]> git.mxchange.org Git - flightgear.git/blobdiff - src/FDM/JSBSim/models/propulsion/FGPiston.cpp
Better fix for a compilation problem with MSVC 2012
[flightgear.git] / src / FDM / JSBSim / models / propulsion / FGPiston.cpp
index 19150d4bbb2b31bd250078e5917d721e3a16133d..ae563404c48f4e93c11008008a101a21400750c3 100644 (file)
@@ -40,35 +40,39 @@ HISTORY
 INCLUDES
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
 
+#include <iostream>
 #include <sstream>
 
 #include "FGPiston.h"
-#include <models/FGPropulsion.h>
 #include "FGPropeller.h"
 
+using namespace std;
+
 namespace JSBSim {
 
-static const char *IdSrc = "$Id$";
+static const char *IdSrc = "$Id: FGPiston.cpp,v 1.71 2012/04/07 01:50:54 jentron Exp $";
 static const char *IdHdr = ID_PISTON;
 
 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 CLASS IMPLEMENTATION
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
 
-FGPiston::FGPiston(FGFDMExec* exec, Element* el, int engine_number)
-  : FGEngine(exec, el, engine_number),
+FGPiston::FGPiston(FGFDMExec* exec, Element* el, int engine_number, struct Inputs& input)
+  : FGEngine(exec, el, engine_number, input),
   R_air(287.3),                  // Gas constant for air J/Kg/K
   rho_fuel(800),                 // estimate
-  calorific_value_fuel(47.3e6),
+  calorific_value_fuel(47.3e6),  // J/Kg
   Cp_air(1005),                  // Specific heat (constant pressure) J/Kg/K
-  Cp_fuel(1700)
+  Cp_fuel(1700),
+  standard_pressure(101320.73)
 {
+  Element *table_element;
   string token;
+  string name="";
 
   // Defaults and initializations
 
   Type = etPiston;
-  dt = State->Getdt();
 
   // These items are read from the configuration file
   // Defaults are from a Lycoming O-360, more or less
@@ -81,15 +85,29 @@ FGPiston::FGPiston(FGFDMExec* exec, Element* el, int engine_number)
   MaxHP = 200;
   MinManifoldPressure_inHg = 6.5;
   MaxManifoldPressure_inHg = 28.5;
+  ManifoldPressureLag=1.0;
   ISFC = -1;
-  volumetric_efficiency = -0.1;
+  volumetric_efficiency = 0.85;
   Bore = 5.125;
   Stroke = 4.375;
   Cylinders = 4;
+  CylinderHeadMass = 2; //kg
   CompressionRatio = 8.5;
+  Z_airbox = -999;
+  Ram_Air_Factor = 1;
+  PeakMeanPistonSpeed_fps = 100;
+  FMEPDynamic= 18400;
+  FMEPStatic = 46500;
+  Cooling_Factor = 0.5144444;
+  StaticFriction_HP = 1.5;
+  StarterGain = 1.;
+  StarterTorque = -1.;
+  StarterRPM = -1.;
 
   // These are internal program variables
 
+  Lookup_Combustion_Efficiency = 0;
+  Mixture_Efficiency_Correlation = 0;
   crank_counter = 0;
   Magnetos = 0;
   minMAP = 21950;
@@ -102,9 +120,12 @@ FGPiston::FGPiston(FGFDMExec* exec, Element* el, int engine_number)
   BoostSpeed = 0;
   Boosted = false;
   BoostOverride = 0;
+  BoostManual = 0;
   bBoostOverride = false;
   bTakeoffBoost = false;
   TakeoffBoost = 0.0;   // Default to no extra takeoff-boost
+  BoostLossFactor = 0.0;   // Default to free boost
+  
   int i;
   for (i=0; i<FG_MAX_BOOST_SPEEDS; i++) {
     RatedBoost[i] = 0.0;
@@ -120,49 +141,20 @@ FGPiston::FGPiston(FGFDMExec* exec, Element* el, int engine_number)
     BoostSwitchPressure[i] = 0.0;
   }
 
-  // First column is thi, second is neta (combustion efficiency)
-  Lookup_Combustion_Efficiency = new FGTable(12);
-  *Lookup_Combustion_Efficiency << 0.00 << 0.980;
-  *Lookup_Combustion_Efficiency << 0.90 << 0.980;
-  *Lookup_Combustion_Efficiency << 1.00 << 0.970;
-  *Lookup_Combustion_Efficiency << 1.05 << 0.950;
-  *Lookup_Combustion_Efficiency << 1.10 << 0.900;
-  *Lookup_Combustion_Efficiency << 1.15 << 0.850;
-  *Lookup_Combustion_Efficiency << 1.20 << 0.790;
-  *Lookup_Combustion_Efficiency << 1.30 << 0.700;
-  *Lookup_Combustion_Efficiency << 1.40 << 0.630;
-  *Lookup_Combustion_Efficiency << 1.50 << 0.570;
-  *Lookup_Combustion_Efficiency << 1.60 << 0.525;
-  *Lookup_Combustion_Efficiency << 2.00 << 0.345;
-
-  Mixture_Efficiency_Correlation = new FGTable(15);
-  *Mixture_Efficiency_Correlation << 0.05000 << 0.00000;
-  *Mixture_Efficiency_Correlation << 0.05137 << 0.00862;
-  *Mixture_Efficiency_Correlation << 0.05179 << 0.21552;
-  *Mixture_Efficiency_Correlation << 0.05430 << 0.48276;
-  *Mixture_Efficiency_Correlation << 0.05842 << 0.70690;
-  *Mixture_Efficiency_Correlation << 0.06312 << 0.83621;
-  *Mixture_Efficiency_Correlation << 0.06942 << 0.93103;
-  *Mixture_Efficiency_Correlation << 0.07786 << 1.00000;
-  *Mixture_Efficiency_Correlation << 0.08845 << 1.00000;
-  *Mixture_Efficiency_Correlation << 0.09270 << 0.98276;
-  *Mixture_Efficiency_Correlation << 0.10120 << 0.93103;
-  *Mixture_Efficiency_Correlation << 0.11455 << 0.72414;
-  *Mixture_Efficiency_Correlation << 0.12158 << 0.45690;
-  *Mixture_Efficiency_Correlation << 0.12435 << 0.23276;
-  *Mixture_Efficiency_Correlation << 0.12500 << 0.00000;
-
-
   // Read inputs from engine data file where present.
 
