]> git.mxchange.org Git - flightgear.git/blobdiff - src/FDM/JSBSim/models/propulsion/FGRotor.cpp
Merge branch 'next' of gitorious.org:fg/flightgear into next
[flightgear.git] / src / FDM / JSBSim / models / propulsion / FGRotor.cpp
index 6ef33e7c03feb540ce5a8c517126b73c30f82abd..19100ea2f8676cfb9d1a3ba691d2aa23c7cdae7b 100644 (file)
@@ -30,58 +30,784 @@ FUNCTIONAL DESCRIPTION
 HISTORY
 --------------------------------------------------------------------------------
 08/24/00  JSB  Created
+01/01/10  T.Kreitler test implementation
+11/15/10  T.Kreitler treated flow solver bug, flow and torque calculations 
+                     simplified, tiploss influence removed from flapping angles
+01/10/11  T.Kreitler changed to single rotor model
+03/06/11  T.Kreitler added brake, clutch, and experimental free-wheeling-unit,
+                     reasonable estimate for inflowlag
+02/05/12  T.Kreitler brake, clutch, and FWU now in FGTransmission, 
+                     downwash angles relate to shaft orientation
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 INCLUDES
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
 
+#include <sstream>
+
 #include "FGRotor.h"
-#include <iostream>
+#include "models/FGMassBalance.h"
+#include "models/FGPropulsion.h" // to get the GearRatio from a linked rotor
 
-using namespace std;
+using std::cerr;
+using std::cout;
+using std::endl;
+using std::ostringstream;
 
 namespace JSBSim {
 
-static const char *IdSrc = "$Id$";
+static const char *IdSrc = "$Id: FGRotor.cpp,v 1.20 2012/03/18 15:48:36 jentron Exp $";
 static const char *IdHdr = ID_ROTOR;
 
+/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+MISC
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
+
+static inline double sqr(double x) { return x*x; }
+
 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 CLASS IMPLEMENTATION
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
 
+// Constructor
 
-FGRotor::FGRotor(FGFDMExec *FDMExec, Element* rotor_element, int num)
-                    : FGThruster(FDMExec, rotor_element, num)
+FGRotor::FGRotor(FGFDMExec *exec, Element* rotor_element, int num)
+  : FGThruster(exec, rotor_element, num),
+    rho(0.002356),                                  // environment
+    Radius(0.0), BladeNum(0),                       // configuration parameters
+    Sense(1.0), NominalRPM(0.0), MinimalRPM(0.0), MaximalRPM(0.0), 
+    ExternalRPM(0), RPMdefinition(0), ExtRPMsource(NULL), SourceGearRatio(1.0),
+    BladeChord(0.0), LiftCurveSlope(0.0), BladeTwist(0.0), HingeOffset(0.0),
+    BladeFlappingMoment(0.0), BladeMassMoment(0.0), PolarMoment(0.0),
+    InflowLag(0.0), TipLossB(0.0),
+    GroundEffectExp(0.0), GroundEffectShift(0.0), GroundEffectScaleNorm(1.0),
+    LockNumberByRho(0.0), Solidity(0.0),            // derived parameters
+    RPM(0.0), Omega(0.0),                           // dynamic values
+    beta_orient(0.0),
+    a0(0.0), a_1(0.0), b_1(0.0), a_dw(0.0),
+    a1s(0.0), b1s(0.0),
+    H_drag(0.0), J_side(0.0), Torque(0.0), C_T(0.0),
+    lambda(-0.001), mu(0.0), nu(0.001), v_induced(0.0),
+    theta_downwash(0.0), phi_downwash(0.0),
+    ControlMap(eMainCtrl),                          // control
+    CollectiveCtrl(0.0), LateralCtrl(0.0), LongitudinalCtrl(0.0),
+    Transmission(NULL),                             // interaction with engine
+    EngineRPM(0.0), MaxBrakePower(0.0), GearLoss(0.0), GearMoment(0.0)
 {
+  FGColumnVector3 location(0.0, 0.0, 0.0), orientation(0.0, 0.0, 0.0);
+  Element *thruster_element;
+  double engine_power_est = 0.0;
+
+  // initialise/set remaining variables
+  SetTransformType(FGForce::tCustom);
