]> git.mxchange.org Git - flightgear.git/blobdiff - src/Radio/radio.cxx
Merge branch 'next' of gitorious.org:fg/flightgear into next
[flightgear.git] / src / Radio / radio.cxx
index efe77b413fa35de039fc07bb458fbbb35696dc2b..169cd322f19bb650c25806fde84f76d8fde3d46b 100644 (file)
@@ -1,6 +1,6 @@
 // radio.cxx -- implementation of FGRadio
 // Class to manage radio propagation using the ITM model
-// Written by Adrian Musceac, started August 2011.
+// Written by Adrian Musceac YO8RZZ, started August 2011.
 //
 // This program is free software; you can redistribute it and/or
 // modify it under the terms of the GNU General Public License as
@@ -29,6 +29,7 @@
 #include "radio.hxx"
 #include <simgear/scene/material/mat.hxx>
 #include <Scenery/scenery.hxx>
+#include <boost/scoped_array.hpp>
 
 #define WITH_POINT_TO_POINT 1
 #include "itm.cpp"
@@ -37,7 +38,7 @@
 FGRadioTransmission::FGRadioTransmission() {
        
        
-       _receiver_sensitivity = -105.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD
+       _receiver_sensitivity = -105.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD or less
        
        /** AM transmitter power in dBm.
        *       Typical output powers for ATC ground equipment, VHF-UHF:
@@ -91,17 +92,15 @@ double FGRadioTransmission::getFrequency(int radio) {
        return freq;
 }
 
-/*** TODO: receive multiplayer chat message and voice
-***/
+
 void FGRadioTransmission::receiveChat(SGGeod tx_pos, double freq, string text, int ground_to_air) {
 
 }
 
-/*** TODO: receive navaid 
-***/
+
 double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmission_type) {
        
-       // typical VOR/LOC transmitter power appears to be 200 Watt ~ 53 dBm
+       // typical VOR/LOC transmitter power appears to be 100 - 200 Watt i.e 50 - 53 dBm
        // vor/loc typical sensitivity between -107 and -101 dBm
        // glideslope sensitivity between -85 and -81 dBm
        if ( _propagation_model == 1) {
@@ -115,18 +114,42 @@ double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmiss
 
 }
 
-/*** Receive ATC radio communication as text
-***/
-void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) {
 
+double FGRadioTransmission::receiveBeacon(SGGeod &tx_pos, double heading, double pitch) {
+       
+       // these properties should be set by an instrument
+       _receiver_sensitivity = _root_node->getDoubleValue("station[0]/rx-sensitivity", _receiver_sensitivity);
+       _transmitter_power = watt_to_dbm(_root_node->getDoubleValue("station[0]/tx-power-watt", _transmitter_power));
+       _polarization = _root_node->getIntValue("station[0]/polarization", 1);
+       _tx_antenna_height += _root_node->getDoubleValue("station[0]/tx-antenna-height", 0);
+       _rx_antenna_height += _root_node->getDoubleValue("station[0]/rx-antenna-height", 0);
+       _tx_antenna_gain += _root_node->getDoubleValue("station[0]/tx-antenna-gain", 0);
+       _rx_antenna_gain += _root_node->getDoubleValue("station[0]/rx-antenna-gain", 0);
+       
+       double freq = _root_node->getDoubleValue("station[0]/frequency", 144.8);        // by default stay in the ham 2 meter band
+       
+       double comm1 = getFrequency(1);
+       double comm2 = getFrequency(2);
+       if ( !(fabs(freq - comm1) <= 0.0001) &&  !(fabs(freq - comm2) <= 0.0001) ) {
+               return -1;
+       }
        
+       double signal = ITM_calculate_attenuation(tx_pos, freq, 1);
+       
+       return signal;
+}
+
+
+
+void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) {
+
+       // adjust some default parameters in case the ATC code does not set them
        if(ground_to_air == 1) {
                _transmitter_power += 4.0;
                _tx_antenna_height += 30.0;
                _tx_antenna_gain += 2.0; 
        }
        
-       
        double comm1 = getFrequency(1);
        double comm2 = getFrequency(2);
        if ( !(fabs(freq - comm1) <= 0.0001) &&  !(fabs(freq - comm2) <= 0.0001) ) {
@@ -134,30 +157,27 @@ void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, in
        }
        else {
        