-  if (el->FindElement("minmp")) // Should have ELSE statement telling default value used?
+  if (el->FindElement("minmp")) 
     MinManifoldPressure_inHg = el->FindElementValueAsNumberConvertTo("minmp","INHG");
   if (el->FindElement("maxmp"))
     MaxManifoldPressure_inHg = el->FindElementValueAsNumberConvertTo("maxmp","INHG");
+  if (el->FindElement("man-press-lag"))
+    ManifoldPressureLag = el->FindElementValueAsNumber("man-press-lag");
   if (el->FindElement("displacement"))
     Displacement = el->FindElementValueAsNumberConvertTo("displacement","IN3");
   if (el->FindElement("maxhp"))
     MaxHP = el->FindElementValueAsNumberConvertTo("maxhp","HP");
+  if (el->FindElement("static-friction"))
+    StaticFriction_HP = el->FindElementValueAsNumberConvertTo("static-friction","HP");
   if (el->FindElement("sparkfaildrop"))
     SparkFailDrop = Constrain(0, 1 - el->FindElementValueAsNumber("sparkfaildrop"), 1);
   if (el->FindElement("cycles"))
@@ -187,12 +179,34 @@ FGPiston::FGPiston(FGFDMExec* exec, Element* el, int engine_number)
     Stroke = el->FindElementValueAsNumberConvertTo("stroke","IN");
   if (el->FindElement("cylinders"))
     Cylinders = el->FindElementValueAsNumber("cylinders");
+  if (el->FindElement("cylinder-head-mass"))
+    CylinderHeadMass = el->FindElementValueAsNumberConvertTo("cylinder-head-mass","KG");
+  if (el->FindElement("air-intake-impedance-factor"))
+    Z_airbox = el->FindElementValueAsNumber("air-intake-impedance-factor");
+  if (el->FindElement("ram-air-factor"))
+    Ram_Air_Factor  = el->FindElementValueAsNumber("ram-air-factor");
+  if (el->FindElement("cooling-factor"))
+    Cooling_Factor  = el->FindElementValueAsNumber("cooling-factor");
+  if (el->FindElement("starter-rpm"))
+    StarterRPM  = el->FindElementValueAsNumber("starter-rpm");
+  if (el->FindElement("starter-torque"))
+    StarterTorque  = el->FindElementValueAsNumber("starter-torque");
+  if (el->FindElement("dynamic-fmep"))
+    FMEPDynamic= el->FindElementValueAsNumberConvertTo("dynamic-fmep","PA");
+  if (el->FindElement("static-fmep"))
+    FMEPStatic = el->FindElementValueAsNumberConvertTo("static-fmep","PA");
+  if (el->FindElement("peak-piston-speed"))
+    PeakMeanPistonSpeed_fps  = el->FindElementValueAsNumber("peak-piston-speed");
   if (el->FindElement("numboostspeeds")) { // Turbo- and super-charging parameters
     BoostSpeeds = (int)el->FindElementValueAsNumber("numboostspeeds");
     if (el->FindElement("boostoverride"))
       BoostOverride = (int)el->FindElementValueAsNumber("boostoverride");
+    if (el->FindElement("boostmanual"))
+      BoostManual = (int)el->FindElementValueAsNumber("boostmanual");
     if (el->FindElement("takeoffboost"))
       TakeoffBoost = el->FindElementValueAsNumberConvertTo("takeoffboost", "PSI");
+    if (el->FindElement("boost-loss-factor"))
+      BoostLossFactor = el->FindElementValueAsNumber("boost-loss-factor");
     if (el->FindElement("ratedboost1"))
       RatedBoost[0] = el->FindElementValueAsNumberConvertTo("ratedboost1", "PSI");
     if (el->FindElement("ratedboost2"))
@@ -219,42 +233,145 @@ FGPiston::FGPiston(FGFDMExec* exec, Element* el, int engine_number)
       RatedAltitude[2] = el->FindElementValueAsNumberConvertTo("ratedaltitude3", "FT");
   }
 
-  StarterHP = sqrt(MaxHP) * 0.4;
+  while((table_element = el->FindNextElement("table")) != 0) {
+    name = table_element->GetAttributeValue("name");
+    try {
+      if (name == "COMBUSTION") {
+        Lookup_Combustion_Efficiency = new FGTable(PropertyManager, table_element);
+      } else if (name == "MIXTURE") {
+        Mixture_Efficiency_Correlation = new FGTable(PropertyManager, table_element);
+      } else {
+        cerr << "Unknown table type: " << name << " in piston engine definition." << endl;
+      }
+    } catch (std::string str) {
+      throw("Error loading piston engine table:" + name + ". " + str);
+    }
+  }
+
+
+  volumetric_efficiency_reduced = volumetric_efficiency;
+
+  if(StarterRPM < 0.) StarterRPM = 2*IdleRPM;
+  if(StarterTorque < 0)
+    StarterTorque = (MaxHP)*0.4; //just a wag.
+
   displacement_SI = Displacement * in3tom3;
+  RatedMeanPistonSpeed_fps =  ( MaxRPM * Stroke) / (360); // AKA 2 * (RPM/60) * ( Stroke / 12) or 2NS
 
-  // Create IFSC and VE to match the engine if not provided
-  int calculated_ve=0;
-  if (volumetric_efficiency < 0) {
-      volumetric_efficiency = MaxManifoldPressure_inHg / 29.92;
-      calculated_ve=1;
-  }
+  // Create IFSC to match the engine if not provided
   if (ISFC < 0) {
-      double pmep = MaxManifoldPressure_inHg > 29.92 ? 0 : 29.92 - MaxManifoldPressure_inHg;
-      pmep *= inhgtopa;
-      double fmep = (18400 * (2*(Stroke/12)*(MaxRPM/60)) * fttom + 46500)/2;
+      double pmep = 29.92 - MaxManifoldPressure_inHg;
+      pmep *= inhgtopa  * volumetric_efficiency;
+      double fmep = (FMEPDynamic * RatedMeanPistonSpeed_fps * fttom + FMEPStatic);
       double hp_loss = ((pmep + fmep) * displacement_SI * MaxRPM)/(Cycles*22371);
-      ISFC = ( Displacement * MaxRPM * volumetric_efficiency ) / (9411 * (MaxHP+hp_loss));
+      ISFC = ( 1.1*Displacement * MaxRPM * volumetric_efficiency *(MaxManifoldPressure_inHg / 29.92) ) / (9411 * (MaxHP+hp_loss-StaticFriction_HP));
 // cout <<"FMEP: "<< fmep <<" PMEP: "<< pmep << " hp_loss: " <<hp_loss <<endl;
   }
   if ( MaxManifoldPressure_inHg > 29.9 ) {   // Don't allow boosting with a bogus number
       MaxManifoldPressure_inHg = 29.9;
-      if (calculated_ve) volumetric_efficiency = 1.0;
   }
   minMAP = MinManifoldPressure_inHg * inhgtopa;  // inHg to Pa
   maxMAP = MaxManifoldPressure_inHg * inhgtopa;
 
