]> git.mxchange.org Git - flightgear.git/blobdiff - src/Radio/radio.cxx
Merge branch 'next' of gitorious.org:fg/flightgear into next
[flightgear.git] / src / Radio / radio.cxx
index 0b31647c056ffaa37acf36b5467d5f0949d9740f..169cd322f19bb650c25806fde84f76d8fde3d46b 100644 (file)
@@ -1,6 +1,6 @@
 // radio.cxx -- implementation of FGRadio
 // Class to manage radio propagation using the ITM model
-// Written by Adrian Musceac, started August 2011.
+// Written by Adrian Musceac YO8RZZ, started August 2011.
 //
 // This program is free software; you can redistribute it and/or
 // modify it under the terms of the GNU General Public License as
 #endif
 
 #include <math.h>
+
 #include <stdlib.h>
 #include <deque>
 #include "radio.hxx"
+#include <simgear/scene/material/mat.hxx>
 #include <Scenery/scenery.hxx>
+#include <boost/scoped_array.hpp>
 
 #define WITH_POINT_TO_POINT 1
 #include "itm.cpp"
 
 
-FGRadio::FGRadio() {
+FGRadioTransmission::FGRadioTransmission() {
        
-       /** radio parameters (which should probably be set for each radio) */
        
-       _receiver_sensitivity = -110.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD
+       _receiver_sensitivity = -105.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD or less
        
        /** AM transmitter power in dBm.
-       *       Note this value is calculated from the typical final transistor stage output
-       *       small aircraft have portable transmitters which operate at 36 dBm output (4 Watts)
-       *       later possibly store this value in aircraft description
-       *       ATC comms usually operate high power equipment, thus making the link asymetrical; this is taken care of in propagation routines
+       *       Typical output powers for ATC ground equipment, VHF-UHF:
+       *       40 dBm - 10 W (ground, clearance)
+       *       44 dBm - 20 W (tower)
+       *       47 dBm - 50 W (center, sectors)
+       *       50 dBm - 100 W (center, sectors)
+       *       53 dBm - 200 W (sectors, on directional arrays)
        **/
        _transmitter_power = 43.0;
        
-       /** pilot plane's antenna gain + AI aircraft antenna gain
-       *       real-life gain for conventional monopole/dipole antenna
-       **/
-       _antenna_gain = 2.0;
-       _propagation_model = 2; //  choose between models via option: realistic radio on/off
+       _tx_antenna_height = 2.0; // TX antenna height above ground level
+       
+       _rx_antenna_height = 2.0; // RX antenna height above ground level
+       
+       
+       _rx_antenna_gain = 1.0; // maximum antenna gain expressed in dBi
+       _tx_antenna_gain = 1.0;
+       
+       _rx_line_losses = 2.0;  // to be configured for each station
+       _tx_line_losses = 2.0;
+       
+       _polarization = 1; // default vertical
+       
+       _propagation_model = 2; 
+       
+       _root_node = fgGetNode("sim/radio", true);
+       _terrain_sampling_distance = _root_node->getDoubleValue("sampling-distance", 90.0); // regular SRTM is 90 meters
+       
        
 }
 
-FGRadio::~FGRadio() 
+FGRadioTransmission::~FGRadioTransmission() 
 {
 }
 
 
-double FGRadio::getFrequency(int radio) {
+double FGRadioTransmission::getFrequency(int radio) {
        double freq = 118.0;
        switch (radio) {
                case 1:
@@ -75,18 +92,17 @@ double FGRadio::getFrequency(int radio) {
        return freq;
 }
 
-/*** TODO: receive multiplayer chat message and voice
-***/
-void FGRadio::receiveChat(SGGeod tx_pos, double freq, string text,
-       int ground_to_air) {
+
+void FGRadioTransmission::receiveChat(SGGeod tx_pos, double freq, string text, int ground_to_air) {
 
 }
 
-/*** TODO: receive navaid 
-***/
-double FGRadio::receiveNav(SGGeod tx_pos, double freq, int transmission_type) {
+
+double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmission_type) {
        
-       // need to implement transmitter power
+       // typical VOR/LOC transmitter power appears to be 100 - 200 Watt i.e 50 - 53 dBm
+       // vor/loc typical sensitivity between -107 and -101 dBm
+       // glideslope sensitivity between -85 and -81 dBm
        if ( _propagation_model == 1) {
                return LOS_calculate_attenuation(tx_pos, freq, 1);
        }
@@ -98,48 +114,70 @@ double FGRadio::receiveNav(SGGeod tx_pos, double freq, int transmission_type) {
 
 }
 
-/*** Receive ATC radio communication as text
-***/
-void FGRadio::receiveATC(SGGeod tx_pos, double freq, string text,
-       int ground_to_air) {
 