+  PropertyManager = exec->GetPropertyManager();
+  Type = ttRotor;
+  GearRatio = 1.0;
+
+  dt = exec->GetDeltaT();
+  for (int i=0; i<5; i++) R[i] = 0.0;
+  for (int i=0; i<5; i++) B[i] = 0.0;
+
+  // get positions 
+  thruster_element = rotor_element->GetParent()->FindElement("sense");
+  if (thruster_element) {
+    double s = thruster_element->GetDataAsNumber();
+    if (s < -0.1) {
+      Sense = -1.0; // 'CW' as seen from above
+    } else if (s < 0.1) {
+      Sense = 0.0;  // 'coaxial'
+    } else {
+      Sense = 1.0; // 'CCW' as seen from above
+    }
+  }
+
+  thruster_element = rotor_element->GetParent()->FindElement("location");
+  if (thruster_element) {
+    location = thruster_element->FindElementTripletConvertTo("IN");
+  } else {
+    cerr << "No thruster location found." << endl;
+  }
+
+  thruster_element = rotor_element->GetParent()->FindElement("orient");
+  if (thruster_element) {
+    orientation = thruster_element->FindElementTripletConvertTo("RAD");
+  } else {
+    cerr << "No thruster orientation found." << endl;
+  }
+
+  SetLocation(location);
+  SetAnglesToBody(orientation);
+  InvTransform = Transform().Transposed(); // body to custom/native
+
+  // wire controls
+  ControlMap = eMainCtrl;
+  if (rotor_element->FindElement("controlmap")) {
+    string cm = rotor_element->FindElementValue("controlmap");
+    cm = to_upper(cm);
+    if (cm == "TAIL") {
+      ControlMap = eTailCtrl;
+    } else if (cm == "TANDEM") {
+      ControlMap = eTandemCtrl;
+    } else {
+      cerr << "# found unknown controlmap: '" << cm << "' using main rotor config."  << endl;
+    }
+  }
+
+  // ExternalRPM -- is the RPM dictated ?
+  if (rotor_element->FindElement("ExternalRPM")) {
+    ExternalRPM = 1;
+    SourceGearRatio = 1.0;
+    RPMdefinition = (int) rotor_element->FindElementValueAsNumber("ExternalRPM");
+    int rdef = RPMdefinition;
+    if (RPMdefinition>=0) {
+      // avoid ourself and (still) unknown engines.
+      if (!exec->GetPropulsion()->GetEngine(RPMdefinition) || RPMdefinition==num) {
+        RPMdefinition = -1;
+      } else {
+        FGThruster *tr = exec->GetPropulsion()->GetEngine(RPMdefinition)->GetThruster();
+        SourceGearRatio = tr->GetGearRatio();
+        // cout << "# got sources' GearRatio: " << SourceGearRatio << endl;
+      }
+    }
+    if (RPMdefinition != rdef) {
+      cerr << "# discarded given RPM source (" << rdef << ") and switched to external control (-1)." << endl;
+    }
+  }
+
+  // process rotor parameters
+  engine_power_est = Configure(rotor_element);
+
+  // setup transmission if needed
+  if (!ExternalRPM) {
+
+    Transmission = new FGTransmission(exec, num, dt);
+
+    Transmission->SetThrusterMoment(PolarMoment);
+
+    // The MOI sensed behind the gear ( MOI_engine*sqr(GearRatio) ).
+    GearMoment = ConfigValueConv(rotor_element, "gearmoment", 0.1*PolarMoment, "SLUG*FT2");
+    GearMoment = Constrain(1e-6, GearMoment, 1e9);
+    Transmission->SetEngineMoment(GearMoment);
+
+    Transmission->SetMaxBrakePower(MaxBrakePower);
+
+    GearLoss = ConfigValueConv(rotor_element, "gearloss", 0.0025 * engine_power_est, "HP");
+    GearLoss = Constrain(0.0, GearLoss, 1e9);
+    GearLoss *= hptoftlbssec;
+    Transmission->SetEngineFriction(GearLoss);
+
+  }
+
+  // shaft representation - a rather simple transform,
+  // but using a matrix is safer.
+  TboToHsr.InitMatrix(   0.0, 0.0, 1.0,
+                         0.0, 1.0, 0.0,
+                        -1.0, 0.0, 0.0  );
+  HsrToTbo  =  TboToHsr.Transposed();
+
+  // smooth out jumps in hagl reported, otherwise the ground effect
+  // calculation would cause jumps too. 1Hz seems sufficient.