+// For throttle
+/*
+ * Pm = ( Ze / ( Ze + Zi + Zt ) ) * Pa
+ * Where:
+ * Pm = Manifold Pressure
+ * Pa = Ambient Pressre
+ * Ze = engine impedance, Ze is effectively 1 / Mean Piston Speed
+ * Zi = airbox impedance
+ * Zt = throttle impedance
+ *
+ * For the calculation below throttle is fully open or Zt = 0
+ *
+ *
+ *
+ */
+  if(Z_airbox < 0.0){
+    double Ze=PeakMeanPistonSpeed_fps/RatedMeanPistonSpeed_fps; // engine impedence
+    Z_airbox = (standard_pressure *Ze / maxMAP) - Ze; // impedence of airbox
+  }
+  // Constant for Throttle impedence
+  Z_throttle=(PeakMeanPistonSpeed_fps/((IdleRPM * Stroke) / 360))*(standard_pressure/minMAP - 1) - Z_airbox; 
+  //  Z_throttle=(MaxRPM/IdleRPM )*(standard_pressure/minMAP+2); // Constant for Throttle impedence
+
+// Default tables if not provided in the configuration file
+  if(Lookup_Combustion_Efficiency == 0) {
+    // First column is thi, second is neta (combustion efficiency)
+    Lookup_Combustion_Efficiency = new FGTable(12);
+    *Lookup_Combustion_Efficiency << 0.00 << 0.980;
+    *Lookup_Combustion_Efficiency << 0.90 << 0.980;
+    *Lookup_Combustion_Efficiency << 1.00 << 0.970;
+    *Lookup_Combustion_Efficiency << 1.05 << 0.950;
+    *Lookup_Combustion_Efficiency << 1.10 << 0.900;
+    *Lookup_Combustion_Efficiency << 1.15 << 0.850;
+    *Lookup_Combustion_Efficiency << 1.20 << 0.790;
+    *Lookup_Combustion_Efficiency << 1.30 << 0.700;
+    *Lookup_Combustion_Efficiency << 1.40 << 0.630;
+    *Lookup_Combustion_Efficiency << 1.50 << 0.570;
+    *Lookup_Combustion_Efficiency << 1.60 << 0.525;
+    *Lookup_Combustion_Efficiency << 2.00 << 0.345;
+  }
+
+    // First column is Fuel/Air Ratio, second is neta (mixture efficiency)
+  if( Mixture_Efficiency_Correlation == 0) {
+    Mixture_Efficiency_Correlation = new FGTable(15);
+    *Mixture_Efficiency_Correlation << 0.05000 << 0.00000;
+    *Mixture_Efficiency_Correlation << 0.05137 << 0.00862;
+    *Mixture_Efficiency_Correlation << 0.05179 << 0.21552;
+    *Mixture_Efficiency_Correlation << 0.05430 << 0.48276;
+    *Mixture_Efficiency_Correlation << 0.05842 << 0.70690;
+    *Mixture_Efficiency_Correlation << 0.06312 << 0.83621;
+    *Mixture_Efficiency_Correlation << 0.06942 << 0.93103;
+    *Mixture_Efficiency_Correlation << 0.07786 << 1.00000;
+    *Mixture_Efficiency_Correlation << 0.08845 << 1.00000;
+    *Mixture_Efficiency_Correlation << 0.09270 << 0.98276;
+    *Mixture_Efficiency_Correlation << 0.10120 << 0.93103;
+    *Mixture_Efficiency_Correlation << 0.11455 << 0.72414;
+    *Mixture_Efficiency_Correlation << 0.12158 << 0.45690;
+    *Mixture_Efficiency_Correlation << 0.12435 << 0.23276;
+    *Mixture_Efficiency_Correlation << 0.12500 << 0.00000;
+  }
+
   string property_name, base_property_name;
   base_property_name = CreateIndexedPropertyName("propulsion/engine", EngineNumber);
   property_name = base_property_name + "/power-hp";
   PropertyManager->Tie(property_name, &HP);
+  property_name = base_property_name + "/friction-hp";
+  PropertyManager->Tie(property_name, &StaticFriction_HP);
   property_name = base_property_name + "/bsfc-lbs_hphr";
   PropertyManager->Tie(property_name, &ISFC);
+  property_name = base_property_name + "/starter-norm";
+  PropertyManager->Tie(property_name, &StarterGain);
   property_name = base_property_name + "/volumetric-efficiency";
   PropertyManager->Tie(property_name, &volumetric_efficiency);
   property_name = base_property_name + "/map-pa";
   PropertyManager->Tie(property_name, &MAP);
   property_name = base_property_name + "/map-inhg";
   PropertyManager->Tie(property_name, &ManifoldPressure_inHg);
+  property_name = base_property_name + "/air-intake-impedance-factor";
+  PropertyManager->Tie(property_name, &Z_airbox);
+  property_name = base_property_name + "/ram-air-factor";
+  PropertyManager->Tie(property_name, &Ram_Air_Factor);
+  property_name = base_property_name + "/cooling-factor";
+  PropertyManager->Tie(property_name, &Cooling_Factor);
+  property_name = base_property_name + "/boost-speed";
+  PropertyManager->Tie(property_name, &BoostSpeed);
+  property_name = base_property_name + "/cht-degF";
+  PropertyManager->Tie(property_name, this, &FGPiston::getCylinderHeadTemp_degF);
+  property_name = base_property_name + "/oil-temperature-degF";
+  PropertyManager->Tie(property_name, this, &FGPiston::getOilTemp_degF);
+  property_name = base_property_name + "/oil-pressure-psi";
+  PropertyManager->Tie(property_name, this, &FGPiston::getOilPressure_psi);
+  property_name = base_property_name + "/egt-degF";
+  PropertyManager->Tie(property_name, this, &FGPiston::getExhaustGasTemp_degF);
+  if(BoostLossFactor > 0.0) {
+    property_name = base_property_name + "/boostloss-factor";
+    PropertyManager->Tie(property_name, &BoostLossFactor);
+    property_name = base_property_name + "/boostloss-hp";
+    PropertyManager->Tie(property_name, &BoostLossHP);
+  }
 