-       /*
+double FGRadioTransmission::receiveBeacon(SGGeod &tx_pos, double heading, double pitch) {
+       
+       // these properties should be set by an instrument
+       _receiver_sensitivity = _root_node->getDoubleValue("station[0]/rx-sensitivity", _receiver_sensitivity);
+       _transmitter_power = watt_to_dbm(_root_node->getDoubleValue("station[0]/tx-power-watt", _transmitter_power));
+       _polarization = _root_node->getIntValue("station[0]/polarization", 1);
+       _tx_antenna_height += _root_node->getDoubleValue("station[0]/tx-antenna-height", 0);
+       _rx_antenna_height += _root_node->getDoubleValue("station[0]/rx-antenna-height", 0);
+       _tx_antenna_gain += _root_node->getDoubleValue("station[0]/tx-antenna-gain", 0);
+       _rx_antenna_gain += _root_node->getDoubleValue("station[0]/rx-antenna-gain", 0);
+       
+       double freq = _root_node->getDoubleValue("station[0]/frequency", 144.8);        // by default stay in the ham 2 meter band
+       
        double comm1 = getFrequency(1);
        double comm2 = getFrequency(2);
-       if ( (freq != comm1) &&  (freq != comm2) ) {
-               cerr << "Frequency not tuned: " << freq << " Radio1: " << comm1 << " Radio2: " << comm2 << endl;
+       if ( !(fabs(freq - comm1) <= 0.0001) &&  !(fabs(freq - comm2) <= 0.0001) ) {
+               return -1;
+       }
+       
+       double signal = ITM_calculate_attenuation(tx_pos, freq, 1);
+       
+       return signal;
+}
+
+
+
+void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) {
+
+       // adjust some default parameters in case the ATC code does not set them
+       if(ground_to_air == 1) {
+               _transmitter_power += 4.0;
+               _tx_antenna_height += 30.0;
+               _tx_antenna_gain += 2.0; 
+       }
+       
+       double comm1 = getFrequency(1);
+       double comm2 = getFrequency(2);
+       if ( !(fabs(freq - comm1) <= 0.0001) &&  !(fabs(freq - comm2) <= 0.0001) ) {
                return;
        }
        else {
-       */
-               if ( _propagation_model == 0) {
+       
+               if ( _propagation_model == 0) {         // skip propagation routines entirely
                        fgSetString("/sim/messages/atc", text.c_str());
                }
-               else if ( _propagation_model == 1 ) {
-                       // TODO: free space, round earth
+               else if ( _propagation_model == 1 ) {           // Use free-space, round earth
+                       
                        double signal = LOS_calculate_attenuation(tx_pos, freq, ground_to_air);
                        if (signal <= 0.0) {
-                               SG_LOG(SG_GENERAL, SG_BULK, "Signal below receiver minimum sensitivity: " << signal);
-                               //cerr << "Signal below receiver minimum sensitivity: " << signal << endl;
                                return;
                        }
                        else {
-                               SG_LOG(SG_GENERAL, SG_BULK, "Signal completely readable: " << signal);
-                               //cerr << "Signal completely readable: " << signal << endl;
                                fgSetString("/sim/messages/atc", text.c_str());
-                               fgSetDouble("/sim/radio/comm1-signal", signal);
                        }
                }
-               else if ( _propagation_model == 2 ) {
-                       // Use ITM propagation model
+               else if ( _propagation_model == 2 ) {   // Use ITM propagation model
+                       
                        double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
                        if (signal <= 0.0) {
-                               SG_LOG(SG_GENERAL, SG_BULK, "Signal below receiver minimum sensitivity: " << signal);
-                               //cerr << "Signal below receiver minimum sensitivity: " << signal << endl;
                                return;
                        }
                        if ((signal > 0.0) && (signal < 12.0)) {
-                               /** for low SNR values implement a way to make the conversation
+                               /** for low SNR values need a way to make the conversation
                                *       hard to understand but audible
                                *       in the real world, the receiver AGC fails to capture the slope
                                *       and the signal, due to being amplitude modulated, decreases volume after demodulation
@@ -155,87 +193,72 @@ void FGRadio::receiveATC(SGGeod tx_pos, double freq, string text,
                                        text.replace(pos,1, hash_noise);
                                }
                                */
-                               double volume = (fabs(signal - 12.0) / 12);
-                               double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
-                               SG_LOG(SG_GENERAL, SG_BULK, "Usable signal at limit: " << signal);
-                               //cerr << "Usable signal at limit: " << signal << endl;
-                               fgSetDouble("/sim/sound/voices/voice/volume", volume);
+                               //double volume = (fabs(signal - 12.0) / 12);
+                               //double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
+                               
+                               //fgSetDouble("/sim/sound/voices/voice/volume", volume);
                                fgSetString("/sim/messages/atc", text.c_str());
-                               fgSetDouble("/sim/radio/comm1-signal", signal);
-                               fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
+                               //fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
                        }
                        else {
-                               SG_LOG(SG_GENERAL, SG_BULK, "Signal completely readable: " << signal);
-                               //cerr << "Signal completely readable: " << signal << endl;
                                fgSetString("/sim/messages/atc", text.c_str());
-                               fgSetDouble("/sim/radio/comm1-signal", signal);
                        }
-                       
                }
-               
-       //}
-       
+       }
 }
 
-/***  Implement radio attenuation              
-         based on the Longley-Rice propagation model
-***/
-double FGRadio::ITM_calculate_attenuation(SGGeod pos, double freq,
-                               int transmission_type) {
+
+double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
 
        
-       
+       if((freq < 40.0) || (freq > 20000.0))   // frequency out of recommended range 
+               return -1;
        /** ITM default parameters 
                TODO: take them from tile materials (especially for sea)?
        **/
        double eps_dielect=15.0;
        double sgm_conductivity = 0.005;
        double eno = 301.0;
-       double frq_mhz;
-       if( (freq < 118.0) || (freq > 137.0) )
-               frq_mhz = 125.0;        // sane value, middle of bandplan
-       else
-               frq_mhz = freq;
+       double frq_mhz = freq;
+       
        int radio_climate = 5;          // continental temperate
-       int pol=1;      // assuming vertical polarization although this is more complex in reality
+       int pol= _polarization; 
        double conf = 0.90;     // 90% of situations and time, take into account speed
        double rel = 0.90;      
        double dbloss;
        char strmode[150];
+       int p_mode = 0; // propgation mode selector: 0 LOS, 1 diffraction dominant, 2 troposcatter
+       double horizons[2];
        int errnum;
        
