]> git.mxchange.org Git - flightgear.git/blobdiff - src/FDM/YASim/Rotorpart.cpp
Port over remaining Point3D usage to the more type and unit safe SG* classes.
[flightgear.git] / src / FDM / YASim / Rotorpart.cpp
index 708065d68d9a3d7c0b8a380d9e43fa66d4130bab..77520dee98d95aabe1cf4a9efa710271f806bbb5 100644 (file)
@@ -1,3 +1,5 @@
+#include <ostream>
+
 #include <simgear/debug/logstream.hxx>
 
 #include "Math.hpp"
@@ -6,6 +8,8 @@
 #include <stdio.h>
 #include <string.h>
 namespace yasim {
+using std::endl;
+
 const float pi=3.14159;
 float _help = 0;
 Rotorpart::Rotorpart()
@@ -14,19 +18,16 @@ Rotorpart::Rotorpart()
     _cyclic=0;
     _collective=0;
     _rellenhinge=0;
+    _shared_flap_hinge=false;
     _dt=0;
 #define set3(x,a,b,c) x[0]=a;x[1]=b;x[2]=c;
     set3 (_speed,1,0,0);
-    set3 (_directionofzentipetalforce,1,0,0);
+    set3 (_directionofcentripetalforce,1,0,0);
     set3 (_directionofrotorpart,0,1,0);
     set3 (_direction_of_movement,1,0,0);
     set3 (_last_torque,0,0,0);
 #undef set3
-    _zentipetalforce=1;
-    _maxpitch=.02;
-    _minpitch=0;
-    _maxcyclic=0.02;
-    _mincyclic=-0.02;
+    _centripetalforce=1;
     _delta3=0.5;
     _cyclic=0;
     _collective=-1;
@@ -45,6 +46,8 @@ Rotorpart::Rotorpart()
     _lastrp=0;
     _nextrp=0;
     _oppositerp=0;
+    _last90rp=0;
+    _next90rp=0;
     _translift=0;
     _dynamic=100;
     _c2=0;
@@ -62,6 +65,10 @@ Rotorpart::Rotorpart()
     _diameter=10;
     _torque_of_inertia=0;
     _rel_len_blade_start=0;
+    _torque=0;
+    _rotor_correction_factor=0.6;
+    _direction=0;
+    _balance=1;
 }
 
 void Rotorpart::inititeration(float dt,float *rot)
@@ -73,20 +80,30 @@ void Rotorpart::inititeration(float dt,float *rot)
     float a=Math::dot3(rot,_normal);
     if(a>0)
         _alphaalt=_alpha*Math::cos(a)
-        +_nextrp->getrealAlpha()*Math::sin(a);
+        +_next90rp->getrealAlpha()*Math::sin(a);
     else
         _alphaalt=_alpha*Math::cos(a)
-        +_lastrp->getrealAlpha()*Math::sin(-a);
+        +_last90rp->getrealAlpha()*Math::sin(-a);
     //calculate the rotation of the fuselage, determine
     //the part in the same direction as alpha
     //and add it ro _alphaalt
     //alpha is rotation about "normal cross dirofzentf"
 
     float dir[3];
-    Math::cross3(_directionofzentipetalforce,_normal,dir);
+    Math::cross3(_directionofcentripetalforce,_normal,dir);
     a=Math::dot3(rot,dir);
     _alphaalt -= a;
     _alphaalt= Math::clamp(_alphaalt,_alphamin,_alphamax);
+
+    //unbalance
+    float b;
+    b=_rotor->getBalance();
+    float s =Math::sin(_phi+_direction);
+    float c =Math::cos(_phi+_direction);
+    if (s>0)
+        _balance=(b>0)?(1.-s*(1.-b)):(1.-s)*(1.+b);
+    else
+        _balance=(b>0)?1.:1.+b;
 }
 
 void Rotorpart::setRotor(Rotor *rotor)
@@ -94,7 +111,7 @@ void Rotorpart::setRotor(Rotor *rotor)
     _rotor=rotor;
 }
 
-void Rotorpart::setParameter(char *parametername, float value)
+void Rotorpart::setParameter(const char *parametername, float value)
 {
 #define p(a) if (strcmp(parametername,#a)==0) _##a = value; else
 