+  damp_hagl = Filter(1.0, dt);
+
+  // enable import-export
+  BindModel();
+
   Debug(0);
+
+}  // Constructor
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+FGRotor::~FGRotor(){
+  if (Transmission) delete Transmission;
+  Debug(1);
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
-FGRotor::~FGRotor()
+// 5in1: value-fetch-convert-default-return function
+
+double FGRotor::ConfigValueConv( Element* el, const string& ename, double default_val,
+                                  const string& unit, bool tell)
 {
-  Debug(1);
+
+  Element *e = NULL;
+  double val = default_val;
+
+  string pname = "*No parent element*";
+
+  if (el) {
+    e = el->FindElement(ename);
+    pname = el->GetName();
+  }
+
+  if (e) {
+    if (unit.empty()) {
+      val = e->GetDataAsNumber();
+    } else {
+      val = el->FindElementValueAsNumberConvertTo(ename,unit);
+    }
+  } else {
+    if (tell) {
+      cerr << pname << ": missing element '" << ename <<
+                       "' using estimated value: " << default_val << endl;
+    }
+  }
+
+  return val;
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+double FGRotor::ConfigValue(Element* el, const string& ename, double default_val, bool tell)
+{
+  return ConfigValueConv(el, ename, default_val, "", tell);
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+// 1. read configuration and try to fill holes, ymmv
+// 2. calculate derived parameters
+double FGRotor::Configure(Element* rotor_element)
+{
+
+  double estimate, engine_power_est=0.0;
+  const bool yell   = true;
+  const bool silent = false;
+
+
+  Radius = 0.5 * ConfigValueConv(rotor_element, "diameter", 42.0, "FT", yell);
+  Radius = Constrain(1e-3, Radius, 1e9);
+  
+  BladeNum = (int) ConfigValue(rotor_element, "numblades", 3 , yell);
+  
+  GearRatio = ConfigValue(rotor_element, "gearratio", 1.0, yell);
+  GearRatio = Constrain(1e-9, GearRatio, 1e9);
+
+  // make sure that v_tip (omega*r) is below 0.7mach ~ 750ft/s
+  estimate = (750.0/Radius)/(2.0*M_PI) * 60.0;  // 7160/Radius
+  NominalRPM = ConfigValue(rotor_element, "nominalrpm", estimate, yell);
+  NominalRPM = Constrain(2.0, NominalRPM, 1e9);
+
+  MinimalRPM = ConfigValue(rotor_element, "minrpm", 1.0);
+  MinimalRPM = Constrain(1.0, MinimalRPM, NominalRPM - 1.0);
+
+  MaximalRPM = ConfigValue(rotor_element, "maxrpm", 2.0*NominalRPM);
+  MaximalRPM = Constrain(NominalRPM, MaximalRPM, 1e9);
+
+  estimate = Constrain(0.07, 2.0/Radius , 0.14); // guess solidity
+  estimate = estimate * M_PI*Radius/BladeNum;
+  BladeChord = ConfigValueConv(rotor_element, "chord", estimate, "FT", yell);
+
+  LiftCurveSlope = ConfigValue(rotor_element, "liftcurveslope", 6.0); // "1/RAD"
+  BladeTwist = ConfigValueConv(rotor_element, "twist", -0.17, "RAD");
+
+  HingeOffset = ConfigValueConv(rotor_element, "hingeoffset", 0.05 * Radius, "FT" );
+
+  estimate = sqr(BladeChord) * sqr(Radius - HingeOffset) * 0.57;
+  BladeFlappingMoment = ConfigValueConv(rotor_element, "flappingmoment", estimate, "SLUG*FT2");   
+  BladeFlappingMoment = Constrain(1e-9, BladeFlappingMoment, 1e9);
+
+  // guess mass from moment of a thin stick, and multiply by the blades cg distance
+  estimate = ( 3.0 * BladeFlappingMoment / sqr(Radius) ) * (0.45 * Radius) ;
+  BladeMassMoment = ConfigValue(rotor_element, "massmoment", estimate); // unit is slug-ft
+  BladeMassMoment = Constrain(1e-9, BladeMassMoment, 1e9);
+
+  estimate = 1.1 * BladeFlappingMoment * BladeNum;
+  PolarMoment = ConfigValueConv(rotor_element, "polarmoment", estimate, "SLUG*FT2");
+  PolarMoment = Constrain(1e-9, PolarMoment, 1e9);
+
+  // "inflowlag" is treated further down.