-               if ( _propagation_model == 0) {
-                       // skip propagation routines entirely
+               if ( _propagation_model == 0) {         // skip propagation routines entirely
                        fgSetString("/sim/messages/atc", text.c_str());
                }
-               else if ( _propagation_model == 1 ) {
-                       // Use free-space, round earth
+               else if ( _propagation_model == 1 ) {           // Use free-space, round earth
+                       
                        double signal = LOS_calculate_attenuation(tx_pos, freq, ground_to_air);
                        if (signal <= 0.0) {
                                return;
                        }
                        else {
-                               
                                fgSetString("/sim/messages/atc", text.c_str());
-                               
                        }
                }
-               else if ( _propagation_model == 2 ) {
-                       // Use ITM propagation model
+               else if ( _propagation_model == 2 ) {   // Use ITM propagation model
+                       
                        double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
                        if (signal <= 0.0) {
                                return;
                        }
                        if ((signal > 0.0) && (signal < 12.0)) {
-                               /** for low SNR values implement a way to make the conversation
+                               /** for low SNR values need a way to make the conversation
                                *       hard to understand but audible
                                *       in the real world, the receiver AGC fails to capture the slope
                                *       and the signal, due to being amplitude modulated, decreases volume after demodulation
@@ -173,31 +193,26 @@ void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, in
                                        text.replace(pos,1, hash_noise);
                                }
                                */
-                               double volume = (fabs(signal - 12.0) / 12);
-                               double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
-                               SG_LOG(SG_GENERAL, SG_BULK, "Usable signal at limit: " << signal);
-                               //cerr << "Usable signal at limit: " << signal << endl;
-                               fgSetDouble("/sim/sound/voices/voice/volume", volume);
+                               //double volume = (fabs(signal - 12.0) / 12);
+                               //double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
+                               
+                               //fgSetDouble("/sim/sound/voices/voice/volume", volume);
                                fgSetString("/sim/messages/atc", text.c_str());
-                               fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
+                               //fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
                        }
                        else {
                                fgSetString("/sim/messages/atc", text.c_str());
                        }
-                       
                }
-               
        }
-       
 }
 
-/***  Implement radio attenuation              
-         based on the Longley-Rice propagation model
-***/
+
 double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
 
        
-       
+       if((freq < 40.0) || (freq > 20000.0))   // frequency out of recommended range 
+               return -1;
        /** ITM default parameters 
                TODO: take them from tile materials (especially for sea)?
        **/
@@ -260,10 +275,10 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        double reverse_course = SGGeodesy::courseRad(sender_pos_c, own_pos_c);
        double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
        double probe_distance = 0.0;
-       /** If distance larger than this value (300 km), assume reception imposssible */
+       /** If distance larger than this value (300 km), assume reception imposssible to spare CPU cycles */
        if (distance_m > 300000)
                return -1.0;
-       /** If above 8000 meters, consider LOS mode and calculate free-space att */
+       /** If above 8000 meters, consider LOS mode and calculate free-space att to spare CPU cycles */
        if (own_alt > 8000) {
                dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
                SG_LOG(SG_GENERAL, SG_BULK,
@@ -275,10 +290,10 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        
                
        int max_points = (int)floor(distance_m / point_distance);
-       double delta_last = fmod(distance_m, point_distance);
+       //double delta_last = fmod(distance_m, point_distance);
        
        deque<double> elevations;
-       deque<string> materials;
+       deque<string*> materials;
        
 
        double elevation_under_pilot = 0.0;
@@ -298,9 +313,6 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        transmitter_height += _tx_antenna_height;
        receiver_height += _rx_antenna_height;
        