@@ -102,8 +119,10 @@ void Rotorpart::setParameter(char *parametername, float value)
         p(number_of_segments)
         p(rel_len_where_incidence_is_measured)
         p(rel_len_blade_start)
-        cout << "internal error in parameter set up for rotorpart: '"
-            << parametername <<"'" << endl;
+        p(rotor_correction_factor)
+        SG_LOG(SG_INPUT, SG_ALERT,
+            "internal error in parameter set up for rotorpart: '"
+            << parametername <<"'" << endl);
 #undef p
 }
 
@@ -167,7 +186,7 @@ void Rotorpart::setSpeed(float* p)
 void Rotorpart::setDirectionofZentipetalforce(float* p)
 {
     int i;
-    for(i=0; i<3; i++) _directionofzentipetalforce[i] = p[i];
+    for(i=0; i<3; i++) _directionofcentripetalforce[i] = p[i];
 }
 
 void Rotorpart::setDirectionofRotorPart(float* p)
@@ -176,11 +195,21 @@ void Rotorpart::setDirectionofRotorPart(float* p)
     for(i=0; i<3; i++) _directionofrotorpart[i] = p[i];
 }
 
+void Rotorpart::setDirection(float direction)
+{
+    _direction=direction;
+}
+
 void Rotorpart::setOmega(float value)
 {
     _omega=value;
 }
 
+void Rotorpart::setPhi(float value)
+{
+    _phi=value;
+}
+
 void Rotorpart::setOmegaN(float value)
 {
     _omegan=value;
@@ -193,28 +222,9 @@ void Rotorpart::setDdtOmega(float value)
 
 void Rotorpart::setZentipetalForce(float f)
 {
-    _zentipetalforce=f;
-} 
-
-void Rotorpart::setMinpitch(float f)
-{
-    _minpitch=f;
+    _centripetalforce=f;
 } 
 
-void Rotorpart::setMaxpitch(float f)
-{
-    _maxpitch=f;
-} 
-
-void Rotorpart::setMaxcyclic(float f)
-{
-    _maxcyclic=f;
-} 
-
-void Rotorpart::setMincyclic(float f)
-{
-    _mincyclic=f;
-} 
 
 void Rotorpart::setDelta3(float f)
 {
@@ -241,6 +251,11 @@ void Rotorpart::setRelLenHinge(float f)
     _rellenhinge=f;
 }
 
+void Rotorpart::setSharedFlapHinge(bool s)
+{
+    _shared_flap_hinge=s;
+}
+
 void Rotorpart::setC2(float f)
 {
     _c2=f;
@@ -248,6 +263,7 @@ void Rotorpart::setC2(float f)
 
 void Rotorpart::setAlpha0(float f)
 {
+    if (f>-0.01) f=-0.01; //half a degree bending 
     _alpha0=f;
 }
 
@@ -281,14 +297,14 @@ float Rotorpart::getAlpha(int i)
     i=i&1;
 
     if (i==0)
-        return _alpha*180/3.14;//in Grad = 1
+        return _alpha*180/pi;//in Grad = 1
     else
     {
         if (_alpha2type==1) //yaw or roll
             return (getAlpha(0)-_oppositerp->getAlpha(0))/2;
         else //collective
             return (getAlpha(0)+_oppositerp->getAlpha(0)+
-            _nextrp->getAlpha(0)+_lastrp->getAlpha(0))/4;
+            _next90rp->getAlpha(0)+_last90rp->getAlpha(0))/4;
     }
 }
 float Rotorpart::getrealAlpha(void)
@@ -298,11 +314,7 @@ float Rotorpart::getrealAlpha(void)
 
 void Rotorpart::setAlphaoutput(char *text,int i)
 {
-    SG_LOG(SG_FLIGHT, SG_DEBUG, "setAlphaoutput rotorpart ["
-        << text << "] typ" << i);
-
     strncpy(_alphaoutputbuf[i>0],text,255);
-
     if (i>0) _alpha2type=i;
 }
 
@@ -339,11 +351,13 @@ void Rotorpart::setCyclic(float pos)
 }
 
 void Rotorpart::setlastnextrp(Rotorpart*lastrp,Rotorpart*nextrp,
-    Rotorpart *oppositerp)
+    Rotorpart *oppositerp,Rotorpart*last90rp,Rotorpart*next90rp)
 {
     _lastrp=lastrp;
     _nextrp=nextrp;
     _oppositerp=oppositerp;
+    _last90rp=last90rp;
+    _next90rp=next90rp;
 }
 