+
+  TipLossB = ConfigValue(rotor_element, "tiplossfactor", 1.0, silent);
+
+  // estimate engine power (bit of a pity, cause our caller already knows)
+  engine_power_est = 0.5 * BladeNum*BladeChord*Radius*Radius;
+
+  estimate = engine_power_est / 30.0;
+  MaxBrakePower  = ConfigValueConv(rotor_element, "maxbrakepower", estimate, "HP");
+  MaxBrakePower *= hptoftlbssec;
+
+  GroundEffectExp = ConfigValue(rotor_element, "groundeffectexp", 0.0);
+  GroundEffectShift = ConfigValueConv(rotor_element, "groundeffectshift", 0.0, "FT");
+
+  // precalc often used powers
+  R[0]=1.0; R[1]=Radius;   R[2]=R[1]*R[1]; R[3]=R[2]*R[1]; R[4]=R[3]*R[1];
+  B[0]=1.0; B[1]=TipLossB; B[2]=B[1]*B[1]; B[3]=B[2]*B[1]; B[4]=B[3]*B[1];
+
+  // derived parameters
+  LockNumberByRho = LiftCurveSlope * BladeChord * R[4] / BladeFlappingMoment;
+  Solidity = BladeNum * BladeChord / (M_PI * Radius);
+
+  // estimate inflow lag, see /GE49/ eqn(1)
+  double omega_tmp = (NominalRPM/60.0)*2.0*M_PI;
+  estimate = 16.0/(LockNumberByRho*rho * omega_tmp ); // 16/(gamma*Omega)
+  // printf("# Est. InflowLag: %f\n", estimate);
+  InflowLag = ConfigValue(rotor_element, "inflowlag", estimate, yell);
+  InflowLag = Constrain(1e-6, InflowLag, 2.0);
+
+  return engine_power_est;
+} // Configure
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+// calculate control-axes components of total airspeed at the hub.
+// sets rotor orientation angle (beta) as side effect. /SH79/ eqn(19-22)
+
+FGColumnVector3 FGRotor::hub_vel_body2ca( const FGColumnVector3 &uvw, 
+                                                 const FGColumnVector3 &pqr,
+                                                 double a_ic, double b_ic)
+{
+  FGColumnVector3  v_r, v_shaft, v_w;
+  FGColumnVector3 pos;
+
+  pos = fdmex->GetMassBalance()->StructuralToBody(GetActingLocation());
+
+  v_r = uvw + pqr*pos;
+  v_shaft = TboToHsr * InvTransform * v_r;
+
+  beta_orient = atan2(v_shaft(eV),v_shaft(eU));
+
+  v_w(eU) = v_shaft(eU)*cos(beta_orient) + v_shaft(eV)*sin(beta_orient);
+  v_w(eV) = 0.0;
+  v_w(eW) = v_shaft(eW) - b_ic*v_shaft(eU) - a_ic*v_shaft(eV);
+
+  return v_w;
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+// express fuselage angular velocity in control axes /SH79/ eqn(30,31)
+
+FGColumnVector3 FGRotor::fus_angvel_body2ca( const FGColumnVector3 &pqr)
+{
+  FGColumnVector3 av_s_fus, av_w_fus;
+
+  // for comparison:
+  // av_s_fus = BodyToShaft * pqr; /SH79/
+  // BodyToShaft = TboToHsr * InvTransform
+  av_s_fus = TboToHsr * InvTransform * pqr;
+
+  av_w_fus(eP)=   av_s_fus(eP)*cos(beta_orient) + av_s_fus(eQ)*sin(beta_orient);
+  av_w_fus(eQ)= - av_s_fus(eP)*sin(beta_orient) + av_s_fus(eQ)*cos(beta_orient);
+  av_w_fus(eR)=   av_s_fus(eR);
+
+  return av_w_fus;
+}
+
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+// The calculation is a bit tricky because thrust depends on induced velocity,
+// and vice versa.
+//
+// The flow_scale parameter (ranging from 0.5-1.0) is used to approximate a
+// reduction of inflow if the helicopter is close to the ground, yielding to
+// higher thrust, see /TA77/ eqn(10a).
+
+void FGRotor::calc_flow_and_thrust( double theta_0, double Uw, double Ww,
+                                    double flow_scale)
+{
+
+  double ct_over_sigma = 0.0;
+  double c0, ct_l, ct_t0, ct_t1;
+  double mu2;
+
+  mu = Uw/(Omega*Radius); // /SH79/ eqn(24)
+  if (mu > 0.7) mu = 0.7;
+  mu2 = sqr(mu);
+  
+  ct_t0 = (1.0/3.0*B[3] + 1.0/2.0 * TipLossB*mu2 - 4.0/(9.0*M_PI) * mu*mu2 ) * theta_0;
+  ct_t1 = (1.0/4.0*B[4] + 1.0/4.0 * B[2]*mu2) * BladeTwist;
+
+  ct_l  = (1.0/2.0*B[2] + 1.0/4.0 * mu2) * lambda; // first time
+
+  c0 = (LiftCurveSlope/2.0)*(ct_l + ct_t0 + ct_t1) * Solidity;
+  c0 = c0 / ( 2.0 * sqrt( sqr(mu) + sqr(lambda) ) + 1e-15);
+
+  // replacement for /SH79/ eqn(26).