   // Set up and sanity-check the turbo/supercharging configuration based on the input values.
   if (TakeoffBoost > RatedBoost[0]) bTakeoffBoost = true;
@@ -277,13 +394,13 @@ FGPiston::FGPiston(FGFDMExec* exec, Element* el, int engine_number)
         // But we can also make a reasonable estimate, as below.
         BoostSwitchAltitude[i] = RatedAltitude[i] + 1000;
       }
-      BoostSwitchPressure[i] = Atmosphere->GetPressure(BoostSwitchAltitude[i]) * psftopa;
+      BoostSwitchPressure[i] = GetStdPressure100K(BoostSwitchAltitude[i]) * psftopa;
       //cout << "BoostSwitchAlt = " << BoostSwitchAltitude[i] << ", pressure = " << BoostSwitchPressure[i] << '\n';
       // Assume there is some hysteresis on the supercharger gear switch, and guess the value for now
       BoostSwitchHysteresis = 1000;
     }
     // Now work out the supercharger pressure multiplier of this speed from the rated boost and altitude.
-    RatedMAP[i] = Atmosphere->GetPressureSL() * psftopa + RatedBoost[i] * 6895;  // psi*6895 = Pa.
+    RatedMAP[i] = standard_pressure + RatedBoost[i] * 6895;  // psi*6895 = Pa.
     // Sometimes a separate BCV setting for takeoff or extra power is fitted.
     if (TakeoffBoost > RatedBoost[0]) {
       // Assume that the effect on the BCV is the same whichever speed is in use.
@@ -293,7 +410,7 @@ FGPiston::FGPiston(FGFDMExec* exec, Element* el, int engine_number)
       TakeoffMAP[i] = RatedMAP[i];
       bTakeoffBoost = false;
     }
-    BoostMul[i] = RatedMAP[i] / (Atmosphere->GetPressure(RatedAltitude[i]) * psftopa);
+    BoostMul[i] = RatedMAP[i] / (GetStdPressure100K(RatedAltitude[i]) * psftopa);
 
   }
 
@@ -302,6 +419,7 @@ FGPiston::FGPiston(FGFDMExec* exec, Element* el, int engine_number)
     BoostSpeed = 0;
   }
   bBoostOverride = (BoostOverride == 1 ? true : false);
+  bBoostManual   = (BoostManual   == 1 ? true : false);
   Debug(0); // Call Debug() routine from constructor if needed
 }
 
@@ -320,10 +438,10 @@ void FGPiston::ResetToIC(void)
 {
   FGEngine::ResetToIC();
 
-  ManifoldPressure_inHg = Atmosphere->GetPressure() * psftoinhg; // psf to in Hg
-  MAP = Atmosphere->GetPressure() * psftopa;
+  ManifoldPressure_inHg = in.Pressure * psftoinhg; // psf to in Hg
+  MAP = in.Pressure * psftopa;
   TMAP = MAP;
-  double airTemperature_degK = RankineToKelvin(Atmosphere->GetTemperature());
+  double airTemperature_degK = RankineToKelvin(in.Temperature);
   OilTemp_degK = airTemperature_degK;
   CylinderHeadTemp_degK = airTemperature_degK;
   ExhaustGasTemp_degK = airTemperature_degK;
@@ -331,30 +449,30 @@ void FGPiston::ResetToIC(void)
   Thruster->SetRPM(0.0);
   RPM = 0.0;
   OilPressure_psi = 0.0;
+  BoostLossHP = 0.;
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
-double FGPiston::Calculate(void)
+void FGPiston::Calculate(void)
 {
-  if (FuelFlow_gph > 0.0) ConsumeFuel();
+  // Input values.
 
-  Throttle = FCS->GetThrottlePos(EngineNumber);
-  // calculate the throttle plate angle.  1 unit is approx pi/2 radians.
-  ThrottleAngle = MinThrottle+((MaxThrottle-MinThrottle)*Throttle );
-  Mixture = FCS->GetMixturePos(EngineNumber);
+  p_amb = in.Pressure * psftopa;
+  double p = in.TotalPressure * psftopa;
+  p_ram = (p - p_amb) * Ram_Air_Factor + p_amb;
+  T_amb = RankineToKelvin(in.Temperature);
 
-  //
-  // Input values.
-  //
+  RunPreFunctions();
 
-  p_amb = Atmosphere->GetPressure() * psftopa;
-  T_amb = RankineToKelvin(Atmosphere->GetTemperature());
+  TotalDeltaT = ( in.TotalDeltaT < 1e-9 ) ? 1.0 : in.TotalDeltaT;
+
+/* The thruster controls the engine RPM because it encapsulates the gear ratio and other transmission variables */
+  RPM = Thruster->GetEngineRPM();
 
-  RPM = Thruster->GetRPM() * Thruster->GetGearRatio();
   MeanPistonSpeed_fps =  ( RPM * Stroke) / (360); // AKA 2 * (RPM/60) * ( Stroke / 12) or 2NS
 
-  IAS = Auxiliary->GetVcalibratedKTS();
+  IAS = in.Vc;
 
   doEngineStartup();
   if (Boosted) doBoostControl();
@@ -366,8 +484,9 @@ double FGPiston::Calculate(void)
   //Assume lean limit at 22 AFR for now - thats a thi of 0.668
   //This might be a bit generous, but since there's currently no audiable warning of impending
   //cutout in the form of misfiring and/or rough running its probably reasonable for now.
-//  if (equivalence_ratio < 0.668)
-//    Running = false;
+
+  //  if (equivalence_ratio < 0.668)
+  //    Running = false;
 
   doEnginePower();
   if (IndicatedHorsePower < 0.1250) Running = false;
@@ -378,31 +497,34 @@ double FGPiston::Calculate(void)
   doOilPressure();
 
   if (Thruster->GetType() == FGThruster::ttPropeller) {
-    ((FGPropeller*)Thruster)->SetAdvance(FCS->GetPropAdvance(EngineNumber));
-    ((FGPropeller*)Thruster)->SetFeather(FCS->GetPropFeather(EngineNumber));
+    ((FGPropeller*)Thruster)->SetAdvance(in.PropAdvance[EngineNumber]);
+    ((FGPropeller*)Thruster)->SetFeather(in.PropFeather[EngineNumber]);
   }
 
