 * (1.0 - pow(GetDensityRatio(),0.235));
 
   if (turbType != ttNone) Turbulence();
 
@@ -345,6 +363,9 @@ static inline double square_signed (double value)
         return value * value;
 }
 
+/// simply square a value
+static inline double sqr(double x) { return x*x; }
+
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 //
 // psi is the angle that the wind is blowing *towards*
@@ -383,7 +404,7 @@ void FGAtmosphere::SetWindPsi(double dir)
 
 void FGAtmosphere::Turbulence(void)
 {
-  double DeltaT = rate*State->Getdt();
+  double DeltaT = rate*FDMExec->GetDeltaT();
 
   switch (turbType) {
   case ttStandard: {
@@ -547,6 +568,134 @@ void FGAtmosphere::Turbulence(void)
     spike = spike * 0.9;
     break;
   }
+  case ttMilspec:
+  case ttTustin: {
+    // an index of zero means turbulence is disabled
+    if (probability_of_exceedence_index == 0) {
+      vTurbulenceNED(1) = vTurbulenceNED(2) = vTurbulenceNED(3) = 0.0;
+      vTurbPQR(1) = vTurbPQR(2) = vTurbPQR(3) = 0.0;
+      return;
+    }
+
+    // Turbulence model according to MIL-F-8785C (Flying Qualities of Piloted Aircraft)
+    double
+      h = Propagate->GetDistanceAGL(),
+      V = Auxiliary->GetVt(), // true airspeed in ft/s
+      b_w = Aircraft->GetWingSpan(),
+      L_u, L_w, sig_u, sig_w;
+
+    // clip height functions at 10 ft
+    if (h <= 10.) h = 10;
+
+    // Scale lengths L and amplitudes sigma as function of height
+    if (h <= 1000) {
+      L_u = h/pow(0.177 + 0.000823*h, 1.2); // MIL-F-8785c, Fig. 10, p. 55
+      L_w = h;
+      sig_w = 0.1*windspeed_at_20ft;
+      sig_u = sig_w/pow(0.177 + 0.000823*h, 0.4); // MIL-F-8785c, Fig. 11, p. 56
+    } else if (h <= 2000) {
+      // linear interpolation between low altitude and high altitude models
+      L_u = L_w = 1000 + (h-1000.)/1000.*750.;
+      sig_u = sig_w = 0.1*windspeed_at_20ft
+                    + (h-1000.)/1000.*(POE_Table->GetValue(probability_of_exceedence_index, h) - 0.1*windspeed_at_20ft);
+    } else {
+      L_u = L_w = 1750.; //  MIL-F-8785c, Sec. 3.7.2.1, p. 48
+      sig_u = sig_w = POE_Table->GetValue(probability_of_exceedence_index, h);
+    }
+
+    // keep values from last timesteps
+    // TODO maybe use deque?
+    static double
+      xi_u_km1 = 0, nu_u_km1 = 0,
+      xi_v_km1 = 0, xi_v_km2 = 0, nu_v_km1 = 0, nu_v_km2 = 0,
+      xi_w_km1 = 0, xi_w_km2 = 0, nu_w_km1 = 0, nu_w_km2 = 0,
+      xi_p_km1 = 0, nu_p_km1 = 0,
+      xi_q_km1 = 0, xi_r_km1 = 0;
+
+
+    double
+      T_V = DeltaT, // for compatibility of nomenclature
+      sig_p = 1.9/sqrt(L_w*b_w)*sig_w, // Yeager1998, eq. (8)
+      sig_q = sqrt(M_PI/2/L_w/b_w), // eq. (14)
+      sig_r = sqrt(2*M_PI/3/L_w/b_w), // eq. (17)
+      L_p = sqrt(L_w*b_w)/2.6, // eq. (10)
+      tau_u = L_u/V, // eq. (6)
+      tau_w = L_w/V, // eq. (3)
+      tau_p = L_p/V, // eq. (9)
+      tau_q = 4*b_w/M_PI/V, // eq. (13)
+      tau_r =3*b_w/M_PI/V, // eq. (17)
+      nu_u = GaussianRandomNumber(),
+      nu_v = GaussianRandomNumber(),
+      nu_w = GaussianRandomNumber(),
+      nu_p = GaussianRandomNumber(),
+      xi_u, xi_v, xi_w, xi_p, xi_q, xi_r;
+
+    // values of turbulence NED velocities
+
+    if (turbType == ttTustin) {
+      // the following is the Tustin formulation of Yeager's report
+      double
+        omega_w = V/L_w, // hidden in nomenclature p. 3
+        omega_v = V/L_u, // this is defined nowhere
+        C_BL  = 1/tau_u/tan(T_V/2/tau_u), // eq. (19)
+        C_BLp = 1/tau_p/tan(T_V/2/tau_p), // eq. (22)
+        C_BLq = 1/tau_q/tan(T_V/2/tau_q), // eq. (24)
+        C_BLr = 1/tau_r/tan(T_V/2/tau_r); // eq. (26)
+
+      xi_u = -(1 - C_BL*tau_u)/(1 + C_BL*tau_u)*xi_u_km1