+  // ref: dnu/dt = 1/tau ( Ct / (2*sqrt(mu^2+lambda^2))  -  nu )
+  // taking mu and lambda constant, this integrates to
+
+  nu  = flow_scale * ((nu - c0) * exp(-dt/InflowLag) + c0);
+
+  // now from nu to lambda, C_T, and Thrust
+
+  lambda = Ww/(Omega*Radius) - nu; // /SH79/ eqn(25)
+
+  ct_l  = (1.0/2.0*B[2] + 1.0/4.0 * mu2) * lambda;
+
+  ct_over_sigma = (LiftCurveSlope/2.0)*(ct_l + ct_t0 + ct_t1); // /SH79/ eqn(27)
+
+  Thrust = BladeNum*BladeChord*Radius*rho*sqr(Omega*Radius) * ct_over_sigma;
+
+  C_T = ct_over_sigma * Solidity;
+  v_induced = nu * (Omega*Radius);
+
+}
+
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+// Two blade teetering rotors are often 'preconed' to a fixed angle, but the 
+// calculated value is pretty close to the real one. /SH79/ eqn(29)
+
+void FGRotor::calc_coning_angle(double theta_0)
+{
+  double lock_gamma = LockNumberByRho * rho;
+
+  double a0_l  = (1.0/6.0  + 0.04 * mu*mu*mu) * lambda;
+  double a0_t0 = (1.0/8.0  + 1.0/8.0  * mu*mu) * theta_0;
+  double a0_t1 = (1.0/10.0 + 1.0/12.0 * mu*mu) * BladeTwist;
+  a0 = lock_gamma * ( a0_l + a0_t0 + a0_t1);
+  return;
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+// Flapping angles relative to control axes /SH79/ eqn(32)
+
+void FGRotor::calc_flapping_angles(double theta_0, const FGColumnVector3 &pqr_fus_w)
+{
+  double lock_gamma = LockNumberByRho * rho;
+
+
+  double mu2_2 = sqr(mu)/2.0;
+  double t075 = theta_0 + 0.75 * BladeTwist;  // common approximation for rectangular blades
+  
+  a_1 = 1.0/(1.0 - mu2_2) * (
+                                 (2.0*lambda + (8.0/3.0)*t075)*mu
+                               + pqr_fus_w(eP)/Omega
+                               - 16.0 * pqr_fus_w(eQ)/(lock_gamma*Omega)
+                             );
+
+  b_1 = 1.0/(1.0 + mu2_2) * (
+                                 (4.0/3.0)*mu*a0
+                               - pqr_fus_w(eQ)/Omega
+                               - 16.0 * pqr_fus_w(eP)/(lock_gamma*Omega)
+                             );
+
+  // used in  force calc
+  a_dw = 1.0/(1.0 - mu2_2) * (
+                                 (2.0*lambda + (8.0/3.0)*t075)*mu
+                               - 24.0 * pqr_fus_w(eQ)/(lock_gamma*Omega)
+                                 * ( 1.0 - ( 0.29 * t075 / (C_T/Solidity) ) )
+                             );
+
+  return;
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+// /SH79/ eqn(38,39)
+
+void FGRotor::calc_drag_and_side_forces(double theta_0)
+{
+  double cy_over_sigma;
+  double t075 = theta_0 + 0.75 * BladeTwist;
+
+  H_drag = Thrust * a_dw;
+
+  cy_over_sigma = (
+                      0.75*b_1*lambda - 1.5*a0*mu*lambda + 0.25*a_1*b_1*mu
+                    - a0*a_1*sqr(mu) + (1.0/6.0)*a0*a_1
+                    - (0.75*mu*a0 - (1.0/3.0)*b_1 - 0.5*sqr(mu)*b_1)*t075
+                  );
+  cy_over_sigma *= LiftCurveSlope/2.0;
+
+  J_side = BladeNum * BladeChord * Radius * rho * sqr(Omega*Radius) * cy_over_sigma;
+
+  return;
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+// Simplified version of /SH79/ eqn(36). Uses an estimate for blade drag
+// (a new config parameter to come...).