-  PowerAvailable = (HP * hptoftlbssec) - Thruster->GetPowerRequired();
+  LoadThrusterInputs();
+  Thruster->Calculate(HP * hptoftlbssec);
 
-  return Thruster->Calculate(PowerAvailable);
+  RunPostFunctions();
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 double FGPiston::CalcFuelNeed(void)
 {
-  double dT = State->Getdt() * Propulsion->GetRate();
-  FuelExpended = FuelFlowRate * dT;
+  FuelExpended = FuelFlowRate * in.TotalDeltaT;
+  if (!Starved) FuelUsedLbs += FuelExpended; 
   return FuelExpended;
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
-int FGPiston::InitRunning(void) {
+int FGPiston::InitRunning(void)
+{
   Magnetos=3;
-  //Thruster->SetRPM( 1.1*IdleRPM/Thruster->GetGearRatio() );
-  Thruster->SetRPM( 1000 );
-  Running=true;
+  in.MixtureCmd[EngineNumber] = in.PressureRatio*1.3;
+  in.MixturePos[EngineNumber] = in.PressureRatio*1.3;
+  Thruster->SetRPM( 2.0*IdleRPM/Thruster->GetGearRatio() );
+  Running = true;
   return 1;
 }
 
@@ -417,7 +539,6 @@ void FGPiston::doEngineStartup(void)
   // (spark, fuel, starter motor etc)
   bool spark;
   bool fuel;
-
   // Check for spark
   Magneto_Left = false;
   Magneto_Right = false;
@@ -435,42 +556,30 @@ void FGPiston::doEngineStartup(void)
   if ((Magnetos == 1) || (Magnetos > 2)) Magneto_Left = true;
   if (Magnetos > 1)  Magneto_Right = true;
 
-  // Assume we have fuel for now
-  fuel = !Starved;
+// We will 'run' with any fuel flow. If there is not enough fuel to make power it will show in doEnginePower
+  fuel = FuelFlowRate > 0.0 ? 1 : 0;
 
   // Check if we are turning the starter motor
   if (Cranking != Starter) {
     // This check saves .../cranking from getting updated every loop - they
     // only update when changed.
     Cranking = Starter;
-    crank_counter = 0;
-  }
-
-  if (Cranking) crank_counter++;  //Check mode of engine operation
-
-  if (!Running && spark && fuel) {  // start the engine if revs high enough
-    if (Cranking) {
-      if ((RPM > IdleRPM*0.8) && (crank_counter > 175)) // Add a little delay to startup
-        Running = true;                         // on the starter
-    } else {
-      if (RPM > IdleRPM*0.8)                            // This allows us to in-air start
-        Running = true;                         // when windmilling
-    }
   }
 
-  // Cut the engine *power* - Note: the engine may continue to
-  // spin if the prop is in a moving airstream
 
-  if ( Running && (!spark || !fuel) ) Running = false;
+  // Cut the engine *power* - Note: the engine will continue to
+  // spin depending on prop Ixx and freestream velocity
 
-  // Check for stalling (RPM = 0).
-  if (Running) {
-    if (RPM == 0) {
-      Running = false;
-    } else if ((RPM <= IdleRPM *0.8 ) && (Cranking)) {
-      Running = false;
+  if ( Running ) {
+    if (!spark || !fuel)    Running = false;
+    if (RPM < IdleRPM*0.8 ) Running = false;
+  } else { // !Running  
+    if ( spark && fuel) {     // start the engine if revs high enough
+      if (RPM > IdleRPM*0.8)  // This allows us to in-air start
+        Running = true;       // when windmilling
     }
   }
+
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -488,15 +597,20 @@ void FGPiston::doEngineStartup(void)
 
 void FGPiston::doBoostControl(void)
 {
-  if(BoostSpeed < BoostSpeeds - 1) {
-    // Check if we need to change to a higher boost speed
-    if(p_amb < BoostSwitchPressure[BoostSpeed] - BoostSwitchHysteresis) {
-      BoostSpeed++;
-    }
-  } else if(BoostSpeed > 0) {
-    // Check if we need to change to a lower boost speed
-    if(p_amb > BoostSwitchPressure[BoostSpeed - 1] + BoostSwitchHysteresis) {
-      BoostSpeed--;
+  if(bBoostManual) {
+    if(BoostSpeed > BoostSpeeds-1) BoostSpeed = BoostSpeeds-1;
+    if(BoostSpeed < 0) BoostSpeed = 0;
+  } else {
+    if(BoostSpeed < BoostSpeeds - 1) {
+      // Check if we need to change to a higher boost speed
+      if(p_amb < BoostSwitchPressure[BoostSpeed] - BoostSwitchHysteresis) {
+        BoostSpeed++;
+      }
+    } if(BoostSpeed > 0) {
+      // Check if we need to change to a lower boost speed
+      if(p_amb > BoostSwitchPressure[BoostSpeed - 1] + BoostSwitchHysteresis) {
+        BoostSpeed--;
+      }
     }
   }
 }
@@ -510,29 +624,29 @@ void FGPiston::doBoostControl(void)
  * from the throttle position, turbo/supercharger boost control
  * system, engine speed and local ambient air density.
  *
- * Inputs: p_amb, Throttle, ThrottleAngle,
+ * Inputs: p_amb, Throttle,
  *         MeanPistonSpeed_fps, dt
  *
- * Outputs: MAP, ManifoldPressure_inHg, TMAP
+ * Outputs: MAP, ManifoldPressure_inHg, TMAP, BoostLossHP
  */
 
 void FGPiston::doMAP(void)
 {
- // estimate throttle plate area.
-  double throttle_area = ThrottleAngle*ThrottleAngle;
- // Internal Combustion Engine in Theory and Practice, Volume 2.  Charles Fayette Taylor.  Revised Edition, 1985 fig 6-13
-  double map_coefficient = 1-((MeanPistonSpeed_fps*MeanPistonSpeed_fps)/(24978*throttle_area));
+  double Zt = (1 - in.ThrottlePos[EngineNumber])*(1 - in.ThrottlePos[EngineNumber])*Z_throttle; // throttle impedence
+  double Ze= MeanPistonSpeed_fps > 0 ? PeakMeanPistonSpeed_fps/MeanPistonSpeed_fps : 999999; // engine impedence
+
+  double map_coefficient = Ze/(Ze+Z_airbox+Zt);
 