-       
-       SG_LOG(SG_GENERAL, SG_BULK,
-                       "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters");
        //cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl;
        _root_node->setDoubleValue("station[0]/rx-height", receiver_height);
        _root_node->setDoubleValue("station[0]/tx-height", transmitter_height);
@@ -319,42 +331,48 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
                                elevations.push_back(elevation_m);
                                if(mat) {
                                        const std::vector<string> mat_names = mat->get_names();
-                                       materials.push_back(mat_names[0]);
+                                       string* name = new string(mat_names[0]);
+                                       materials.push_back(name);
                                }
                                else {
-                                       materials.push_back("None");
+                                       string* no_material = new string("None"); 
+                                       materials.push_back(no_material);
                                }
                        }
                        else {
                                 elevations.push_front(elevation_m);
                                 if(mat) {
                                         const std::vector<string> mat_names = mat->get_names();
-                                        materials.push_front(mat_names[0]);
+                                        string* name = new string(mat_names[0]);
+                                        materials.push_front(name);
                                }
                                else {
-                                       materials.push_front("None");
+                                       string* no_material = new string("None"); 
+                                       materials.push_front(no_material);
                                }
                        }
                }
                else {
                        if((transmission_type == 3) || (transmission_type == 4)) {
                                elevations.push_back(0.0);
-                               materials.push_back("None");
+                               string* no_material = new string("None"); 
+                               materials.push_back(no_material);
                        }
                        else {
+                               string* no_material = new string("None"); 
                                elevations.push_front(0.0);
-                               materials.push_front("None");
+                               materials.push_front(no_material);
                        }
                }
        }
        if((transmission_type == 3) || (transmission_type == 4)) {
                elevations.push_front(elevation_under_pilot);
-               if (delta_last > (point_distance / 2) )                 // only add last point if it's farther than half point_distance
+               //if (delta_last > (point_distance / 2) )                       // only add last point if it's farther than half point_distance
                        elevations.push_back(elevation_under_sender);
        }
        else {
                elevations.push_back(elevation_under_pilot);
-               if (delta_last > (point_distance / 2) )
+               //if (delta_last > (point_distance / 2) )
                        elevations.push_front(elevation_under_sender);
        }
        
@@ -366,65 +384,66 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        elevations.push_front(num_points -1);
 
        int size = elevations.size();
-       double *itm_elev;
-       itm_elev = new double[size];
+        boost::scoped_array<double> itm_elev( new double[size] );
 
        for(int i=0;i<size;i++) {
                itm_elev[i]=elevations[i];
-               
-
        }
        
        if((transmission_type == 3) || (transmission_type == 4)) {
                // the sender and receiver roles are switched
-               point_to_point(itm_elev, receiver_height, transmitter_height,
+               ITM::point_to_point(itm_elev.get(), receiver_height, transmitter_height,
                        eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
                        pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
                if( _root_node->getBoolValue( "use-clutter-attenuation", false ) )
-                       calculate_clutter_loss(frq_mhz, itm_elev, materials, receiver_height, transmitter_height, p_mode, horizons, clutter_loss);
+                       calculate_clutter_loss(frq_mhz, itm_elev.get(), materials, receiver_height, transmitter_height, p_mode, horizons, clutter_loss);
        }
        else {
-               point_to_point(itm_elev, transmitter_height, receiver_height,
+               ITM::point_to_point(itm_elev.get(), transmitter_height, receiver_height,
                        eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
                        pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
                if( _root_node->getBoolValue( "use-clutter-attenuation", false ) )
-                       calculate_clutter_loss(frq_mhz, itm_elev, materials, transmitter_height, receiver_height, p_mode, horizons, clutter_loss);
+                       calculate_clutter_loss(frq_mhz, itm_elev.get(), materials, transmitter_height, receiver_height, p_mode, horizons, clutter_loss);
        }
        