+       double clutter_loss = 0.0;      // loss due to vegetation and urban
        double tx_pow = _transmitter_power;
-       double ant_gain = _antenna_gain;
+       double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
        double signal = 0.0;
        
-       if(transmission_type == 1)
-               tx_pow = _transmitter_power + 6.0;
-
-       if((transmission_type == 1) || (transmission_type == 3))
-               ant_gain = _antenna_gain + 3.0; //pilot plane's antenna gain + ground station antenna gain
        
-       double link_budget = tx_pow - _receiver_sensitivity + ant_gain; 
+       double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain;     
+       double signal_strength = tx_pow - _rx_line_losses - _tx_line_losses + ant_gain; 
+       double tx_erp = dbm_to_watt(tx_pow + _tx_antenna_gain - _tx_line_losses);
+       
 
        FGScenery * scenery = globals->get_scenery();
        
        double own_lat = fgGetDouble("/position/latitude-deg");
        double own_lon = fgGetDouble("/position/longitude-deg");
        double own_alt_ft = fgGetDouble("/position/altitude-ft");
+       double own_heading = fgGetDouble("/orientation/heading-deg");
        double own_alt= own_alt_ft * SG_FEET_TO_METER;
        
        
-       //cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
+       
        
        SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
        SGGeod max_own_pos = SGGeod::fromDegM( own_lon, own_lat, SG_MAX_ELEVATION_M );
        SGGeoc center = SGGeoc::fromGeod( max_own_pos );
        SGGeoc own_pos_c = SGGeoc::fromGeod( own_pos );
        
-       /**     position of sender radio antenna (HAAT)
-                       sender can be aircraft or ground station
-       **/
-       double ATC_HAAT = 30.0;
-       double Aircraft_HAAT = 5.0;
+       
        double sender_alt_ft,sender_alt;
        double transmitter_height=0.0;
        double receiver_height=0.0;
@@ -245,16 +268,17 @@ double FGRadio::ITM_calculate_attenuation(SGGeod pos, double freq,
        sender_alt = sender_alt_ft * SG_FEET_TO_METER;
        SGGeod max_sender_pos = SGGeod::fromGeodM( pos, SG_MAX_ELEVATION_M );
        SGGeoc sender_pos_c = SGGeoc::fromGeod( sender_pos );
-       //cerr << "ITM:: sender Lat: " << parent->getLatitude() << ", Lon: " << parent->getLongitude() << ", Alt: " << sender_alt << endl;
        
-       double point_distance= 90.0; // regular SRTM is 90 meters
+       
+       double point_distance= _terrain_sampling_distance; 
        double course = SGGeodesy::courseRad(own_pos_c, sender_pos_c);
+       double reverse_course = SGGeodesy::courseRad(sender_pos_c, own_pos_c);
        double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
        double probe_distance = 0.0;
-       /** If distance larger than this value (300 km), assume reception imposssible */
+       /** If distance larger than this value (300 km), assume reception imposssible to spare CPU cycles */
        if (distance_m > 300000)
                return -1.0;
-       /** If above 8000 meters, consider LOS mode and calculate free-space att */
+       /** If above 8000 meters, consider LOS mode and calculate free-space att to spare CPU cycles */
        if (own_alt > 8000) {
                dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
                SG_LOG(SG_GENERAL, SG_BULK,
@@ -265,12 +289,16 @@ double FGRadio::ITM_calculate_attenuation(SGGeod pos, double freq,
        }
        
                
-       double max_points = distance_m / point_distance;
-       deque<double> _elevations;
+       int max_points = (int)floor(distance_m / point_distance);
+       //double delta_last = fmod(distance_m, point_distance);
+       
+       deque<double> elevations;
+       deque<string*> materials;
+       
 
        double elevation_under_pilot = 0.0;
        if (scenery->get_elevation_m( max_own_pos, elevation_under_pilot, NULL )) {
-               receiver_height = own_alt - elevation_under_pilot + 3; //assume antenna located 3 meters above ground
+               receiver_height = own_alt - elevation_under_pilot
        }
 
        double elevation_under_sender = 0.0;
@@ -281,116 +309,625 @@ double FGRadio::ITM_calculate_attenuation(SGGeod pos, double freq,
                transmitter_height = sender_alt;
        }
        
-       if(transmission_type == 1) 
-               transmitter_height += ATC_HAAT;
-       else
-               transmitter_height += Aircraft_HAAT;
        
-       SG_LOG(SG_GENERAL, SG_BULK,
-                       "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters");
-       cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl;
+       transmitter_height += _tx_antenna_height;
+       receiver_height += _rx_antenna_height;
+       
+       //cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl;
+       _root_node->setDoubleValue("station[0]/rx-height", receiver_height);
+       _root_node->setDoubleValue("station[0]/tx-height", transmitter_height);
+       _root_node->setDoubleValue("station[0]/distance", distance_m / 1000);
        
        unsigned int e_size = (deque<unsigned>::size_type)max_points;
        
-       while (_elevations.size() <= e_size) {
+       while (elevations.size() <= e_size) {
                probe_distance += point_distance;
                SGGeod probe = SGGeod::fromGeoc(center.advanceRadM( course, probe_distance ));
-               
+               const SGMaterial *mat = 0;
                double elevation_m = 0.0;
        