 void Rotorpart::strncpy(char *dest,const char *src,int maxlen)
@@ -368,12 +382,13 @@ float Rotorpart::calculateAlpha(float* v_rel_air, float rho,
     int i,n;
     for (i=0;i<3;i++)
         moment[i]=0;
-    lift_moment=0;
+    float relgrav = Math::dot3(_normal,_rotor->getGravDirection());
+    lift_moment=-_mass*_len*9.81*relgrav;
     *torque=0;//
     if((_nextrp==NULL)||(_lastrp==NULL)||(_rotor==NULL)) 
         return 0.0;//not initialized. Can happen during startupt of flightgear
     if (returnlift!=NULL) *returnlift=0;
-    float flap_omega=(_nextrp->getrealAlpha()-_lastrp->getrealAlpha())
+    float flap_omega=(_next90rp->getrealAlpha()-_last90rp->getrealAlpha())
         *_omega / pi;
     float local_width=_diameter*(1-_rel_len_blade_start)/2.
         /(float (_number_of_segments));
@@ -382,8 +397,8 @@ float Rotorpart::calculateAlpha(float* v_rel_air, float rho,
         float rel = (n+.5)/(float (_number_of_segments));
         float r= _diameter *0.5 *(rel*(1-_rel_len_blade_start)
             +_rel_len_blade_start);
-        float local_incidence=incidence+_twist *rel - _twist
-            *_rel_len_where_incidence_is_measured;
+        float local_incidence=incidence+_twist *rel -
+            _twist *_rel_len_where_incidence_is_measured;
         float local_chord = _rotor->getChord()*rel+_rotor->getChord()
             *_rotor->getTaper()*(1-rel);
         float A = local_chord * local_width;
@@ -401,19 +416,30 @@ float Rotorpart::calculateAlpha(float* v_rel_air, float rho,
 
         //substract now the component of the air speed parallel to 
         //the blade;
-       Math::mul3(Math::dot3(v_local,_directionofrotorpart),
+        Math::mul3(Math::dot3(v_local,_directionofrotorpart),
            _directionofrotorpart,v_help);
         Math::sub3(v_local,v_help,v_local);
 
         //split into direction and magnitude
         v_local_scalar=Math::mag3(v_local);
         if (v_local_scalar!=0)
-            Math::unit3(v_local,v_local);
+            //Math::unit3(v_local,v_help);
+            Math::mul3(1/v_local_scalar,v_local,v_help);
         float incidence_of_airspeed = Math::asin(Math::clamp(
-            Math::dot3(v_local,_normal),-1,1)) + local_incidence;
+            Math::dot3(v_help,_normal),-1,1)) + local_incidence;
+        ias = incidence_of_airspeed;
+
+        //reduce the ias (Prantl factor)
+        float prantl_factor=2/pi*Math::acos(Math::exp(
+            -_rotor->getNumberOfBlades()/2.*(1-rel)
+             *Math::sqrt(1+1/Math::sqr(Math::tan(
+               pi/2-Math::abs(incidence_of_airspeed-local_incidence))))));
+        incidence_of_airspeed = (incidence_of_airspeed+
+            _rotor->getAirfoilIncidenceNoLift())*prantl_factor
+            *_rotor_correction_factor-_rotor->getAirfoilIncidenceNoLift();
         ias = incidence_of_airspeed;
-        float lift_wo_cyc = 
-            _rotor->getLiftCoef(incidence_of_airspeed-cyc,v_local_scalar)
+        float lift_wo_cyc = _rotor->getLiftCoef(incidence_of_airspeed
+            -cyc*_rotor_correction_factor*prantl_factor,v_local_scalar)
             * v_local_scalar * v_local_scalar * A *rho *0.5;
         float lift_with_cyc = 
             _rotor->getLiftCoef(incidence_of_airspeed,v_local_scalar)
@@ -431,11 +457,48 @@ float Rotorpart::calculateAlpha(float* v_rel_air, float rho,
             - drag * Math::sin(angle));
         *torque     += r*(drag * Math::cos(angle) 
             + lift * Math::sin(angle));
-
         if (returnlift!=NULL) *returnlift+=lift;
     }
-    float alpha=Math::atan2(lift_moment,_zentipetalforce * _len); 
-
+    //use 1st order approximation for alpha
+    //float alpha=Math::atan2(lift_moment,_centripetalforce * _len); 
+    float alpha;
+    if (_shared_flap_hinge)
+    {
+        float div=0;
+        if (Math::abs(_alphaalt) >1e-6)
+            div=(_centripetalforce * _len - _mass * _len * 9.81 * relgrav /_alpha0*(_alphaalt+_oppositerp->getAlphaAlt())/(2.0*_alphaalt));
+        if (Math::abs(div)>1e-6)
+        {
+            alpha=lift_moment/div;
+        }
+        else if(Math::abs(_alphaalt+_oppositerp->getAlphaAlt())>1e-6)
+        {
+            float div=(_centripetalforce * _len - _mass * _len * 9.81 *0.5 * relgrav)*(_alphaalt+_oppositerp->getAlphaAlt());
+            if (Math::abs(div)>1e-6)
+            {
+                alpha=_oppositerp->getAlphaAlt()+lift_moment/div*_alphaalt;
+            }
+            else
+                alpha=_alphaalt;
+        }
+        else
+            alpha=_alphaalt;
+        if (_omega/_omegan<0.2)
+        {
+            float frac = 0.001+_omega/_omegan*4.995;
+            alpha=Math::clamp(alpha,_alphamin,_alphamax);
+            alpha=_alphaalt*(1-frac)+frac*alpha;
+        }
+    }
+    else
+    {
+        float div=(_centripetalforce * _len - _mass * _len * 9.81 /_alpha0);
+        if (Math::abs(div)>1e-6)
+            alpha=lift_moment/div;
+        else
+            alpha=_alphaalt;
+    }
     return (alpha);
 }
 