        double pol_loss = 0.0;
+       // TODO: remove this check after we check a bit the axis calculations in this function
        if (_polarization == 1) {
                pol_loss = polarization_loss();
        }
-       SG_LOG(SG_GENERAL, SG_BULK,
-                       "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
+       //SG_LOG(SG_GENERAL, SG_BULK,
+       //              "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
        //cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
        _root_node->setDoubleValue("station[0]/link-budget", link_budget);
        _root_node->setDoubleValue("station[0]/terrain-attenuation", dbloss);
        _root_node->setStringValue("station[0]/prop-mode", strmode);
        _root_node->setDoubleValue("station[0]/clutter-attenuation", clutter_loss);
        _root_node->setDoubleValue("station[0]/polarization-attenuation", pol_loss);
-       //if (errnum == 4)      // if parameters are outside sane values for lrprop, the alternative method is used
+       //if (errnum == 4)      // if parameters are outside sane values for lrprop, bail out fast
        //      return -1;
+       
+       // temporary, keep this antenna radiation pattern code here
        double tx_pattern_gain = 0.0;
        double rx_pattern_gain = 0.0;
-       if (_root_node->getBoolValue("use-antenna-pattern", false)) {
-               double sender_heading = 270.0; // due West
-               double tx_antenna_bearing = sender_heading - reverse_course * SGD_RADIANS_TO_DEGREES;
-               double rx_antenna_bearing = own_heading - course * SGD_RADIANS_TO_DEGREES;
-               double rx_elev_angle = atan((itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m) * SGD_RADIANS_TO_DEGREES;
-               double tx_elev_angle = 0.0 - rx_elev_angle;
+       double sender_heading = 270.0; // due West
+       double tx_antenna_bearing = sender_heading - reverse_course * SGD_RADIANS_TO_DEGREES;
+       double rx_antenna_bearing = own_heading - course * SGD_RADIANS_TO_DEGREES;
+       double rx_elev_angle = atan((itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m) * SGD_RADIANS_TO_DEGREES;
+       double tx_elev_angle = 0.0 - rx_elev_angle;
+       if (_root_node->getBoolValue("use-tx-antenna-pattern", false)) {
                FGRadioAntenna* TX_antenna;
-               FGRadioAntenna* RX_antenna;
                TX_antenna = new FGRadioAntenna("Plot2");
                TX_antenna->set_heading(sender_heading);
                TX_antenna->set_elevation_angle(0);
                tx_pattern_gain = TX_antenna->calculate_gain(tx_antenna_bearing, tx_elev_angle);
+               delete TX_antenna;
+       }
+       if (_root_node->getBoolValue("use-rx-antenna-pattern", false)) {
+               FGRadioAntenna* RX_antenna;
                RX_antenna = new FGRadioAntenna("Plot2");
                RX_antenna->set_heading(own_heading);
                RX_antenna->set_elevation_angle(fgGetDouble("/orientation/pitch-deg"));
                rx_pattern_gain = RX_antenna->calculate_gain(rx_antenna_bearing, rx_elev_angle);
-               
-               delete TX_antenna;
                delete RX_antenna;
        }
        
@@ -439,22 +458,21 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        //_root_node->setDoubleValue("station[0]/tx-pattern-gain", tx_pattern_gain);
        //_root_node->setDoubleValue("station[0]/rx-pattern-gain", rx_pattern_gain);
 
-       delete[] itm_elev;
-
+       for (unsigned i =0; i < materials.size(); i++) {
+               delete materials[i];
+       }
+       
        return signal;
 
 }
 
-/*** Calculate losses due to vegetation and urban clutter (WIP)
-*       We are only worried about clutter loss, terrain influence 
-*       on the first Fresnel zone is calculated in the ITM functions
-***/
-void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[], deque<string> &materials,
+
+void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[], deque<string*> &materials,
        double transmitter_height, double receiver_height, int p_mode,
        double horizons[], double &clutter_loss) {
        
        double distance_m = itm_elev[0] * itm_elev[1]; // only consider elevation points
-       
+       unsigned mat_size = materials.size();
        if (p_mode == 0) {      // LOS: take each point and see how clutter height affects first Fresnel zone
                int mat = 0;
                int j=1; 
@@ -462,12 +480,19 @@ void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[],
                        
                        double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                        double clutter_density = 0.0;   // percent of reflected wave
+                       if((unsigned)mat >= mat_size) { //this tends to happen when the model interferes with the antenna (obstructs)
+                               //cerr << "Array index out of bounds 0-0: " << mat << " size: " << mat_size << endl;
+                               break;
+                       }
                        get_material_properties(materials[mat], clutter_height, clutter_density);
                        
                        double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
                        // First Fresnel radius
                        double frs_rad = 548 * sqrt( (j * itm_elev[1] * (itm_elev[0] - j) * itm_elev[1] / 1000000) / (  distance_m * freq / 1000) );
-                       
+                       if (frs_rad <= 0.0) {   //this tends to happen when the model interferes with the antenna (obstructs)
+                               //cerr << "Frs rad 0-0: " << frs_rad << endl;
+                               continue;
+                       }
                        //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                        
                        double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
@@ -513,12 +538,20 @@ void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[],
                                        break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
+                               
+                               if((unsigned)mat >= mat_size) {         
+                                       //cerr << "Array index out of bounds 1-1: " << mat << " size: " << mat_size << endl;
+                                       break;
+                               }
                                get_material_properties(materials[mat], clutter_height, clutter_density);
                                