-               if (scenery->get_elevation_m( probe, elevation_m, NULL )) {
+               if (scenery->get_elevation_m( probe, elevation_m, &mat )) {
                        if((transmission_type == 3) || (transmission_type == 4)) {
-                               _elevations.push_back(elevation_m);
+                               elevations.push_back(elevation_m);
+                               if(mat) {
+                                       const std::vector<string> mat_names = mat->get_names();
+                                       string* name = new string(mat_names[0]);
+                                       materials.push_back(name);
+                               }
+                               else {
+                                       string* no_material = new string("None"); 
+                                       materials.push_back(no_material);
+                               }
                        }
                        else {
-                                _elevations.push_front(elevation_m);
+                                elevations.push_front(elevation_m);
+                                if(mat) {
+                                        const std::vector<string> mat_names = mat->get_names();
+                                        string* name = new string(mat_names[0]);
+                                        materials.push_front(name);
+                               }
+                               else {
+                                       string* no_material = new string("None"); 
+                                       materials.push_front(no_material);
+                               }
                        }
                }
                else {
                        if((transmission_type == 3) || (transmission_type == 4)) {
-                               _elevations.push_back(elevation_m);
+                               elevations.push_back(0.0);
+                               string* no_material = new string("None"); 
+                               materials.push_back(no_material);
                        }
                        else {
-                       _elevations.push_front(0.0);
+                               string* no_material = new string("None"); 
+                               elevations.push_front(0.0);
+                               materials.push_front(no_material);
                        }
                }
        }
        if((transmission_type == 3) || (transmission_type == 4)) {
-               _elevations.push_front(elevation_under_pilot);
-               _elevations.push_back(elevation_under_sender);
+               elevations.push_front(elevation_under_pilot);
+               //if (delta_last > (point_distance / 2) )                       // only add last point if it's farther than half point_distance
+                       elevations.push_back(elevation_under_sender);
        }
        else {
-               _elevations.push_back(elevation_under_pilot);
-               _elevations.push_front(elevation_under_sender);
+               elevations.push_back(elevation_under_pilot);
+               //if (delta_last > (point_distance / 2) )
+                       elevations.push_front(elevation_under_sender);
        }
        
        
-       double max_alt_between=0.0;
-       for( deque<double>::size_type i = 0; i < _elevations.size(); i++ ) {
-               if (_elevations[i] > max_alt_between) {
-                       max_alt_between = _elevations[i];
-               }
-       }
-       
-       double num_points= (double)_elevations.size();
-       //cerr << "ITM:: Max alt between: " << max_alt_between << ", num points:" << num_points << endl;
-       _elevations.push_front(point_distance);
-       _elevations.push_front(num_points -1);
-       int size = _elevations.size();
-       double itm_elev[size];
+       double num_points= (double)elevations.size();
+
+
+       elevations.push_front(point_distance);
+       elevations.push_front(num_points -1);
+
+       int size = elevations.size();
+        boost::scoped_array<double> itm_elev( new double[size] );
+
        for(int i=0;i<size;i++) {
-               itm_elev[i]=_elevations[i];
-               //cerr << "ITM:: itm_elev: " << _elevations[i] << endl;
+               itm_elev[i]=elevations[i];
        }
-
        
-       /** first Fresnel zone radius
-               frequency in the middle of the bandplan, more accuracy is not necessary
-       */
-       double fz_clr= 8.657 * sqrt(distance_m / 0.125);
-       
-       // TODO: If we clear the first Fresnel zone, we are into line of sight territory
-
-       // else we need to calculate point to point link loss
        if((transmission_type == 3) || (transmission_type == 4)) {
                // the sender and receiver roles are switched
-               point_to_point(itm_elev, receiver_height, transmitter_height,
+               ITM::point_to_point(itm_elev.get(), receiver_height, transmitter_height,
                        eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
-                       pol, conf, rel, dbloss, strmode, errnum);
-               
+                       pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
+               if( _root_node->getBoolValue( "use-clutter-attenuation", false ) )
+                       calculate_clutter_loss(frq_mhz, itm_elev.get(), materials, receiver_height, transmitter_height, p_mode, horizons, clutter_loss);
        }
        else {
-
-               point_to_point(itm_elev, transmitter_height, receiver_height,
+               ITM::point_to_point(itm_elev.get(), transmitter_height, receiver_height,
                        eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
-                       pol, conf, rel, dbloss, strmode, errnum);
+                       pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
+               if( _root_node->getBoolValue( "use-clutter-attenuation", false ) )
+                       calculate_clutter_loss(frq_mhz, itm_elev.get(), materials, transmitter_height, receiver_height, p_mode, horizons, clutter_loss);
        }
-       SG_LOG(SG_GENERAL, SG_BULK,
-                       "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
-       cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
        
