]> git.mxchange.org Git - flightgear.git/blobdiff - src/Main/viewer_lookat.cxx
Added a new 'delimiter' property to allow an alternative delimiter to
[flightgear.git] / src / Main / viewer_lookat.cxx
index 21e2a5ad00b438c026035beb0fb02bdf232eed6b..d52a8072b11d7b17d52aadbd54c1c42d6b8e2677 100644 (file)
@@ -34,6 +34,7 @@
 #include <simgear/debug/logstream.hxx>
 #include <simgear/math/point3d.hxx>
 #include <simgear/math/polar3d.hxx>
+#include <simgear/math/sg_geodesy.hxx>
 #include <simgear/math/vector.hxx>
 
 #include <Scenery/scenery.hxx>
 // Constructor
 FGViewerLookAt::FGViewerLookAt( void )
 {
+    set_reverse_view_offset(true);
 }
 
 
-static void fgLookAt( sgVec3 eye, sgVec3 center, sgVec3 up, sgMat4 &m ) {
-    double x[3], y[3], z[3];
-    double mag;
-
-    /* Make rotation matrix */
-
-    /* Z vector */
-    z[0] = eye[0] - center[0];
-    z[1] = eye[1] - center[1];
-    z[2] = eye[2] - center[2];
-    mag = sqrt( z[0]*z[0] + z[1]*z[1] + z[2]*z[2] );
-    if (mag) {  /* mpichler, 19950515 */
-        z[0] /= mag;
-        z[1] /= mag;
-        z[2] /= mag;
-    }
-
-    /* Y vector */
-    y[0] = up[0];
-    y[1] = up[1];
-    y[2] = up[2];
-
-    /* X vector = Y cross Z */
-    x[0] =  y[1]*z[2] - y[2]*z[1];
-    x[1] = -y[0]*z[2] + y[2]*z[0];
-    x[2] =  y[0]*z[1] - y[1]*z[0];
-
-    /* Recompute Y = Z cross X */
-    y[0] =  z[1]*x[2] - z[2]*x[1];
-    y[1] = -z[0]*x[2] + z[2]*x[0];
-    y[2] =  z[0]*x[1] - z[1]*x[0];
-
-    /* mpichler, 19950515 */
-    /* cross product gives area of parallelogram, which is < 1.0 for
-     * non-perpendicular unit-length vectors; so normalize x, y here
-     */
-
-    mag = sqrt( x[0]*x[0] + x[1]*x[1] + x[2]*x[2] );
-    if (mag) {
-        x[0] /= mag;
-        x[1] /= mag;
-        x[2] /= mag;
-    }
-
-    mag = sqrt( y[0]*y[0] + y[1]*y[1] + y[2]*y[2] );
-    if (mag) {
-        y[0] /= mag;
-        y[1] /= mag;
-        y[2] /= mag;
-    }
-
-#define M(row,col)  m[row][col]
-    M(0,0) = x[0];  M(0,1) = x[1];  M(0,2) = x[2];  M(0,3) = 0.0;
-    M(1,0) = y[0];  M(1,1) = y[1];  M(1,2) = y[2];  M(1,3) = 0.0;
-    M(2,0) = z[0];  M(2,1) = z[1];  M(2,2) = z[2];  M(2,3) = 0.0;
-    M(3,0) = -eye[0]; M(3,1) = -eye[1]; M(3,2) = -eye[2]; M(3,3) = 1.0;
+void fgMakeLookAtMat4 ( sgMat4 dst, const sgVec3 eye, const sgVec3 center,
+                       const sgVec3 up )
+{
+  // Caveats:
+  // 1) In order to compute the line of sight, the eye point must not be equal
+  //    to the center point.
+  // 2) The up vector must not be parallel to the line of sight from the eye
+  //    to the center point.
+
+  /* Compute the direction vectors */
+  sgVec3 x,y,z;
+
+  /* Y vector = center - eye */
+  sgSubVec3 ( y, center, eye ) ;
+
+  /* Z vector = up */
+  sgCopyVec3 ( z, up ) ;
+
+  /* X vector = Y cross Z */
+  sgVectorProductVec3 ( x, y, z ) ;
+
+  /* Recompute Z = X cross Y */
+  sgVectorProductVec3 ( z, x, y ) ;
+
+  /* Normalize everything */
+  sgNormaliseVec3 ( x ) ;
+  sgNormaliseVec3 ( y ) ;
+  sgNormaliseVec3 ( z ) ;
+
+  /* Build the matrix */
+#define M(row,col)  dst[row][col]
+  M(0,0) = x[0];    M(0,1) = x[1];    M(0,2) = x[2];    M(0,3) = 0.0;
+  M(1,0) = y[0];    M(1,1) = y[1];    M(1,2) = y[2];    M(1,3) = 0.0;
+  M(2,0) = z[0];    M(2,1) = z[1];    M(2,2) = z[2];    M(2,3) = 0.0;
+  M(3,0) = eye[0];  M(3,1) = eye[1];  M(3,2) = eye[2];  M(3,3) = 1.0;
 #undef M
 }
 