+           + sig_u*sqrt(2*tau_u/T_V)/(1 + C_BL*tau_u)*(nu_u + nu_u_km1); // eq. (18)
+      xi_v = -2*(sqr(omega_v) - sqr(C_BL))/sqr(omega_v + C_BL)*xi_v_km1
+           - sqr(omega_v - C_BL)/sqr(omega_v + C_BL) * xi_v_km2
+           + sig_u*sqrt(3*omega_v/T_V)/sqr(omega_v + C_BL)*(
+                 (C_BL + omega_v/sqrt(3.))*nu_v
+               + 2/sqrt(3.)*omega_v*nu_v_km1
+               + (omega_v/sqrt(3.) - C_BL)*nu_v_km2); // eq. (20) for v
+      xi_w = -2*(sqr(omega_w) - sqr(C_BL))/sqr(omega_w + C_BL)*xi_w_km1
+           - sqr(omega_w - C_BL)/sqr(omega_w + C_BL) * xi_w_km2
+           + sig_w*sqrt(3*omega_w/T_V)/sqr(omega_w + C_BL)*(
+                 (C_BL + omega_w/sqrt(3.))*nu_w
+               + 2/sqrt(3.)*omega_w*nu_w_km1
+               + (omega_w/sqrt(3.) - C_BL)*nu_w_km2); // eq. (20) for w
+      xi_p = -(1 - C_BLp*tau_p)/(1 + C_BLp*tau_p)*xi_p_km1
+           + sig_p*sqrt(2*tau_p/T_V)/(1 + C_BLp*tau_p) * (nu_p + nu_p_km1); // eq. (21)
+      xi_q = -(1 - 4*b_w*C_BLq/M_PI/V)/(1 + 4*b_w*C_BLq/M_PI/V) * xi_q_km1
+           + C_BLq/V/(1 + 4*b_w*C_BLq/M_PI/V) * (xi_w - xi_w_km1); // eq. (23)
+      xi_r = - (1 - 3*b_w*C_BLr/M_PI/V)/(1 + 3*b_w*C_BLr/M_PI/V) * xi_r_km1
+           + C_BLr/V/(1 + 3*b_w*C_BLr/M_PI/V) * (xi_v - xi_v_km1); // eq. (25)
+
+    } else if (turbType == ttMilspec) {
+      // the following is the MIL-STD-1797A formulation
+      // as cited in Yeager's report
+      xi_u = (1 - T_V/tau_u)  *xi_u_km1 + sig_u*sqrt(2*T_V/tau_u)*nu_u;  // eq. (30)
+      xi_v = (1 - 2*T_V/tau_u)*xi_v_km1 + sig_u*sqrt(4*T_V/tau_u)*nu_v;  // eq. (31)
+      xi_w = (1 - 2*T_V/tau_w)*xi_w_km1 + sig_w*sqrt(4*T_V/tau_w)*nu_w;  // eq. (32)
+      xi_p = (1 - T_V/tau_p)  *xi_p_km1 + sig_p*sqrt(2*T_V/tau_p)*nu_p;  // eq. (33)
+      xi_q = (1 - T_V/tau_q)  *xi_q_km1 + M_PI/4/b_w*(xi_w - xi_w_km1);  // eq. (34)
+      xi_r = (1 - T_V/tau_r)  *xi_r_km1 + M_PI/3/b_w*(xi_v - xi_v_km1);  // eq. (35)
+    }
+
+    // rotate by wind azimuth and assign the velocities
+    double cospsi = cos(psiw), sinpsi = sin(psiw);
+    vTurbulenceNED(1) =  cospsi*xi_u + sinpsi*xi_v;
+    vTurbulenceNED(2) = -sinpsi*xi_u + cospsi*xi_v;
+    vTurbulenceNED(3) = xi_w;
+
+    vTurbPQR(1) =  cospsi*xi_p + sinpsi*xi_q;
+    vTurbPQR(2) = -sinpsi*xi_p + cospsi*xi_q;
+    vTurbPQR(3) = xi_r;
+
+    // vTurbPQR is in the body fixed frame, not NED
+    vTurbPQR = Propagate->GetTl2b()*vTurbPQR;
+
+    // hand on the values for the next timestep
+    xi_u_km1 = xi_u; nu_u_km1 = nu_u;
+    xi_v_km2 = xi_v_km1; xi_v_km1 = xi_v; nu_v_km2 = nu_v_km1; nu_v_km1 = nu_v;
+    xi_w_km2 = xi_w_km1; xi_w_km1 = xi_w; nu_w_km2 = nu_w_km1; nu_w_km1 = nu_w;
+    xi_p_km1 = xi_p; nu_p_km1 = nu_p;
+    xi_q_km1 = xi_q;
+    xi_r_km1 = xi_r;
+
+  }
   default:
     break;
   }
@@ -632,6 +781,14 @@ void FGAtmosphere::bind(void)
   PropertyManager->Tie("atmosphere/turb-gain", this, &FGAtmosphere::GetTurbGain, &FGAtmosphere::SetTurbGain);
   PropertyManager->Tie("atmosphere/turb-rhythmicity", this, &FGAtmosphere::GetRhythmicity,
                                                             &FGAtmosphere::SetRhythmicity);
+
+  PropertyManager->Tie("atmosphere/turbulence/milspec/windspeed_at_20ft_AGL-fps",
+                       this, &FGAtmosphere::GetWindspeed20ft,
+                             &FGAtmosphere::SetWindspeed20ft);
+  PropertyManager->Tie("atmosphere/turbulence/milspec/severity",
+                       this, &FGAtmosphere::GetProbabilityOfExceedence,
+                             &FGAtmosphere::SetProbabilityOfExceedence);
+
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%