-       //if (errnum == 4)      // if parameters are outside sane values for lrprop, the alternative method is used
+       double pol_loss = 0.0;
+       // TODO: remove this check after we check a bit the axis calculations in this function
+       if (_polarization == 1) {
+               pol_loss = polarization_loss();
+       }
+       //SG_LOG(SG_GENERAL, SG_BULK,
+       //              "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
+       //cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
+       _root_node->setDoubleValue("station[0]/link-budget", link_budget);
+       _root_node->setDoubleValue("station[0]/terrain-attenuation", dbloss);
+       _root_node->setStringValue("station[0]/prop-mode", strmode);
+       _root_node->setDoubleValue("station[0]/clutter-attenuation", clutter_loss);
+       _root_node->setDoubleValue("station[0]/polarization-attenuation", pol_loss);
+       //if (errnum == 4)      // if parameters are outside sane values for lrprop, bail out fast
        //      return -1;
-       signal = link_budget - dbloss;
+       
+       // temporary, keep this antenna radiation pattern code here
+       double tx_pattern_gain = 0.0;
+       double rx_pattern_gain = 0.0;
+       double sender_heading = 270.0; // due West
+       double tx_antenna_bearing = sender_heading - reverse_course * SGD_RADIANS_TO_DEGREES;
+       double rx_antenna_bearing = own_heading - course * SGD_RADIANS_TO_DEGREES;
+       double rx_elev_angle = atan((itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m) * SGD_RADIANS_TO_DEGREES;
+       double tx_elev_angle = 0.0 - rx_elev_angle;
+       if (_root_node->getBoolValue("use-tx-antenna-pattern", false)) {
+               FGRadioAntenna* TX_antenna;
+               TX_antenna = new FGRadioAntenna("Plot2");
+               TX_antenna->set_heading(sender_heading);
+               TX_antenna->set_elevation_angle(0);
+               tx_pattern_gain = TX_antenna->calculate_gain(tx_antenna_bearing, tx_elev_angle);
+               delete TX_antenna;
+       }
+       if (_root_node->getBoolValue("use-rx-antenna-pattern", false)) {
+               FGRadioAntenna* RX_antenna;
+               RX_antenna = new FGRadioAntenna("Plot2");
+               RX_antenna->set_heading(own_heading);
+               RX_antenna->set_elevation_angle(fgGetDouble("/orientation/pitch-deg"));
+               rx_pattern_gain = RX_antenna->calculate_gain(rx_antenna_bearing, rx_elev_angle);
+               delete RX_antenna;
+       }
+       
+       signal = link_budget - dbloss - clutter_loss + pol_loss + rx_pattern_gain + tx_pattern_gain;
+       double signal_strength_dbm = signal_strength - dbloss - clutter_loss + pol_loss + rx_pattern_gain + tx_pattern_gain;
+       double field_strength_uV = dbm_to_microvolt(signal_strength_dbm);
+       _root_node->setDoubleValue("station[0]/signal-dbm", signal_strength_dbm);
+       _root_node->setDoubleValue("station[0]/field-strength-uV", field_strength_uV);
+       _root_node->setDoubleValue("station[0]/signal", signal);
+       _root_node->setDoubleValue("station[0]/tx-erp", tx_erp);
+
+       //_root_node->setDoubleValue("station[0]/tx-pattern-gain", tx_pattern_gain);
+       //_root_node->setDoubleValue("station[0]/rx-pattern-gain", rx_pattern_gain);
+
+       for (unsigned i =0; i < materials.size(); i++) {
+               delete materials[i];
+       }
+       
        return signal;
 