-  if ( map_coefficient < 0.1 ) map_coefficient = 0.1;
+  // Add a variable lag to manifold pressure changes
+  double dMAP=(TMAP - p_ram * map_coefficient);
+  if (ManifoldPressureLag > TotalDeltaT) dMAP *= TotalDeltaT/ManifoldPressureLag;
 
-  // Add a one second lag to manifold pressure changes
-  double dMAP = (TMAP - p_amb * map_coefficient) * dt;
   TMAP -=dMAP;
 
   // Find the mean effective pressure required to achieve this manifold pressure
   // Fixme: determine the HP consumed by the supercharger
 
-  PMEP = TMAP - p_amb; // Fixme: p_amb should be exhaust manifold pressure
+  PMEP = (TMAP - p_amb) * volumetric_efficiency; // Fixme: p_amb should be exhaust manifold pressure
 
   if (Boosted) {
     // If takeoff boost is fitted, we currently assume the following throttle map:
@@ -543,24 +657,34 @@ void FGPiston::doMAP(void)
 
     bool bTakeoffPos = false;
     if (bTakeoffBoost) {
-      if (Throttle > 0.98) {
+      if (in.ThrottlePos[EngineNumber] > 0.98) {
         bTakeoffPos = true;
       }
     }
     // Boost the manifold pressure.
-    double boost_factor = BoostMul[BoostSpeed] * RPM/RatedRPM[BoostSpeed];
-    if (boost_factor < 1.0) boost_factor = 1.0;  // boost will never reduce the MAP
+    double boost_factor = (( BoostMul[BoostSpeed] - 1 ) / RatedRPM[BoostSpeed] ) * RPM + 1;
     MAP = TMAP * boost_factor;
     // Now clip the manifold pressure to BCV or Wastegate setting.
-    if (bTakeoffPos) {
-      if (MAP > TakeoffMAP[BoostSpeed]) MAP = TakeoffMAP[BoostSpeed];
-    } else {
-      if (MAP > RatedMAP[BoostSpeed]) MAP = RatedMAP[BoostSpeed];
+    if(!bBoostOverride) {
+      if (bTakeoffPos) {
+        if (MAP > TakeoffMAP[BoostSpeed]) MAP = TakeoffMAP[BoostSpeed];
+      } else {
+        if (MAP > RatedMAP[BoostSpeed]) MAP = RatedMAP[BoostSpeed];
+      }
     }
   } else {
       MAP = TMAP;
   }
 
+  if( BoostLossFactor > 0.0 )
+  {
+      double gamma = 1.414; // specific heat constants
+      double Nstage = 1; // Nstage is the number of boost stages.
+      BoostLossHP = ((Nstage * TMAP * v_dot_air * gamma) / (gamma - 1)) * (pow((MAP/TMAP),((gamma-1)/(Nstage * gamma))) - 1) * BoostLossFactor / 745.7 ; // 745.7 convert watt to hp
+  } else {
+      BoostLossHP = 0;
+  }
+  
   // And set the value in American units as well
   ManifoldPressure_inHg = MAP / inhgtopa;
 }
@@ -572,22 +696,26 @@ void FGPiston::doMAP(void)
  * (used in CHT calculation for air-cooled engines).
  *
  * Inputs: p_amb, R_air, T_amb, MAP, Displacement,
- *   RPM, volumetric_efficiency, ThrottleAngle
+ *   RPM, volumetric_efficiency,
  *
  * TODO: Model inlet manifold air temperature.
  *
- * Outputs: rho_air, m_dot_air
+ * Outputs: rho_air, m_dot_air, volumetric_efficiency_reduced
  */
 
 void FGPiston::doAirFlow(void)
 {
-  double gamma = 1.4; // specific heat constants
+  double gamma = 1.3; // specific heat constants
 // loss of volumentric efficiency due to difference between MAP and exhaust pressure
-  double ve =((gamma-1)/gamma)+( CompressionRatio -(p_amb/MAP))/(gamma*( CompressionRatio - 1));
+// Eq 6-10 from The Internal Combustion Engine - Charles Taylor Vol 1
+  double mratio = MAP < 1. ? CompressionRatio : p_amb/MAP;
+  if (mratio > CompressionRatio) mratio = CompressionRatio;
+  double ve =((gamma-1)/gamma) +( CompressionRatio -(mratio))/(gamma*( CompressionRatio - 1));
 
   rho_air = p_amb / (R_air * T_amb);
   double swept_volume = (displacement_SI * (RPM/60)) / 2;
-  double v_dot_air = swept_volume * volumetric_efficiency *ve;
+  volumetric_efficiency_reduced = volumetric_efficiency *ve;
+  v_dot_air = swept_volume * volumetric_efficiency_reduced;
 
   double rho_air_manifold = MAP / (R_air * T_amb);
   m_dot_air = v_dot_air * rho_air_manifold;
@@ -605,12 +733,18 @@ void FGPiston::doAirFlow(void)
 
 void FGPiston::doFuelFlow(void)
 {
-  double thi_sea_level = 1.3 * Mixture; // Allows an AFR of infinity:1 to 11.3075:1
+  double thi_sea_level = 1.3 * in.MixturePos[EngineNumber]; // Allows an AFR of infinity:1 to 11.3075:1
   equivalence_ratio = thi_sea_level * 101325.0 / p_amb;
-//  double AFR = 10+(12*(1-Mixture));// mixture 10:1 to 22:1
+//  double AFR = 10+(12*(1-in.Mixture[EngineNumber]));// mixture 10:1 to 22:1
 //  m_dot_fuel = m_dot_air / AFR;
   m_dot_fuel = (m_dot_air * equivalence_ratio) / 14.7;
   FuelFlowRate =  m_dot_fuel * 2.2046;  // kg to lb
+  if(Starved) // There is no fuel, so zero out the flows we've calculated so far
+  {
+    equivalence_ratio = 0.0;
+    FuelFlowRate = 0.0;
+    m_dot_fuel = 0.0;
+  }
   FuelFlow_pph = FuelFlowRate  * 3600;  // seconds to hours
   FuelFlow_gph = FuelFlow_pph / 6.0;    // Assumes 6 lbs / gallon
 }
@@ -619,57 +753,49 @@ void FGPiston::doFuelFlow(void)
 /**
  * Calculate the power produced by the engine.
  *
- * Currently, the JSBSim propellor model does not allow the
- * engine to produce enough RPMs to get up to a high horsepower.
- * When tested with sufficient RPM, it has no trouble reaching
- * 200HP.
- *
- * Inputs: ManifoldPressure_inHg, p_amb, RPM, T_amb,
+ * Inputs: ManifoldPressure_inHg, p_amb, RPM, T_amb, ISFC,
  *   Mixture_Efficiency_Correlation, Cycles, MaxHP, PMEP,
+ *   MeanPistonSpeed_fps
  *
- * Outputs: PctPower, HP
+ * Outputs: PctPower, HP, FMEP, IndicatedHorsePower
  */
 