+// From "Bramwell's Helicopter Dynamics", second edition, eqn(3.43) and (3.44)
+
+void FGRotor::calc_torque(double theta_0)
+{
+  // estimate blade drag
+  double delta_dr = 0.009 + 0.3*sqr(6.0*C_T/(LiftCurveSlope*Solidity));
+
+  Torque = rho * BladeNum * BladeChord * delta_dr * sqr(Omega*Radius) * R[2] *
+           (1.0+4.5*sqr(mu))/8.0
+                     - (Thrust*lambda + H_drag*mu)*Radius;
+
+  return;
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+// Get the downwash angles with respect to the shaft axis.
+// Given a 'regular'  main rotor, the angles are zero when the downwash points
+// down, positive theta values mean that the downwash turns towards the nose,
+// and positive phi values mean it turns to the left side. (Note: only airspeed
+// is transformed, the rotational speed contribution is ignored.)
+
+void FGRotor::calc_downwash_angles()
+{
+  FGColumnVector3 v_shaft;
+  v_shaft = TboToHsr * InvTransform * in.AeroUVW;
+
+  theta_downwash = atan2( -v_shaft(eU), v_induced - v_shaft(eW)) + a1s;
+  phi_downwash   = atan2(  v_shaft(eV), v_induced - v_shaft(eW)) + b1s;
+
+  return;
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+// transform rotor forces from control axes to shaft axes, and express
+// in body axes /SH79/ eqn(40,41)
+
+FGColumnVector3 FGRotor::body_forces(double a_ic, double b_ic)
+{
+  FGColumnVector3 F_s(
+        - H_drag*cos(beta_orient) - J_side*sin(beta_orient) + Thrust*b_ic,
+        - H_drag*sin(beta_orient) + J_side*cos(beta_orient) + Thrust*a_ic,
+        - Thrust);
+
+  return HsrToTbo * F_s;
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+// calculates the additional moments due to hinge offset and handles 
+// torque and sense
+
+FGColumnVector3 FGRotor::body_moments(double a_ic, double b_ic)
+{
+  FGColumnVector3 M_s, M_hub, M_h;
+  double mf;
+
+  // cyclic flapping relative to shaft axes /SH79/ eqn(43)
+  a1s = a_1*cos(beta_orient) + b_1*sin(beta_orient) - b_ic;
+  b1s = b_1*cos(beta_orient) - a_1*sin(beta_orient) + a_ic;
+
+  mf = 0.5 * HingeOffset * BladeNum * Omega*Omega * BladeMassMoment;
+
+  M_s(eL) = mf*b1s;
+  M_s(eM) = mf*a1s;
+  M_s(eN) = Torque * Sense ;
+
+  return HsrToTbo * M_s;
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+void FGRotor::CalcRotorState(void)
+{
+  double A_IC;       // lateral (roll) control in radians
+  double B_IC;       // longitudinal (pitch) control in radians
+  double theta_col;  // rotor collective pitch in radians
+
+  FGColumnVector3 vHub_ca, avFus_ca;
+
+  double filtered_hagl = 0.0;
+  double ge_factor = 1.0;
+
+  // fetch needed values from environment
+  rho = in.Density; // slugs/ft^3.
+  double h_agl_ft = in.H_agl;
+
+  // update InvTransform, the rotor orientation could have been altered
+  InvTransform = Transform().Transposed();
+
+  // handle RPM requirements, calc omega.
+  if (ExternalRPM && ExtRPMsource) {
+    RPM = ExtRPMsource->getDoubleValue() * ( SourceGearRatio / GearRatio );
+  }
+
+  // MinimalRPM is always >= 1. MaximalRPM is always >= NominalRPM
+  RPM = Constrain(MinimalRPM, RPM, MaximalRPM);
+
+  Omega = (RPM/60.0)*2.0*M_PI;
+
+  // set control inputs
+  A_IC      = LateralCtrl;
+  B_IC      = LongitudinalCtrl;
+  theta_col = CollectiveCtrl;
+
+  // optional ground effect, a ge_factor of 1.0 gives no effect
+  // and 0.5 yields to maximal influence.