 }
 
-/*** implement simple LOS propagation model (WIP)
-***/
-double FGRadio::LOS_calculate_attenuation(SGGeod pos, double freq,
-                               int transmission_type) {
-       double frq_mhz;
-       if( (freq < 118.0) || (freq > 137.0) )
-               frq_mhz = 125.0;        // sane value, middle of bandplan
-       else
-               frq_mhz = freq;
+
+void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[], deque<string*> &materials,
+       double transmitter_height, double receiver_height, int p_mode,
+       double horizons[], double &clutter_loss) {
+       
+       double distance_m = itm_elev[0] * itm_elev[1]; // only consider elevation points
+       unsigned mat_size = materials.size();
+       if (p_mode == 0) {      // LOS: take each point and see how clutter height affects first Fresnel zone
+               int mat = 0;
+               int j=1; 
+               for (int k=3;k < (int)(itm_elev[0]) + 2;k++) {
+                       
+                       double clutter_height = 0.0;    // mean clutter height for a certain terrain type
+                       double clutter_density = 0.0;   // percent of reflected wave
+                       if((unsigned)mat >= mat_size) { //this tends to happen when the model interferes with the antenna (obstructs)
+                               //cerr << "Array index out of bounds 0-0: " << mat << " size: " << mat_size << endl;
+                               break;
+                       }
+                       get_material_properties(materials[mat], clutter_height, clutter_density);
+                       
+                       double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
+                       // First Fresnel radius
+                       double frs_rad = 548 * sqrt( (j * itm_elev[1] * (itm_elev[0] - j) * itm_elev[1] / 1000000) / (  distance_m * freq / 1000) );
+                       if (frs_rad <= 0.0) {   //this tends to happen when the model interferes with the antenna (obstructs)
+                               //cerr << "Frs rad 0-0: " << frs_rad << endl;
+                               continue;
+                       }
+                       //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
+                       
+                       double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
+                       double d1 = j * itm_elev[1];
+                       if ((itm_elev[2] + transmitter_height) > ( itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) {
+                               d1 = (itm_elev[0] - j) * itm_elev[1];
+                       }
+                       double ray_height = (grad * d1) + min_elev;
+                       
+                       double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
+                       double intrusion = fabs(clearance);
+                       
+                       if (clearance >= 0) {
+                               // no losses
+                       }
+                       else if (clearance < 0 && (intrusion < clutter_height)) {
+                               
+                               clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
+                       }
+                       else if (clearance < 0 && (intrusion > clutter_height)) {
+                               clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
+                       }
+                       else {
+                               // no losses
+                       }
+                       j++;
+                       mat++;
+               }
+               
+       }
+       else if (p_mode == 1) {         // diffraction
+               
+               if (horizons[1] == 0.0) {       //      single horizon: same as above, except pass twice using the highest point
+                       int num_points_1st = (int)floor( horizons[0] * itm_elev[0]/ distance_m ); 
+                       int num_points_2nd = (int)ceil( (distance_m - horizons[0]) * itm_elev[0] / distance_m ); 
+                       //cerr << "Diffraction 1 horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << endl;
+                       int last = 1;
+                       /** perform the first pass */
+                       int mat = 0;
+                       int j=1; 
+                       for (int k=3;k < num_points_1st + 2;k++) {
+                               if (num_points_1st < 1)
+                                       break;
+                               double clutter_height = 0.0;    // mean clutter height for a certain terrain type
+                               double clutter_density = 0.0;   // percent of reflected wave
+                               
+                               if((unsigned)mat >= mat_size) {         
+                                       //cerr << "Array index out of bounds 1-1: " << mat << " size: " << mat_size << endl;
+                                       break;
+                               }
+                               get_material_properties(materials[mat], clutter_height, clutter_density);
+                               
+                               double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
+                               // First Fresnel radius
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / ( num_points_1st * itm_elev[1] * freq / 1000) );
+                               if (frs_rad <= 0.0) {   
+                                       //cerr << "Frs rad 1-1: " << frs_rad << endl;
+                                       continue;
+                               }
+                               //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
+                               
+                               double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
+                               double d1 = j * itm_elev[1];
+                               if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
+                                       d1 = (num_points_1st - j) * itm_elev[1];
+                               }
+                               double ray_height = (grad * d1) + min_elev;
+                               
+                               double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
+                               double intrusion = fabs(clearance);
+                               
+                               if (clearance >= 0) {
+                                       // no losses
+                               }
+                               else if (clearance < 0 && (intrusion < clutter_height)) {
+                                       
+                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
+                               }
+                               else if (clearance < 0 && (intrusion > clutter_height)) {
+                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
+                               }
+                               else {
+                                       // no losses
+                               }
+                               j++;
+                               mat++;
+                               last = k;
+                       }
+                       
+                       /** and the second pass */
+                       mat +=1;
+                       j =1; // first point is diffraction edge, 2nd the RX elevation
+                       for (int k=last+2;k < (int)(itm_elev[0]) + 2;k++) {
+                               if (num_points_2nd < 1)
+                                       break;
+                               double clutter_height = 0.0;    // mean clutter height for a certain terrain type
+                               double clutter_density = 0.0;   // percent of reflected wave
+                               
+                               if((unsigned)mat >= mat_size) {         
+                                       //cerr << "Array index out of bounds 1-2: " << mat << " size: " << mat_size << endl;
+                                       break;
+                               }
+                               get_material_properties(materials[mat], clutter_height, clutter_density);
+                               
+                               double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
+                               // First Fresnel radius
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
+                               if (frs_rad <= 0.0) {   
+                                       //cerr << "Frs rad 1-2: " << frs_rad << " numpoints2 " << num_points_2nd << " j: " << j << endl;
+                                       continue;
+                               }
+                               //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
+                               
+                               double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
+                               double d1 = j * itm_elev[1];
+                               if ( (itm_elev[last+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { 
+                                       d1 = (num_points_2nd - j) * itm_elev[1];
+                               }
+                               double ray_height = (grad * d1) + min_elev;
+                               
+                               double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
+                               double intrusion = fabs(clearance);
+                               
+                               if (clearance >= 0) {
+                                       // no losses
+                               }
+                               else if (clearance < 0 && (intrusion < clutter_height)) {
+                                       
+                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
+                               }
+                               else if (clearance < 0 && (intrusion > clutter_height)) {
+                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
+                               }
+                               else {
+                                       // no losses
+                               }
+                               j++;
+                               mat++;
+                       }
+                       
+               }
+               else {  // double horizon: same as single horizon, except there are 3 segments
+                       
+                       int num_points_1st = (int)floor( horizons[0] * itm_elev[0] / distance_m ); 
+                       int num_points_2nd = (int)floor(horizons[1] * itm_elev[0] / distance_m ); 
+                       int num_points_3rd = (int)itm_elev[0] - num_points_1st - num_points_2nd; 
+                       //cerr << "Double horizon:: horizon1: " << horizons[0] << " horizon2: " << horizons[1] << " distance: " << distance_m << endl;
+                       //cerr << "Double horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << " points3: " << num_points_3rd << endl;
+                       int last = 1;
+                       /** perform the first pass */
+                       int mat = 0;
+                       int j=1; // first point is TX elevation, 2nd is obstruction elevation
+                       for (int k=3;k < num_points_1st +2;k++) {
+                               if (num_points_1st < 1)
+                                       break;
+                               double clutter_height = 0.0;    // mean clutter height for a certain terrain type
+                               double clutter_density = 0.0;   // percent of reflected wave
+                               if((unsigned)mat >= mat_size) {         
+                                       //cerr << "Array index out of bounds 2-1: " << mat << " size: " << mat_size << endl;
+                                       break;
+                               }
+                               get_material_properties(materials[mat], clutter_height, clutter_density);
+                               
+                               double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
+                               // First Fresnel radius
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / (  num_points_1st * itm_elev[1] * freq / 1000) );
+                               if (frs_rad <= 0.0) {           
+                                       //cerr << "Frs rad 2-1: " << frs_rad << " numpoints1 " << num_points_1st << " j: " << j << endl;