 void FGPiston::doEnginePower(void)
 {
-  IndicatedHorsePower = 0;
+  IndicatedHorsePower = -StaticFriction_HP;
   FMEP = 0;
   if (Running) {
-    // FIXME: this needs to be generalized
-    double ME, percent_RPM, power;  // Convienience term for use in the calculations
+    double ME, power;  // Convienience term for use in the calculations
     ME = Mixture_Efficiency_Correlation->GetValue(m_dot_fuel/m_dot_air);
 
-    percent_RPM = RPM/MaxRPM;
-// Guestimate engine friction as a percentage of rated HP + a percentage of rpm + a percentage of Indicted HP
-//    friction = 1 - (percent_RPM * percent_RPM * percent_RPM/10);
-    FMEP = (-18400 * MeanPistonSpeed_fps * fttom - 46500);
+// Guestimate engine friction losses from Figure 4.4 of "Engines: An Introduction", John Lumley
+    FMEP = (-FMEPDynamic * MeanPistonSpeed_fps * fttom - FMEPStatic);
 
     power = 1;
 
     if ( Magnetos != 3 ) power *= SparkFailDrop;
 
 
-    IndicatedHorsePower = (FuelFlow_pph / ISFC )* ME * power;
+    IndicatedHorsePower = (FuelFlow_pph / ISFC )* ME * power - StaticFriction_HP; //FIXME static friction should depend on oil temp and configuration;
 
   } else {
     // Power output when the engine is not running
+    double torque, k_torque, rpm;  // Convienience term for use in the calculations
+    
+    rpm = RPM < 1.0 ? 1.0 : RPM;
     if (Cranking) {
-      if (RPM < 10) {
-        IndicatedHorsePower = StarterHP;
-      } else if (RPM < IdleRPM*0.8) {
-        IndicatedHorsePower = StarterHP + ((IdleRPM*0.8 - RPM) / 8.0);
-        // This is a guess - would be nice to find a proper starter moter torque curve
-      } else {
-        IndicatedHorsePower = StarterHP;
-      }
-    }
+      if(RPM<StarterRPM) k_torque = 1.0-RPM/(StarterRPM);
+      else k_torque = 0;
+      torque = StarterTorque*k_torque*StarterGain;
+      IndicatedHorsePower = torque * rpm / 5252;
+     } 
   }
 
   // Constant is (1/2) * 60 * 745.7
   // (1/2) convert cycles, 60 minutes to seconds, 745.7 watts to hp.
   double pumping_hp = ((PMEP + FMEP) * displacement_SI * RPM)/(Cycles*22371);
 
-  HP = IndicatedHorsePower + pumping_hp - 1.5; //FIXME 1.5 static friction should depend on oil temp and configuration
+HP = IndicatedHorsePower + pumping_hp - BoostLossHP;
 //  cout << "pumping_hp " <<pumping_hp << FMEP << PMEP <<endl;
   PctPower = HP / MaxHP ;
 //  cout << "Power = " << HP << "  RPM = " << RPM << "  Running = " << Running << "  Cranking = " << Cranking << endl;
@@ -695,15 +821,15 @@ void FGPiston::doEGT(void)
   if ((Running) && (m_dot_air > 0.0)) {  // do the energy balance
     combustion_efficiency = Lookup_Combustion_Efficiency->GetValue(equivalence_ratio);
     enthalpy_exhaust = m_dot_fuel * calorific_value_fuel *
-                              combustion_efficiency * 0.33;
+                              combustion_efficiency * 0.30;
     heat_capacity_exhaust = (Cp_air * m_dot_air) + (Cp_fuel * m_dot_fuel);
     delta_T_exhaust = enthalpy_exhaust / heat_capacity_exhaust;
     ExhaustGasTemp_degK = T_amb + delta_T_exhaust;
-    ExhaustGasTemp_degK *= 0.444 + ((0.544 - 0.444) * PctPower);
   } else {  // Drop towards ambient - guess an appropriate time constant for now
     combustion_efficiency = 0;
-    dEGTdt = (RankineToKelvin(Atmosphere->GetTemperature()) - ExhaustGasTemp_degK) / 100.0;
-    delta_T_exhaust = dEGTdt * dt;
+    dEGTdt = (RankineToKelvin(in.Temperature) - ExhaustGasTemp_degK) / 100.0;
+    delta_T_exhaust = dEGTdt * TotalDeltaT;
+
     ExhaustGasTemp_degK += delta_T_exhaust;
   }
 }
@@ -713,7 +839,7 @@ void FGPiston::doEGT(void)
  * Calculate the cylinder head temperature.
  *
  * Inputs: T_amb, IAS, rho_air, m_dot_fuel, calorific_value_fuel,
- *   combustion_efficiency, RPM, MaxRPM, Displacement
+ *   combustion_efficiency, RPM, MaxRPM, Displacement, Cylinders
  *
  * Outputs: CylinderHeadTemp_degK
  */
@@ -724,25 +850,26 @@ void FGPiston::doCHT(void)
   double h2 = -3.95;
   double h3 = -140.0; // -0.05 * 2800 (default maxrpm)
 