 
-// convert sgMat4 to MAT3 and print
-static void print_sgMat4( sgMat4 &in) {
-    int i, j;
-    for ( i = 0; i < 4; i++ ) {
-       for ( j = 0; j < 4; j++ ) {
-           printf("%10.4f ", in[i][j]);
-       }
-       cout << endl;
-    }
-}
-
-
 // Update the view parameters
 void FGViewerLookAt::update() {
-    Point3D tmp;
-    sgVec3 minus_z, forward;
-    sgMat4 VIEWo;
-
-    // calculate the cartesion coords of the current lat/lon/0 elev
-    Point3D p = Point3D( geod_view_pos[0], 
-                        geod_view_pos[1], 
-                        sea_level_radius );
-
-    tmp = sgPolarToCart3d(p) - scenery.center;
-    sgSetVec3( zero_elev, tmp[0], tmp[1], tmp[2] );
-
-    // calculate view position in current FG view coordinate system
-    // p.lon & p.lat are already defined earlier, p.radius was set to
-    // the sea level radius, so now we add in our altitude.
-    if ( geod_view_pos[2] > (scenery.cur_elev + 0.5 * METER_TO_FEET) ) {
-       p.setz( p.radius() + geod_view_pos[2] );
-    } else {
-       p.setz( p.radius() + scenery.cur_elev + 0.5 * METER_TO_FEET );
-    }
-
-    tmp = sgPolarToCart3d(p);
-    sgdSetVec3( abs_view_pos, tmp[0], tmp[1], tmp[2] );
-
-    // view_pos = abs_view_pos - scenery.center;
-    sgdVec3 sc;
-    sgdSetVec3( sc, scenery.center.x(), scenery.center.y(), scenery.center.z());
-    sgdVec3 vp;
-    sgdSubVec3( vp, abs_view_pos, sc );
-    sgSetVec3( view_pos, vp );
-
-    FG_LOG( FG_VIEW, FG_DEBUG, "sea level radius = " << sea_level_radius );
-    FG_LOG( FG_VIEW, FG_DEBUG, "Polar view pos = " << p );
-    FG_LOG( FG_VIEW, FG_DEBUG, "Absolute view pos = "
-           << abs_view_pos[0] << ","
-           << abs_view_pos[1] << ","
-           << abs_view_pos[2] );
-    FG_LOG( FG_VIEW, FG_DEBUG, "Relative view pos = "
-           << view_pos[0] << "," << view_pos[1] << "," << view_pos[2] );
-    FG_LOG( FG_VIEW, FG_DEBUG, "view forward = "
-           << view_forward[0] << "," << view_forward[1] << ","
-           << view_forward[2] );
-    FG_LOG( FG_VIEW, FG_DEBUG, "view up = "
-           << view_up[0] << "," << view_up[1] << ","
-           << view_up[2] );
-
+    sgVec3 minus_z;
+
+    view_point.setPosition(geod_view_pos[0] * SGD_RADIANS_TO_DEGREES,
+                          geod_view_pos[1] * SGD_RADIANS_TO_DEGREES,
+                          geod_view_pos[2] * SG_METER_TO_FEET);
+    sgCopyVec3(zero_elev, view_point.getZeroElevViewPos());
+    sgdCopyVec3(abs_view_pos, view_point.getAbsoluteViewPos());
+    sgCopyVec3(view_pos, view_point.getRelativeViewPos());
+
+    sgVec3 tmp_offset;
+    sgCopyVec3( tmp_offset, pilot_offset );
+    SG_LOG( SG_VIEW, SG_DEBUG, "tmp offset = "
+            << tmp_offset[0] << "," << tmp_offset[1] << ","
+            << tmp_offset[2] );
+       
+    //!!!!!!!!!!!!!!!!!!!      
+    // THIS IS THE EXPERIMENTAL VIEWING ANGLE SHIFTER
+    // THE MAJORITY OF THE WORK IS DONE IN GUI.CXX
+    extern float GuiQuat_mat[4][4];
+    sgXformPnt3( tmp_offset, tmp_offset, GuiQuat_mat );
+    SG_LOG( SG_VIEW, SG_DEBUG, "tmp_offset = "
+            << tmp_offset[0] << "," << tmp_offset[1] << ","
+            << tmp_offset[2] );
+       
+    sgAddVec3( view_pos, tmp_offset );
+    // !!!!!!!!!! testing
+       
     // Make the VIEW matrix.
-    fgLookAt( view_pos, view_forward, view_up, VIEW );
-    // cout << "VIEW matrix" << endl;
-    // print_sgMat4( VIEW );
+    fgMakeLookAtMat4( VIEW, view_pos, view_forward, view_up );
 