@@ -452,68 +515,57 @@ void Rotorpart::calcForce(float* v, float rho,  float* out, float* torque,
         *torque_scalar=0;
         return;
     }
-    _zentipetalforce=_mass*_len*_omega*_omega;
+    _centripetalforce=_mass*_len*_omega*_omega;
     float vrel[3],vreldir[3];
     Math::sub3(_speed,v,vrel);
-    float scalar_torque=0,alpha_alteberechnung=0;
+    float scalar_torque=0;
     Math::unit3(vrel,vreldir);//direction of blade-movement rel. to air
-    float delta=Math::asin(Math::dot3(_normal,vreldir));
     //Angle of blade which would produce no vertical force (where the 
     //effective incidence is zero)
 
-    float cyc=_mincyclic+(_cyclic+1)/2*(_maxcyclic-_mincyclic);
-    float col=_minpitch+(_collective+1)/2*(_maxpitch-_minpitch);
-    _incidence=(col+cyc)-_delta3*_alphaalt;
+    float cyc=_cyclic;
+    float col=_collective;
+    if (_shared_flap_hinge)
+        _incidence=(col+cyc)-_delta3*0.5*(_alphaalt-_oppositerp->getAlphaAlt());
+    else
+        _incidence=(col+cyc)-_delta3*_alphaalt;
     //the incidence of the rotorblade due to control input reduced by the
     //delta3 effect, see README.YASIM
-    float beta=_relamp*cyc+col; 
+    //float beta=_relamp*cyc+col; 
     //the incidence of the rotorblade which is used for the calculation
 
     float alpha,factor; //alpha is the flapping angle
     //the new flapping angle will be the old flapping angle
     //+ factor *(alpha - "old flapping angle")
-    if((_omega*10)>_omegan) 
-    //the rotor is rotaing quite fast.
-    //(at least 10% of the nominal rotational speed)
-    {
-        alpha=calculateAlpha(v,rho,_incidence,cyc,0,&scalar_torque);
-        //the incidence is a function of alpha (if _delta* != 0)
-        //Therefore missing: wrap this function in an integrator
-        //(runge kutta e. g.)
+    alpha=calculateAlpha(v,rho,_incidence,cyc,0,&scalar_torque);
+    alpha=Math::clamp(alpha,_alphamin,_alphamax);
+    //the incidence is a function of alpha (if _delta* != 0)
+    //Therefore missing: wrap this function in an integrator
+    //(runge kutta e. g.)
 
-        factor=_dt*_dynamic;
-        if (factor>1) factor=1;
-    }
-    else //the rotor is not rotating or rotating very slowly 
-    {
-        alpha=calculateAlpha(v,rho,_incidence,cyc,alpha_alteberechnung,
-            &scalar_torque);
-        //calculate drag etc., e. g. for deccelrating the rotor if engine
-        //is off and omega <10%
-
-        float rel =_omega*10 / _omegan;
-        alpha=rel * alpha + (1-rel)* _alpha0;
-        factor=_dt*_dynamic/10;
-        if (factor>1) factor=1;
-    }
+    factor=_dt*_dynamic;
+    if (factor>1) factor=1;
 