+                                       continue;
+                               }
+                               //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
+                               
+                               double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
+                               double d1 = j * itm_elev[1];
+                               if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
+                                       d1 = (num_points_1st - j) * itm_elev[1];
+                               }
+                               double ray_height = (grad * d1) + min_elev;
+                               
+                               double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
+                               double intrusion = fabs(clearance);
+                               
+                               if (clearance >= 0) {
+                                       // no losses
+                               }
+                               else if (clearance < 0 && (intrusion < clutter_height)) {
+                                       
+                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
+                               }
+                               else if (clearance < 0 && (intrusion > clutter_height)) {
+                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
+                               }
+                               else {
+                                       // no losses
+                               }
+                               j++;
+                               mat++;
+                               last = k;
+                       }
+                       mat +=1;
+                       /** and the second pass */
+                       int last2=1;
+                       j =1; // first point is 1st obstruction elevation, 2nd is 2nd obstruction elevation
+                       for (int k=last+2;k < num_points_1st + num_points_2nd +2;k++) {
+                               if (num_points_2nd < 1)
+                                       break;
+                               double clutter_height = 0.0;    // mean clutter height for a certain terrain type
+                               double clutter_density = 0.0;   // percent of reflected wave
+                               if((unsigned)mat >= mat_size) {         
+                                       //cerr << "Array index out of bounds 2-2: " << mat << " size: " << mat_size << endl;
+                                       break;
+                               }
+                               get_material_properties(materials[mat], clutter_height, clutter_density);
+                               
+                               double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) / distance_m;
+                               // First Fresnel radius
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
+                               if (frs_rad <= 0.0) {   
+                                       //cerr << "Frs rad 2-2: " << frs_rad << " numpoints2 " << num_points_2nd << " j: " << j << endl;
+                                       continue;
+                               }
+                               //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
+                               
+                               double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[num_points_1st + num_points_2nd +2] + clutter_height);
+                               double d1 = j * itm_elev[1];
+                               if ( (itm_elev[last+1] + clutter_height) > (itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) ) { 
+                                       d1 = (num_points_2nd - j) * itm_elev[1];
+                               }
+                               double ray_height = (grad * d1) + min_elev;
+                               
+                               double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
+                               double intrusion = fabs(clearance);
+                               
+                               if (clearance >= 0) {
+                                       // no losses
+                               }
+                               else if (clearance < 0 && (intrusion < clutter_height)) {
+                                       
+                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
+                               }
+                               else if (clearance < 0 && (intrusion > clutter_height)) {
+                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
+                               }
+                               else {
+                                       // no losses
+                               }
+                               j++;
+                               mat++;
+                               last2 = k;
+                       }
+                       
+                       /** third and final pass */
+                       mat +=1;
+                       j =1; // first point is 2nd obstruction elevation, 3rd is RX elevation
+                       for (int k=last2+2;k < (int)itm_elev[0] + 2;k++) {
+                               if (num_points_3rd < 1)
+                                       break;
+                               double clutter_height = 0.0;    // mean clutter height for a certain terrain type
+                               double clutter_density = 0.0;   // percent of reflected wave
+                               if((unsigned)mat >= mat_size) {         
+                                       //cerr << "Array index out of bounds 2-3: " << mat << " size: " << mat_size << endl;
+                                       break;
+                               }
+                               get_material_properties(materials[mat], clutter_height, clutter_density);
+                               
+                               double grad = fabs(itm_elev[last2+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
+                               // First Fresnel radius
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_3rd - j) * itm_elev[1] / 1000000) / (  num_points_3rd * itm_elev[1] * freq / 1000) );
+                               if (frs_rad <= 0.0) {           
+                                       //cerr << "Frs rad 2-3: " << frs_rad << " numpoints3 " << num_points_3rd << " j: " << j << endl;
+                                       continue;
+                               }
+                               
+                               //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
+                               
+                               double min_elev = SGMiscd::min(itm_elev[last2+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
+                               double d1 = j * itm_elev[1];
+                               if ( (itm_elev[last2+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { 
+                                       d1 = (num_points_3rd - j) * itm_elev[1];
+                               }
+                               double ray_height = (grad * d1) + min_elev;
+                               
+                               double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
+                               double intrusion = fabs(clearance);
+                               
+                               if (clearance >= 0) {
+                                       // no losses
+                               }
+                               else if (clearance < 0 && (intrusion < clutter_height)) {
+                                       
+                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
+                               }
+                               else if (clearance < 0 && (intrusion > clutter_height)) {
+                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
+                               }
+                               else {
+                                       // no losses
+                               }
+                               j++;
+                               mat++;
+                               
+                       }
+                       
+               }
+       }
+       else if (p_mode == 2) {         //      troposcatter: ignore ground clutter for now... maybe do something with weather
+               clutter_loss = 0.0;
+       }
+       
+}
+
+
+void FGRadioTransmission::get_material_properties(string* mat_name, double &height, double &density) {
+       
+       if(!mat_name)
+               return;
+       
+       if(*mat_name == "Landmass") {
+               height = 15.0;
+               density = 0.2;
+       }
+
+       else if(*mat_name == "SomeSort") {
+               height = 15.0;
+               density = 0.2;
+       }
+
+       else if(*mat_name == "Island") {
+               height = 15.0;
+               density = 0.2;
+       }
+       else if(*mat_name == "Default") {
+               height = 15.0;
+               density = 0.2;
+       }
+       else if(*mat_name == "EvergreenBroadCover") {
+               height = 20.0;
+               density = 0.2;
+       }
+       else if(*mat_name == "EvergreenForest") {
+               height = 20.0;
+               density = 0.2;
+       }
+       else if(*mat_name == "DeciduousBroadCover") {
+               height = 15.0;
+               density = 0.3;
+       }
+       else if(*mat_name == "DeciduousForest") {
+               height = 15.0;
+               density = 0.3;
+       }
+       else if(*mat_name == "MixedForestCover") {
+               height = 20.0;
+               density = 0.25;
+       }
+       else if(*mat_name == "MixedForest") {
+               height = 15.0;
+               density = 0.25;
+       }
+       else if(*mat_name == "RainForest") {
+               height = 25.0;
+               density = 0.55;
+       }
+       else if(*mat_name == "EvergreenNeedleCover") {
+               height = 15.0;
+               density = 0.2;
+       }
+       else if(*mat_name == "WoodedTundraCover") {
+               height = 5.0;
+               density = 0.15;
+       }
+       else if(*mat_name == "DeciduousNeedleCover") {
+               height = 5.0;
+               density = 0.2;
+       }
+       else if(*mat_name == "ScrubCover") {
+               height = 3.0;
+               density = 0.15;
+       }
+       else if(*mat_name == "BuiltUpCover") {
+               height = 30.0;
+               density = 0.7;
+       }
+       else if(*mat_name == "Urban") {
+               height = 30.0;
+               density = 0.7;
+       }
+       else if(*mat_name == "Construction") {
+               height = 30.0;
+               density = 0.7;
+       }
+       else if(*mat_name == "Industrial") {
+               height = 30.0;
+               density = 0.7;
+       }
+       else if(*mat_name == "Port") {
+               height = 30.0;
+               density = 0.7;
+       }
+       else if(*mat_name == "Town") {
+               height = 10.0;
+               density = 0.5;
+       }
+       else if(*mat_name == "SubUrban") {
+               height = 10.0;
+               density = 0.5;
+       }
+       else if(*mat_name == "CropWoodCover") {
+               height = 10.0;
+               density = 0.1;
+       }
+       else if(*mat_name == "CropWood") {
+               height = 10.0;
+               density = 0.1;
+       }
+       else if(*mat_name == "AgroForest") {
+               height = 10.0;
+               density = 0.1;
+       }
+       else {
+               height = 0.0;
+               density = 0.0;
+       }
+       
+}
+
+
+double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
+       
+       double frq_mhz = freq;
        double dbloss;
        double tx_pow = _transmitter_power;
-       double ant_gain = _antenna_gain;
+       double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
        double signal = 0.0;
-       double ATC_HAAT = 30.0;
-       double Aircraft_HAAT = 5.0;
+       
        double sender_alt_ft,sender_alt;
        double transmitter_height=0.0;
        double receiver_height=0.0;
@@ -399,13 +936,8 @@ double FGRadio::LOS_calculate_attenuation(SGGeod pos, double freq,
        double own_alt_ft = fgGetDouble("/position/altitude-ft");
        double own_alt= own_alt_ft * SG_FEET_TO_METER;
        