     // the VIEW matrix includes both rotation and translation.  Let's
     // knock out the translation part to make the VIEW_ROT matrix
@@ -180,24 +128,13 @@ void FGViewerLookAt::update() {
 
     // Make the world up rotation matrix
     sgMakeRotMat4( UP, 
-                  geod_view_pos[0] * RAD_TO_DEG,
+                  geod_view_pos[0] * SGD_RADIANS_TO_DEGREES,
                   0.0,
-                  -geod_view_pos[1] * RAD_TO_DEG );
+                  -geod_view_pos[1] * SGD_RADIANS_TO_DEGREES );
 
     // use a clever observation into the nature of our tranformation
     // matrix to grab the world_up vector
     sgSetVec3( world_up, UP[0][0], UP[0][1], UP[0][2] );
-    // cout << "World Up = " << world_up[0] << "," << world_up[1] << ","
-    //      << world_up[2] << endl;
-    
-
-    //!!!!!!!!!!!!!!!!!!!      
-    // THIS IS THE EXPERIMENTAL VIEWING ANGLE SHIFTER
-    // THE MAJORITY OF THE WORK IS DONE IN GUI.CXX
-    // this in gui.cxx for now just testing
-    extern float quat_mat[4][4];
-    sgPreMultMat4( VIEW, quat_mat);
-    // !!!!!!!!!! testing      
 
     // Given a vector pointing straight down (-Z), map into onto the
     // local plane representing "horizontal".  This should give us the
@@ -207,25 +144,11 @@ void FGViewerLookAt::update() {
     sgmap_vec_onto_cur_surface_plane(world_up, view_pos, minus_z,
                                     surface_south);
     sgNormalizeVec3(surface_south);
-    // cout << "Surface direction directly south " << surface_south[0] << ","
-    //      << surface_south[1] << "," << surface_south[2] << endl;
 
     // now calculate the surface east vector
-#define USE_FAST_SURFACE_EAST
-#ifdef USE_FAST_SURFACE_EAST
     sgVec3 world_down;
     sgNegateVec3(world_down, world_up);
     sgVectorProductVec3(surface_east, surface_south, world_down);
-#else
-    sgMakeRotMat4( TMP, FG_PI_2 * RAD_TO_DEG, world_up );
-    // cout << "sgMat4 TMP" << endl;
-    // print_sgMat4( TMP );
-    sgXformVec3(surface_east, surface_south, TMP);
-#endif //  USE_FAST_SURFACE_EAST
-    // cout << "Surface direction directly east " << surface_east[0] << ","
-    //      << surface_east[1] << "," << surface_east[2] << endl;
-    // cout << "Should be close to zero = "
-    //      << sgScalarProductVec3(surface_south, surface_east) << endl;
 
     set_clean();
 }