+  if (GroundEffectExp > 1e-5) {
+    if (h_agl_ft<0.0) h_agl_ft = 0.0; // clamp
+    filtered_hagl = damp_hagl.execute(h_agl_ft) + GroundEffectShift;
+    // actual/nominal factor avoids absurd scales at startup
+    ge_factor -= GroundEffectScaleNorm *
+                 ( exp(-filtered_hagl*GroundEffectExp) * (RPM / NominalRPM) );
+    ge_factor = Constrain(0.5, ge_factor, 1.0);
+  }
+
+  // all set, start calculations ...
+
+  vHub_ca  = hub_vel_body2ca(in.AeroUVW, in.AeroPQR, A_IC, B_IC);
+
+  avFus_ca = fus_angvel_body2ca(in.AeroPQR);
+
+  calc_flow_and_thrust(theta_col, vHub_ca(eU), vHub_ca(eW), ge_factor);
+
+  calc_coning_angle(theta_col);
+
+  calc_flapping_angles(theta_col, avFus_ca);
+
+  calc_drag_and_side_forces(theta_col);
+
+  calc_torque(theta_col);
+
+  calc_downwash_angles();
+
+  // ... and assign to inherited vFn and vMn members
+  //     (for processing see FGForce::GetBodyForces).
+  vFn = body_forces(A_IC, B_IC);
+  vMn = Transform() * body_moments(A_IC, B_IC);
+
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
-double FGRotor::Calculate(double PowerAvailable)
+double FGRotor::Calculate(double EnginePower)
 {
-  return 0.0;
+
+  CalcRotorState();
+
+  if (! ExternalRPM) {
+    // the RPM values are handled inside Transmission
+    Transmission->Calculate(EnginePower, Torque, in.TotalDeltaT);
+
+    EngineRPM = Transmission->GetEngineRPM() * GearRatio;
+    RPM = Transmission->GetThrusterRPM();
+  } else {
+    EngineRPM = RPM * GearRatio;
+  }
+
+  RPM = Constrain(MinimalRPM, RPM, MaximalRPM); // trim again
+
+  return Thrust;
 }
 
+
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
-string FGRotor::GetThrusterLabels(int id, string delimeter)
+
+bool FGRotor::BindModel(void)
 {
-  return "";
+  string property_name, base_property_name;
+  base_property_name = CreateIndexedPropertyName("propulsion/engine", EngineNum);
+
+  property_name = base_property_name + "/rotor-rpm";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetRPM );
+
+  property_name = base_property_name + "/engine-rpm";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetEngineRPM );
+
+  property_name = base_property_name + "/a0-rad";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetA0 );
+
+  property_name = base_property_name + "/a1-rad";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetA1 );
+
+  property_name = base_property_name + "/b1-rad";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetB1 );
+
+  property_name = base_property_name + "/inflow-ratio";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetLambda );
+
+  property_name = base_property_name + "/advance-ratio";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetMu );
+
+  property_name = base_property_name + "/induced-inflow-ratio";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetNu );
+
+  property_name = base_property_name + "/vi-fps";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetVi );
+
+  property_name = base_property_name + "/thrust-coefficient";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetCT );
+
+  property_name = base_property_name + "/torque-lbsft";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetTorque );
+
+  property_name = base_property_name + "/theta-downwash-rad";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetThetaDW );
+
+  property_name = base_property_name + "/phi-downwash-rad";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetPhiDW );
+
+  property_name = base_property_name + "/groundeffect-scale-norm";
+  PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetGroundEffectScaleNorm,
+                                                     &FGRotor::SetGroundEffectScaleNorm );
+
+  switch (ControlMap) {
+    case eTailCtrl:
+      property_name = base_property_name + "/antitorque-ctrl-rad";
+      PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetCollectiveCtrl, &FGRotor::SetCollectiveCtrl);
+      break;
+    case eTandemCtrl:
+      property_name = base_property_name + "/tail-collective-ctrl-rad";
+      PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetCollectiveCtrl, &FGRotor::SetCollectiveCtrl);
+      property_name = base_property_name + "/lateral-ctrl-rad";
+      PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetLateralCtrl, &FGRotor::SetLateralCtrl);
+      property_name = base_property_name + "/longitudinal-ctrl-rad";
+      PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetLongitudinalCtrl, &FGRotor::SetLongitudinalCtrl);