                                double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
                                // First Fresnel radius
                                double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / ( num_points_1st * itm_elev[1] * freq / 1000) );
-                               
+                               if (frs_rad <= 0.0) {   
+                                       //cerr << "Frs rad 1-1: " << frs_rad << endl;
+                                       continue;
+                               }
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
                                double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
@@ -557,12 +590,20 @@ void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[],
                                        break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
+                               
+                               if((unsigned)mat >= mat_size) {         
+                                       //cerr << "Array index out of bounds 1-2: " << mat << " size: " << mat_size << endl;
+                                       break;
+                               }
                                get_material_properties(materials[mat], clutter_height, clutter_density);
                                
                                double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
                                // First Fresnel radius
                                double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
-                               
+                               if (frs_rad <= 0.0) {   
+                                       //cerr << "Frs rad 1-2: " << frs_rad << " numpoints2 " << num_points_2nd << " j: " << j << endl;
+                                       continue;
+                               }
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
                                double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
@@ -609,12 +650,19 @@ void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[],
                                        break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
+                               if((unsigned)mat >= mat_size) {         
+                                       //cerr << "Array index out of bounds 2-1: " << mat << " size: " << mat_size << endl;
+                                       break;
+                               }
                                get_material_properties(materials[mat], clutter_height, clutter_density);
                                
                                double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
                                // First Fresnel radius
                                double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / (  num_points_1st * itm_elev[1] * freq / 1000) );
-                               
+                               if (frs_rad <= 0.0) {           
+                                       //cerr << "Frs rad 2-1: " << frs_rad << " numpoints1 " << num_points_1st << " j: " << j << endl;
+                                       continue;
+                               }
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
                                double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
@@ -641,6 +689,7 @@ void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[],
                                        // no losses
                                }
                                j++;
+                               mat++;
                                last = k;
                        }
                        mat +=1;
@@ -652,12 +701,19 @@ void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[],
                                        break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
+                               if((unsigned)mat >= mat_size) {         
+                                       //cerr << "Array index out of bounds 2-2: " << mat << " size: " << mat_size << endl;
+                                       break;
+                               }
                                get_material_properties(materials[mat], clutter_height, clutter_density);
                                
                                double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) / distance_m;
                                // First Fresnel radius
                                double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
-                               
+                               if (frs_rad <= 0.0) {   
+                                       //cerr << "Frs rad 2-2: " << frs_rad << " numpoints2 " << num_points_2nd << " j: " << j << endl;
+                                       continue;
+                               }
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
                                double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[num_points_1st + num_points_2nd +2] + clutter_height);
@@ -696,12 +752,19 @@ void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[],
                                        break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
+                               if((unsigned)mat >= mat_size) {         
+                                       //cerr << "Array index out of bounds 2-3: " << mat << " size: " << mat_size << endl;
+                                       break;
+                               }
                                get_material_properties(materials[mat], clutter_height, clutter_density);
                                
                                double grad = fabs(itm_elev[last2+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
                                // First Fresnel radius
                                double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_3rd - j) * itm_elev[1] / 1000000) / (  num_points_3rd * itm_elev[1] * freq / 1000) );
-                               
+                               if (frs_rad <= 0.0) {           
+                                       //cerr << "Frs rad 2-3: " << frs_rad << " numpoints3 " << num_points_3rd << " j: " << j << endl;
+                                       continue;
+                               }
                                
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
@@ -735,117 +798,117 @@ void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[],
                        
                }
        }
-       else if (p_mode == 2) {         //      troposcatter: ignore ground clutter for now...
+       else if (p_mode == 2) {         //      troposcatter: ignore ground clutter for now... maybe do something with weather
                clutter_loss = 0.0;
        }
        
 }
 
-/***   Temporary material properties database
-*              height: median clutter height
-*              density: radiowave attenuation factor
-***/
-void FGRadioTransmission::get_material_properties(string mat_name, double &height, double &density) {
+
+void FGRadioTransmission::get_material_properties(string* mat_name, double &height, double &density) {
        
-       if(mat_name == "Landmass") {
+       if(!mat_name)
+               return;
+       
+       if(*mat_name == "Landmass") {
                height = 15.0;
                density = 0.2;
        }
 
-       else if(mat_name == "SomeSort") {
+       else if(*mat_name == "SomeSort") {
                height = 15.0;
                density = 0.2;
        }
 