-  double arbitary_area = 1.0;
+  double arbitary_area = Displacement/360.0;
   double CpCylinderHead = 800.0;
-  double MassCylinderHead = 8.0;
+  double MassCylinderHead = CylinderHeadMass * Cylinders;
 
   double temperature_difference = CylinderHeadTemp_degK - T_amb;
-  double v_apparent = IAS * 0.5144444;
+  double v_apparent = IAS * Cooling_Factor;
   double v_dot_cooling_air = arbitary_area * v_apparent;
   double m_dot_cooling_air = v_dot_cooling_air * rho_air;
   double dqdt_from_combustion =
     m_dot_fuel * calorific_value_fuel * combustion_efficiency * 0.33;
   double dqdt_forced = (h2 * m_dot_cooling_air * temperature_difference) +
     (h3 * RPM * temperature_difference / MaxRPM);
-  double dqdt_free = h1 * temperature_difference;
+  double dqdt_free = h1 * temperature_difference * arbitary_area;
   double dqdt_cylinder_head = dqdt_from_combustion + dqdt_forced + dqdt_free;
 
   double HeatCapacityCylinderHead = CpCylinderHead * MassCylinderHead;
 
   CylinderHeadTemp_degK +=
-    (dqdt_cylinder_head / HeatCapacityCylinderHead) * dt;
+    (dqdt_cylinder_head / HeatCapacityCylinderHead) * TotalDeltaT;
+
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -767,8 +894,8 @@ void FGPiston::doOilTemperature(void)
   if (OilPressure_psi > 5.0 ) {
     time_constant = 5000 / OilPressure_psi; // Guess at a time constant for circulated oil.
                                             // The higher the pressure the faster it reaches
-                                           // target temperature.  Oil pressure should be about
-                                           // 60 PSI yielding a TC of about 80.
+                                            // target temperature.  Oil pressure should be about
+                                            // 60 PSI yielding a TC of about 80.
   } else {
     time_constant = 1000;  // Time constant for engine-off; reflects the fact
                            // that oil is no longer getting circulated
@@ -776,7 +903,7 @@ void FGPiston::doOilTemperature(void)
 
   double dOilTempdt = (target_oil_temp - OilTemp_degK) / time_constant;
 
-  OilTemp_degK += (dOilTempdt * dt);
+  OilTemp_degK += (dOilTempdt * TotalDeltaT);
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -804,30 +931,54 @@ void FGPiston::doOilPressure(void)
   OilPressure_psi += (Design_Oil_Temp - OilTemp_degK) * Oil_Viscosity_Index * OilPressure_psi / Oil_Press_Relief_Valve;
 }
 
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+//
+// This is a local copy of the same function in FGStandardAtmosphere.
+
+double FGPiston::GetStdPressure100K(double altitude) const
+{
+  // Limit this equation to input altitudes of 100000 ft.
+  if (altitude > 100000.0) altitude = 100000.0;
+
+  double alt[5];
+  const double coef[5] = {  2116.217,
+                          -7.648932746E-2,
+                           1.0925498604E-6,
+                          -7.1135726027E-12,
+                           1.7470331356E-17 };
+
+  alt[0] = 1;
+  for (int pwr=1; pwr<=4; pwr++) alt[pwr] = alt[pwr-1]*altitude;
+
+  double press = 0.0;
+  for (int ctr=0; ctr<=4; ctr++) press += coef[ctr]*alt[ctr];
+  return press;
+}
+
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
-string FGPiston::GetEngineLabels(string delimeter)
+string FGPiston::GetEngineLabels(const string& delimiter)
 {
   std::ostringstream buf;
 
-  buf << Name << " Power Available (engine " << EngineNumber << " in HP)" << delimeter
-      << Name << " HP (engine " << EngineNumber << ")" << delimeter
-      << Name << " equivalent ratio (engine " << EngineNumber << ")" << delimeter
-      << Name << " MAP (engine " << EngineNumber << " in inHg)" << delimeter
-      << Thruster->GetThrusterLabels(EngineNumber, delimeter);
+  buf << Name << " Power Available (engine " << EngineNumber << " in ft-lbs/sec)" << delimiter
+      << Name << " HP (engine " << EngineNumber << ")" << delimiter
+      << Name << " equivalent ratio (engine " << EngineNumber << ")" << delimiter
+      << Name << " MAP (engine " << EngineNumber << " in inHg)" << delimiter
+      << Thruster->GetThrusterLabels(EngineNumber, delimiter);
 
   return buf.str();
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
-string FGPiston::GetEngineValues(string delimeter)
+string FGPiston::GetEngineValues(const string& delimiter)
 {
   std::ostringstream buf;
 
-  buf << PowerAvailable << delimeter << HP << delimeter
-      << equivalence_ratio << delimeter << ManifoldPressure_inHg << delimeter
-      << Thruster->GetThrusterValues(EngineNumber, delimeter);
+  buf << (HP * hptoftlbssec) << delimiter << HP << delimiter
+      << equivalence_ratio << delimiter << ManifoldPressure_inHg << delimiter
+      << Thruster->GetThrusterValues(EngineNumber, delimiter);
 
   return buf.str();
 }
@@ -868,14 +1019,22 @@ void FGPiston::Debug(int from)
       cout << "      Bore: "                << Bore                     << endl;
       cout << "      Stroke: "              << Stroke                   << endl;
       cout << "      Cylinders: "           << Cylinders                << endl;
+      cout << "      Cylinders Head Mass: " << CylinderHeadMass         << endl;
       cout << "      Compression Ratio: "   << CompressionRatio         << endl;
       cout << "      MaxHP: "               << MaxHP                    << endl;
       cout << "      Cycles: "              << Cycles                   << endl;
       cout << "      IdleRPM: "             << IdleRPM                  << endl;
-      cout << "      MaxThrottle: "         << MaxThrottle              << endl;
-      cout << "      MinThrottle: "         << MinThrottle              << endl;
+      cout << "      MaxRPM: "              << MaxRPM                   << endl;
+      cout << "      Throttle Constant: "   << Z_throttle               << endl;
       cout << "      ISFC: "                << ISFC                     << endl;
-      cout << "      Volumentric Efficiency: " << volumetric_efficiency    << endl;
+      cout << "      Volumetric Efficiency: " << volumetric_efficiency    << endl;
+      cout << "      PeakMeanPistonSpeed_fps: " << PeakMeanPistonSpeed_fps << endl;
+      cout << "      Intake Impedance Factor: " << Z_airbox << endl;
+      cout << "      Dynamic FMEP Factor: " << FMEPDynamic << endl;
+      cout << "      Static FMEP Factor: " << FMEPStatic << endl;
+
+      cout << "      Starter Motor Torque: " << StarterTorque << endl;
+      cout << "      Starter Motor RPM:    " << StarterRPM << endl;
 
       cout << endl;
       cout << "      Combustion Efficiency table:" << endl;