+      break;
+    default: // eMainCtrl
+      property_name = base_property_name + "/collective-ctrl-rad";
+      PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetCollectiveCtrl, &FGRotor::SetCollectiveCtrl);
+      property_name = base_property_name + "/lateral-ctrl-rad";
+      PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetLateralCtrl, &FGRotor::SetLateralCtrl);
+      property_name = base_property_name + "/longitudinal-ctrl-rad";
+      PropertyManager->Tie( property_name.c_str(), this, &FGRotor::GetLongitudinalCtrl, &FGRotor::SetLongitudinalCtrl);
+  }
+
+  if (ExternalRPM) {
+    if (RPMdefinition == -1) {
+      property_name = base_property_name + "/x-rpm-dict";
+      ExtRPMsource = PropertyManager->GetNode(property_name, true);
+    } else if (RPMdefinition >= 0 && RPMdefinition != EngineNum) {
+      string ipn = CreateIndexedPropertyName("propulsion/engine", RPMdefinition);
+      property_name = ipn + "/rotor-rpm";
+      ExtRPMsource = PropertyManager->GetNode(property_name, false);
+      if (! ExtRPMsource) {
+        cerr << "# Warning: Engine number " << EngineNum << "." << endl;
+        cerr << "# No 'rotor-rpm' property found for engine " << RPMdefinition << "." << endl;
+        cerr << "# Please check order of engine definitons."  << endl;
+      }
+    } else {
+      cerr << "# Engine number " << EngineNum;
+      cerr << ", given ExternalRPM value '" << RPMdefinition << "' unhandled."  << endl;
+    }
+  }
+
+  return true;
+}
+
+//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+string FGRotor::GetThrusterLabels(int id, const string& delimeter)
+{
+
+  ostringstream buf;
+
+  buf << Name << " RPM (engine " << id << ")";
+
+  return buf.str();
+
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
-string FGRotor::GetThrusterValues(int id, string delimeter)
+string FGRotor::GetThrusterValues(int id, const string& delimeter)
 {
-  return "";
+
+  ostringstream buf;
+
+  buf << RPM;
+
+  return buf.str();
+
 }
 
 //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -105,10 +831,50 @@ string FGRotor::GetThrusterValues(int id, string delimeter)
 
 void FGRotor::Debug(int from)
 {
+  string ControlMapName;
+
   if (debug_lvl <= 0) return;
 
   if (debug_lvl & 1) { // Standard console startup message output
     if (from == 0) { // Constructor
+      cout << "\n    Rotor Name: " << Name << endl;
+      cout << "      Diameter = " << 2.0 * Radius << " ft." << endl;
+      cout << "      Number of Blades = " << BladeNum << endl;
+      cout << "      Gear Ratio = " << GearRatio << endl;
+      cout << "      Sense = " << Sense << endl;
+      cout << "      Nominal RPM = " << NominalRPM << endl;
+      cout << "      Minimal RPM = " << MinimalRPM << endl;
+      cout << "      Maximal RPM = " << MaximalRPM << endl;
+
+      if (ExternalRPM) {
+        if (RPMdefinition == -1) {
+          cout << "      RPM is controlled externally" << endl;
+        } else {
+          cout << "      RPM source set to thruster " << RPMdefinition << endl;
+        }
+      }
+
+      cout << "      Blade Chord = " << BladeChord << endl;
+      cout << "      Lift Curve Slope = " << LiftCurveSlope << endl;
+      cout << "      Blade Twist = " << BladeTwist << endl;
+      cout << "      Hinge Offset = " << HingeOffset << endl;
+      cout << "      Blade Flapping Moment = " << BladeFlappingMoment << endl;
+      cout << "      Blade Mass Moment = " << BladeMassMoment << endl;
+      cout << "      Polar Moment = " << PolarMoment << endl;
+      cout << "      Inflow Lag = " << InflowLag << endl;
+      cout << "      Tip Loss = " << TipLossB << endl;
+      cout << "      Lock Number = " << LockNumberByRho * 0.002356 << " (SL)" << endl;
+      cout << "      Solidity = " << Solidity << endl;
+      cout << "      Max Brake Power = " << MaxBrakePower/hptoftlbssec << " HP" << endl;
+      cout << "      Gear Loss = " << GearLoss/hptoftlbssec << " HP" << endl;
+      cout << "      Gear Moment = " << GearMoment << endl;
+
+      switch (ControlMap) {
+        case eTailCtrl:    ControlMapName = "Tail Rotor";   break;
+        case eTandemCtrl:  ControlMapName = "Tandem Rotor"; break;
+        default:           ControlMapName = "Main Rotor";
+      }
+      cout << "      Control Mapping = " << ControlMapName << endl;
 
     }
   }
@@ -128,5 +894,9 @@ void FGRotor::Debug(int from)
       cout << IdHdr << endl;
     }
   }
+
 }
-}
+
+
+} // namespace JSBSim
+