-    float vz=Math::dot3(_normal,v); //the s
     float dirblade[3];
-    Math::cross3(_normal,_directionofzentipetalforce,dirblade);
+    Math::cross3(_normal,_directionofcentripetalforce,dirblade);
     float vblade=Math::abs(Math::dot3(dirblade,v));
-    float tliftfactor=Math::sqrt(1+vblade*_translift);
 
     alpha=_alphaalt+(alpha-_alphaalt)*factor;
     _alpha=alpha;
-    float meancosalpha=(1*Math::cos(_lastrp->getrealAlpha())
-        +1*Math::cos(_nextrp->getrealAlpha())
+    float meancosalpha=(1*Math::cos(_last90rp->getrealAlpha())
+        +1*Math::cos(_next90rp->getrealAlpha())
         +1*Math::cos(_oppositerp->getrealAlpha())
         +1*Math::cos(alpha))/4;
-    float schwenkfactor=1-(Math::cos(_lastrp->getrealAlpha())-meancosalpha);
+    float schwenkfactor=1-(Math::cos(_lastrp->getrealAlpha())-meancosalpha)*_rotor->getNumberOfParts()/4;
 
     //missing: consideration of rellenhinge
-    float xforce = Math::cos(alpha)*_zentipetalforce;
-    float zforce = schwenkfactor*Math::sin(alpha)*_zentipetalforce;
+
+    //add the unbalance
+    _centripetalforce*=_balance;
+    scalar_torque*=_balance;
+
+    float xforce = Math::cos(alpha)*_centripetalforce;
+    float zforce = schwenkfactor*Math::sin(alpha)*_centripetalforce;
     *torque_scalar=scalar_torque;
     scalar_torque+= 0*_ddt_omega*_torque_of_inertia;
     float thetorque = scalar_torque;
@@ -522,7 +574,7 @@ void Rotorpart::calcForce(float* v, float rho,  float* out, float* torque,
     for(i=0; i<3; i++) {
         _last_torque[i]=torque[i] = f*_normal[i]*thetorque;
         out[i] = _normal[i]*zforce*_rotor->getLiftFactor()
-            +_directionofzentipetalforce[i]*xforce;
+            +_directionofcentripetalforce[i]*xforce;
     }
 }
 
@@ -531,8 +583,58 @@ void Rotorpart::getAccelTorque(float relaccel,float *t)
     int i;
     float f=_rotor->getCcw()?1:-1;
     for(i=0; i<3; i++) {
-        t[i]=f*-1* _normal[i]*relaccel*_omegan* _torque_of_inertia;
+        t[i]=f*-1* _normal[i]*relaccel*_omegan* _torque_of_inertia;// *_omeagan ?
         _rotor->addTorque(-relaccel*_omegan* _torque_of_inertia);
     }
 }
+std::ostream &  operator<<(std::ostream & out, const Rotorpart& rp)
+{
+#define i(x) << #x << ":" << rp.x << endl
+#define iv(x) << #x << ":" << rp.x[0] << ";" << rp.x[1] << ";" <<rp.x[2] << ";" << endl
+    out << "Writing Info on Rotorpart " << endl
+        i( _dt)
+        iv( _last_torque)
+        i( _compiled)
+        iv( _pos)    // position in local coords
+        iv( _posforceattac)    // position in local coords
+        iv( _normal) //direcetion of the rotation axis
+        i( _torque_max_force)
+        i( _torque_no_force)
+        iv( _speed)
+        iv( _direction_of_movement)
+        iv( _directionofcentripetalforce)
+        iv( _directionofrotorpart)
+        i( _centripetalforce)
+        i( _cyclic)
+        i( _collective)
+        i( _delta3)
+        i( _dynamic)
+        i( _translift)
+        i( _c2)
+        i( _mass)
+        i( _alpha)
+        i( _alphaalt)
+        i( _alphamin) i(_alphamax) i(_alpha0) i(_alpha0factor)
+        i( _rellenhinge)
+        i( _relamp)
+        i( _omega) i(_omegan) i(_ddt_omega)
+        i( _phi)
+        i( _len)
+        i( _incidence)
+        i( _twist) //outer incidence = inner inner incidence + _twist
+        i( _number_of_segments)
+        i( _rel_len_where_incidence_is_measured)
+        i( _rel_len_blade_start)
+        i( _diameter)
+        i( _torque_of_inertia)
+        i( _torque) 
+        i (_alphaoutputbuf[0])
+        i (_alphaoutputbuf[1])
+        i( _alpha2type)
+        i(_rotor_correction_factor)
+    << endl;
+#undef i
+#undef iv
+    return out;  
+}
 }; // namespace yasim