-       else if(mat_name == "Island") {
+       else if(*mat_name == "Island") {
                height = 15.0;
                density = 0.2;
        }
-       else if(mat_name == "Default") {
+       else if(*mat_name == "Default") {
                height = 15.0;
                density = 0.2;
        }
-       else if(mat_name == "EvergreenBroadCover") {
+       else if(*mat_name == "EvergreenBroadCover") {
                height = 20.0;
                density = 0.2;
        }
-       else if(mat_name == "EvergreenForest") {
+       else if(*mat_name == "EvergreenForest") {
                height = 20.0;
                density = 0.2;
        }
-       else if(mat_name == "DeciduousBroadCover") {
+       else if(*mat_name == "DeciduousBroadCover") {
                height = 15.0;
                density = 0.3;
        }
-       else if(mat_name == "DeciduousForest") {
+       else if(*mat_name == "DeciduousForest") {
                height = 15.0;
                density = 0.3;
        }
-       else if(mat_name == "MixedForestCover") {
+       else if(*mat_name == "MixedForestCover") {
                height = 20.0;
                density = 0.25;
        }
-       else if(mat_name == "MixedForest") {
+       else if(*mat_name == "MixedForest") {
                height = 15.0;
                density = 0.25;
        }
-       else if(mat_name == "RainForest") {
+       else if(*mat_name == "RainForest") {
                height = 25.0;
                density = 0.55;
        }
-       else if(mat_name == "EvergreenNeedleCover") {
+       else if(*mat_name == "EvergreenNeedleCover") {
                height = 15.0;
                density = 0.2;
        }
-       else if(mat_name == "WoodedTundraCover") {
+       else if(*mat_name == "WoodedTundraCover") {
                height = 5.0;
                density = 0.15;
        }
-       else if(mat_name == "DeciduousNeedleCover") {
+       else if(*mat_name == "DeciduousNeedleCover") {
                height = 5.0;
                density = 0.2;
        }
-       else if(mat_name == "ScrubCover") {
+       else if(*mat_name == "ScrubCover") {
                height = 3.0;
                density = 0.15;
        }
-       else if(mat_name == "BuiltUpCover") {
+       else if(*mat_name == "BuiltUpCover") {
                height = 30.0;
                density = 0.7;
        }
-       else if(mat_name == "Urban") {
+       else if(*mat_name == "Urban") {
                height = 30.0;
                density = 0.7;
        }
-       else if(mat_name == "Construction") {
+       else if(*mat_name == "Construction") {
                height = 30.0;
                density = 0.7;
        }
-       else if(mat_name == "Industrial") {
+       else if(*mat_name == "Industrial") {
                height = 30.0;
                density = 0.7;
        }
-       else if(mat_name == "Port") {
+       else if(*mat_name == "Port") {
                height = 30.0;
                density = 0.7;
        }
-       else if(mat_name == "Town") {
+       else if(*mat_name == "Town") {
                height = 10.0;
                density = 0.5;
        }
-       else if(mat_name == "SubUrban") {
+       else if(*mat_name == "SubUrban") {
                height = 10.0;
                density = 0.5;
        }
-       else if(mat_name == "CropWoodCover") {
+       else if(*mat_name == "CropWoodCover") {
                height = 10.0;
                density = 0.1;
        }
-       else if(mat_name == "CropWood") {
+       else if(*mat_name == "CropWood") {
                height = 10.0;
                density = 0.1;
        }
-       else if(mat_name == "AgroForest") {
+       else if(*mat_name == "AgroForest") {
                height = 10.0;
                density = 0.1;
        }
@@ -856,14 +919,10 @@ void FGRadioTransmission::get_material_properties(string mat_name, double &heigh
        
 }
 
-/*** implement simple LOS propagation model (WIP)
-***/
+
 double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
-       double frq_mhz;
-       if( (freq < 118.0) || (freq > 137.0) )
-               frq_mhz = 125.0;        // sane value, middle of bandplan
-       else
-               frq_mhz = freq;
+       
+       double frq_mhz = freq;
        double dbloss;
        double tx_pow = _transmitter_power;
        double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
@@ -914,8 +973,7 @@ double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, i
        // free-space loss (distance calculation should be changed)
        dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
        signal = link_budget - dbloss + pol_loss;
-       SG_LOG(SG_GENERAL, SG_BULK,
-                       "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm ");
+
        //cerr << "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm " << endl;
        return signal;