-       if(transmission_type == 1)
-               tx_pow = _transmitter_power + 6.0;
-
-       if((transmission_type == 1) || (transmission_type == 3))
-               ant_gain = _antenna_gain + 3.0; //pilot plane's antenna gain + ground station antenna gain
        
-       double link_budget = tx_pow - _receiver_sensitivity + ant_gain; 
+       double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain;     
 
        //cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
        
@@ -421,10 +953,10 @@ double FGRadio::LOS_calculate_attenuation(SGGeod pos, double freq,
        
        double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
        
-       if(transmission_type == 1) 
-               transmitter_height += ATC_HAAT;
-       else
-               transmitter_height += Aircraft_HAAT;
+       
+       transmitter_height += _tx_antenna_height;
+       receiver_height += _rx_antenna_height;
+       
        
        /** radio horizon calculation with wave bending k=4/3 */
        double receiver_horizon = 4.12 * sqrt(receiver_height);
@@ -434,13 +966,59 @@ double FGRadio::LOS_calculate_attenuation(SGGeod pos, double freq,
        if (distance_m > total_horizon) {
                return -1;
        }
-       
+       double pol_loss = 0.0;
+       if (_polarization == 1) {
+               pol_loss = polarization_loss();
+       }
        // free-space loss (distance calculation should be changed)
        dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
-       signal = link_budget - dbloss;
-       SG_LOG(SG_GENERAL, SG_BULK,
-                       "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm ");
-       cerr << "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm " << endl;
+       signal = link_budget - dbloss + pol_loss;
+
+       //cerr << "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm " << endl;
        return signal;
        
 }
+
+/*** calculate loss due to polarization mismatch
+*      this function is only reliable for vertical polarization
+*      due to the V-shape of horizontally polarized antennas
+***/
+double FGRadioTransmission::polarization_loss() {
+       
+       double theta_deg;
+       double roll = fgGetDouble("/orientation/roll-deg");
+       if (fabs(roll) > 85.0)
+               roll = 85.0;
+       double pitch = fgGetDouble("/orientation/pitch-deg");
+       if (fabs(pitch) > 85.0)
+               pitch = 85.0;
+       double theta = fabs( atan( sqrt( 
+               pow(tan(roll * SGD_DEGREES_TO_RADIANS), 2) + 
+               pow(tan(pitch * SGD_DEGREES_TO_RADIANS), 2) )) * SGD_RADIANS_TO_DEGREES);
+       
+       if (_polarization == 0)
+               theta_deg = 90.0 - theta;
+       else
+               theta_deg = theta;
+       if (theta_deg > 85.0)   // we don't want to converge into infinity
+               theta_deg = 85.0;
+       
+       double loss = 10 * log10( pow(cos(theta_deg * SGD_DEGREES_TO_RADIANS), 2) );
+       //cerr << "Polarization loss: " << loss << " dBm " << endl;
+       return loss;
+}
+
+
+double FGRadioTransmission::watt_to_dbm(double power_watt) {
+       return 10 * log10(1000 * power_watt);   // returns dbm
+}
+
+double FGRadioTransmission::dbm_to_watt(double dbm) {
+       return exp( (dbm-30) * log(10.0) / 10.0);       // returns Watts
+}
+
+double FGRadioTransmission::dbm_to_microvolt(double dbm) {
+       return sqrt(dbm_to_watt(dbm) * 50) * 1000000;   // returns microvolts
+}
+
+